CN113422505A - Voltage overshoot protection circuit, switching power supply chip and switching power supply system - Google Patents
Voltage overshoot protection circuit, switching power supply chip and switching power supply system Download PDFInfo
- Publication number
- CN113422505A CN113422505A CN202110770075.8A CN202110770075A CN113422505A CN 113422505 A CN113422505 A CN 113422505A CN 202110770075 A CN202110770075 A CN 202110770075A CN 113422505 A CN113422505 A CN 113422505A
- Authority
- CN
- China
- Prior art keywords
- voltage
- power supply
- resistor
- output
- switching power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 88
- 238000005070 sampling Methods 0.000 claims description 33
- 230000008859 change Effects 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 3
- 230000003321 amplification Effects 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 102100031024 CCR4-NOT transcription complex subunit 1 Human genes 0.000 description 7
- 101000919674 Caenorhabditis elegans CCR4-NOT transcription complex subunit let-711 Proteins 0.000 description 7
- 101000919672 Homo sapiens CCR4-NOT transcription complex subunit 1 Proteins 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 101100462365 Aspergillus niger (strain CBS 513.88 / FGSC A1513) otaA gene Proteins 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供了一种电压过冲保护电路、开关电源芯片及开关电源系统,应用于开关电源技术领域。本发明提供了一种解决开关电源芯片的输出端电压发生电压过冲的电压过冲保护电路。具体通过电压过冲控制模块采集开关电源芯片的输出端电压,并在所述输出端电压高于第一电压阈值(输出端电压过冲)的情况下,启动恒流放电控制模块,以通过恒流放电控制模块中的放电回路将所述过冲电压所产生的多余能量以热量的方式散发掉(放电),进而降低了输出端电压,抑制了开关电源芯片的输出端发生电压过冲,进而避免了对后级单元的损坏,提高了开关电源芯片的性能和可靠性。
The invention provides a voltage overshoot protection circuit, a switching power supply chip and a switching power supply system, which are applied to the technical field of switching power supplies. The invention provides a voltage overshoot protection circuit for solving the voltage overshoot of the output terminal voltage of a switching power supply chip. Specifically, the output terminal voltage of the switching power supply chip is collected by the voltage overshoot control module, and when the output terminal voltage is higher than the first voltage threshold (the output terminal voltage overshoot), the constant current discharge control module is activated to pass the constant current discharge control module. The discharge circuit in the current discharge control module dissipates (discharges) the excess energy generated by the overshoot voltage in the form of heat, thereby reducing the output voltage and suppressing the voltage overshoot at the output of the switching power supply chip, and then The damage to the rear-stage unit is avoided, and the performance and reliability of the switching power supply chip are improved.
Description
技术领域technical field
本发明涉及开关电路技术领域,尤其是涉及一种电压过冲保护电路、开关电源芯片及开关电源系统。The invention relates to the technical field of switching circuits, in particular to a voltage overshoot protection circuit, a switching power supply chip and a switching power supply system.
背景技术Background technique
目前,在DC-DC(直流转直流)电源系统中,开关电源芯片的输出端所连接的负载有时会出现由重载到轻载的切换应用,如WIFI信号发射结束瞬间,电磁阀驱动停掉瞬间等。而在所述负载由重载到轻载的切换过程中,由于当所述开关电源的输出端的负载为重载时,开关电源芯片的输出端外接的电感中存储了大量的能量,而这部分能量最终会存储到输出电容中,进而导致输出电容电压上升(也就是输出端电压上升),即,开关电源芯片的输出端电压过冲。并且,开关电源芯片的输出端电压过冲对后级元器件的耐压是一种挑战,因此,在设计不当时,开关电源芯片的输出端的过冲电压极易造成后级单元的损坏。At present, in the DC-DC (direct current to direct current) power supply system, the load connected to the output end of the switching power supply chip sometimes has switching applications from heavy load to light load, such as the moment when the WIFI signal transmission ends, the solenoid valve drive stops. Moment wait. During the switching process of the load from heavy load to light load, when the load of the output terminal of the switching power supply is heavy, a large amount of energy is stored in the external inductor of the output terminal of the switching power supply chip, and this part The energy will eventually be stored in the output capacitor, which in turn causes the output capacitor voltage to rise (that is, the output voltage rises), that is, the output voltage of the switching power supply chip overshoots. In addition, the overshoot of the output terminal voltage of the switching power supply chip is a challenge to the withstand voltage of the post-stage components. Therefore, when the design is improper, the overshoot voltage of the output terminal of the switching power supply chip can easily cause damage to the post-stage unit.
虽然,根据开关电源芯片的自身原理,在其连接的负载发生由重载到轻载的切换过程中,开关电源芯片可以通过内部调整以缓解输出端电压过冲的问题。但是,由于开关电源芯片的调整需要一定时间,故当开关电源芯片检测到输出端存在过冲时,该芯片也需要若干个周期才能彻底关掉功率管,因此,在开关电源芯片内部调整过程中,控制开关电源芯片关闭与否的功率管一直处于开关状态,从而导致开关电源芯片的输出端电压进一步上升,使过冲增大。Although, according to the principle of the switching power supply chip, during the switching process of the connected load from heavy load to light load, the switching power supply chip can be adjusted internally to alleviate the problem of voltage overshoot at the output terminal. However, since the adjustment of the switching power supply chip takes a certain amount of time, when the switching power supply chip detects that there is an overshoot at the output, the chip also needs several cycles to completely turn off the power tube. Therefore, during the internal adjustment process of the switching power supply chip , the power tube that controls whether the switching power supply chip is turned off or not is always in the switching state, which causes the output terminal voltage of the switching power supply chip to further rise and increase the overshoot.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种电压过冲保护电路、开关电源芯片及开关电源系统,以在开关电源芯片的负载由重载向轻载突变时,抑制所述开关电源芯片的输出端发生电压过冲,进而提高开关电源芯片的性能和可靠性。The purpose of the present invention is to provide a voltage overshoot protection circuit, a switching power supply chip and a switching power supply system, so as to suppress the occurrence of voltage overshoot at the output end of the switching power supply chip when the load of the switching power supply chip changes suddenly from heavy load to light load It can improve the performance and reliability of the switching power supply chip.
第一方面,为了解决上述技术问题,本发明提出一种电压过冲保护电路,应用于一开关电源芯片的输出电压过冲控制,所述开关电源芯片具有用于控制输入电压是否输出的开关控制端SW、用于反馈所述输出电压变化的第一输出电压反馈引脚FB和第二输出电压反馈引脚FB1以及用于调节所述输出电压的功率管。In the first aspect, in order to solve the above technical problems, the present invention proposes a voltage overshoot protection circuit, which is applied to the output voltage overshoot control of a switching power supply chip, and the switching power supply chip has a switching control for controlling whether the input voltage is output or not. A terminal SW, a first output voltage feedback pin FB and a second output voltage feedback pin FB1 for feeding back the change of the output voltage, and a power tube for adjusting the output voltage.
所述电压过冲保护电路可以包括:功率管电流采集模块,连接所述功率管的输出端,以用于检测在所述开关电源芯片的输出电压发生过冲前所述功率管的输出电流,并输出将所述输出电流转换为电压后的第二电压。The voltage overshoot protection circuit may include: a power tube current acquisition module, connected to the output end of the power tube, for detecting the output current of the power tube before the output voltage of the switching power supply chip overshoots, and outputting a second voltage obtained by converting the output current into a voltage.
电压过冲控制模块,连接所述第二输出电压反馈引脚FB1和恒流放电控制模块,并用于在所述第二输出电压反馈引脚FB1的电压高于第一电压阈值时,控制所述恒流放电控制模块开启放电工作模式,以及,在所述第二输出电压反馈引脚FB1的电压低于第二电压阈值时,控制所述恒流放电控制模块关闭放电工作模式。The voltage overshoot control module is connected to the second output voltage feedback pin FB1 and the constant current discharge control module, and is used for controlling the second output voltage feedback pin FB1 when the voltage of the second output voltage feedback pin FB1 is higher than the first voltage threshold The constant current discharge control module turns on the discharge working mode, and controls the constant current discharge control module to turn off the discharge working mode when the voltage of the second output voltage feedback pin FB1 is lower than the second voltage threshold.
恒流放电控制模块,连接所述功率管电流采集模块和所述电压过冲控制模块,用于以所述第二电压为基准电压且在所述电压过冲控制模块的控制下,开启放电工作模式,并在所述开关电源芯片的输出电压发生过冲时,对所述过冲电压所产生的多余能量进行泄放,以降低所述输出电压。The constant current discharge control module is connected to the power tube current acquisition module and the voltage overshoot control module, and is used for starting the discharge operation with the second voltage as the reference voltage and under the control of the voltage overshoot control module mode, and when the output voltage of the switching power supply chip overshoots, the excess energy generated by the overshoot voltage is discharged to reduce the output voltage.
进一步的,所述功率管电流采集模块可以包括第一至第四电阻、第一运算放大器、第二运算放大器和第一二极管,其中,所述第一运算放大器和第二运算放大器均可以包括同相输入端、反相输入端和输出端。Further, the power tube current collection module may include first to fourth resistors, a first operational amplifier, a second operational amplifier and a first diode, wherein both the first operational amplifier and the second operational amplifier may be Including non-inverting input, inverting input and output.
所述第一电阻的一端与所述功率管的源极以及所述输入电压连接,另一端与所述第三电阻的一端以及所述第一运算放大器的反相输入端连接,所述功率管的漏极与所述第二电阻的一端连接,所述第二电阻的另一端与所述第四电阻的一端以及所述第一运算放大器的同相输入端连接,所述第四电阻的另一端与参考地端连接;所述第三电阻的另一端与所述第一运算放大器的输出端以及所述第二运算放大器的同相输入端连接,所述第二运算放大器的输出端与所述第一二极管的阳极连接,所述第一二极管的阴极与所述第二运算放大器的反相输入端连接并作为所述功率管电流采集模块的输出端,连接所述恒流放电控制模块。One end of the first resistor is connected to the source of the power tube and the input voltage, and the other end is connected to one end of the third resistor and the inverting input end of the first operational amplifier. The power tube The drain is connected to one end of the second resistor, the other end of the second resistor is connected to one end of the fourth resistor and the non-inverting input end of the first operational amplifier, the other end of the fourth resistor is connected connected to the reference ground; the other end of the third resistor is connected to the output end of the first operational amplifier and the non-inverting input end of the second operational amplifier, and the output end of the second operational amplifier is connected to the first operational amplifier The anode of a diode is connected, and the cathode of the first diode is connected to the inverting input terminal of the second operational amplifier and serves as the output terminal of the power tube current collection module, which is connected to the constant current discharge control module.
进一步的,所述电压过冲控制模块可以包括输入端、输出端、第八至第十一电阻、第四运算放大器和非门,其中,所述第四运算放大器包括同相输入端、反相输入端和输出端。Further, the voltage overshoot control module may include an input end, an output end, eighth to eleventh resistors, a fourth operational amplifier and a NOT gate, wherein the fourth operational amplifier includes a non-inverting input end, an inverting input terminal and output terminal.
所述第八电阻的一端与所述第二输出电压反馈引脚FB1连接,并作为所述电压过冲控制模块的输入端,以采集所述开关电源芯片的输出电压,另一端与所述第九电阻以及所述第四运算放大器的反相输入端连接,所述第九电阻的另一端与所述参考地端连接;所述第四运算放大器的同相输入端与所述第十电阻的一端以及所述第十一电阻的一端连接,所述第十电阻的另一端与预设基准电压连接,所述第十一电阻的另一端与所述第四运算放大器的输出端以及所述非门的输入端连接,所述非门的输出端作为所述电压过冲控制模块的输出端,连接所述恒流放电控制模块,以根据对采集的所述输出电压进行分压而得到的所述第二输出电压反馈引脚FB1的电压与所述第一电压阈值和/或所述第二电压阈值的比较结果,控制所述恒流放电控制模块是否开启放电工作模式。One end of the eighth resistor is connected to the second output voltage feedback pin FB1, and is used as the input end of the voltage overshoot control module to collect the output voltage of the switching power supply chip, and the other end is connected to the second output voltage feedback pin FB1. The ninth resistor is connected to the inverting input terminal of the fourth operational amplifier, and the other end of the ninth resistor is connected to the reference ground terminal; the non-inverting input terminal of the fourth operational amplifier is connected to one end of the tenth resistor and one end of the eleventh resistor is connected to the other end of the tenth resistor is connected to the preset reference voltage, and the other end of the eleventh resistor is connected to the output end of the fourth operational amplifier and the NOT gate The output terminal of the NOT gate is used as the output terminal of the voltage overshoot control module, and is connected to the constant current discharge control module to obtain the output voltage obtained by dividing the collected output voltage. The comparison result between the voltage of the second output voltage feedback pin FB1 and the first voltage threshold and/or the second voltage threshold controls whether the constant current discharge control module starts the discharge working mode.
进一步的,所述恒流放电控制模块可以包括第五至第七电阻、电容、第一MOS管、第二MOS管、第三运算放大器和采样电阻,其中,所述第三运算放大器包括同相输入端、反相输入端和输出端。Further, the constant current discharge control module may include fifth to seventh resistors, capacitors, a first MOS transistor, a second MOS transistor, a third operational amplifier and a sampling resistor, wherein the third operational amplifier includes a non-inverting input terminal, inverting input terminal and output terminal.
所述第五电阻的一端与所述功率管电流采集模块的输出端连接,另一端与所述电容的上极板以及所述第一MOS管的漏极连接,所述第一MOS管的源极与所述第六电阻的一端以及所述第三运算放大器的同相输入端连接,所述第一MOS管的栅极与所述电压过冲控制模块的输出端连接,所述第三运算放大器的输出端与所述第七电阻以及所述第二MOS管的栅极连接,所述第二MOS管的漏极与所述开关电源芯片的输出电压连接,且所述第二MOS管的源极与所述One end of the fifth resistor is connected to the output end of the power tube current collection module, and the other end is connected to the upper plate of the capacitor and the drain of the first MOS tube, and the source of the first MOS tube is connected The pole is connected to one end of the sixth resistor and the non-inverting input end of the third operational amplifier, the gate of the first MOS transistor is connected to the output end of the voltage overshoot control module, and the third operational amplifier The output terminal of the MOSFET is connected to the seventh resistor and the gate of the second MOS transistor, the drain of the second MOS transistor is connected to the output voltage of the switching power supply chip, and the source of the second MOS transistor pole with the stated
所述第三运算放大器的反相输入端以及所述采样电阻的一端连接,所述采样电阻的另一端、所述第七电阻的另一端、所述第六电阻的另一端以及所述电容的下极板均与所述参考地端连接。The inverting input end of the third operational amplifier is connected to one end of the sampling resistor, the other end of the sampling resistor, the other end of the seventh resistor, the other end of the sixth resistor and the capacitor are connected. The lower electrode plates are all connected to the reference ground terminal.
进一步的,所述第一至第四运算放大器均还可以包括供电端和接地端;其中,所述第一运算放大器的供电端与所述输入电压连接,以使所述第一运算放大器通过所述输入电压获取电能,所述第二至第四运算放大器的供电端均接入芯片内部的供电电压,以使所述第二至第四运算放大器通过所述芯片内部的供电电压获取电能;所述第一至第四运算放大器通过所述接地端与所述参考地端连接。Further, each of the first to fourth operational amplifiers may further include a power supply terminal and a ground terminal; wherein, the power supply terminal of the first operational amplifier is connected to the input voltage, so that the first operational amplifier passes through all the The input voltage obtains power, and the power supply terminals of the second to fourth operational amplifiers are all connected to the power supply voltage inside the chip, so that the second to fourth operational amplifiers obtain power through the power supply voltage inside the chip; The first to fourth operational amplifiers are connected to the reference ground terminal through the ground terminal.
第二方面,基于如上所述的电压过冲保护电路,本发明还提供了一种开关电源芯片。具体的所述开关电源芯片可以包括除了所述电容、所述第二MOS管、所述采样电阻、所述第八电阻以及所述第九电阻之外的所述电压过冲保护电路包含的其他所有元器件。In the second aspect, based on the above-mentioned voltage overshoot protection circuit, the present invention also provides a switching power supply chip. Specifically, the switching power supply chip may include other components included in the voltage overshoot protection circuit in addition to the capacitor, the second MOS transistor, the sampling resistor, the eighth resistor, and the ninth resistor. All components.
进一步的,还可以将所述电压过冲保护电路中包含的所述电容、所述第二MOS管、所述采样电阻、所述第八电阻以及所述第九电阻均设置在所述开关电源芯片的外部,以使用户通过自行配置设置在所述开关电源芯片的外部的所述元器件,提高所述开关电源芯片的灵活性。Further, the capacitor, the second MOS transistor, the sampling resistor, the eighth resistor and the ninth resistor included in the voltage overshoot protection circuit can all be set in the switching power supply. outside of the chip, so that the user can configure the components arranged outside the switching power supply chip by himself, thereby improving the flexibility of the switching power supply chip.
进一步的,所述开关电源芯片的内部还可以设置有跨导放大器、稳压模块、锯齿波生成模块、脉冲调制信号生成模块、功率管驱动模块以及频率补偿模块。Further, the inside of the switching power supply chip may also be provided with a transconductance amplifier, a voltage regulator module, a sawtooth wave generation module, a pulse modulation signal generation module, a power tube driving module and a frequency compensation module.
其中,所述跨导放大器用于对基准电压和输出电压反馈引脚的电压之差进行误差放大。Wherein, the transconductance amplifier is used to amplify the error of the difference between the reference voltage and the voltage of the output voltage feedback pin.
所述稳压模块用于为所述开关电源芯片中包含的各功能模块提供工作电压。The voltage regulator module is used to provide working voltage for each functional module included in the switching power supply chip.
所述锯齿波生成模块用于形成锯齿波信号。The sawtooth wave generating module is used for forming a sawtooth wave signal.
所述脉冲调制信号生成模块用于比较所述锯齿波信号和所述跨导放大器的输出信号,以形成脉冲调制信号。The pulse modulation signal generating module is used for comparing the sawtooth wave signal with the output signal of the transconductance amplifier to form a pulse modulation signal.
所述功率管驱动模块用于将所述脉冲调制信号变换为功率管驱动信号,并通过所述功率管驱动信号驱动所述功率管,以使所述输出电压反馈引脚的电压与所述基准电压相等。The power tube drive module is used to convert the pulse modulation signal into a power tube drive signal, and drive the power tube through the power tube drive signal, so that the voltage of the output voltage feedback pin is the same as the reference. voltage is equal.
所述频率补偿模块用于对所述跨导放大器的输出信号进行频率补偿,以稳定所述开关电源芯片的输出电压。The frequency compensation module is used to perform frequency compensation on the output signal of the transconductance amplifier to stabilize the output voltage of the switching power supply chip.
进一步的,所述稳压模块还可以包括基准电压单元,以用于为所述开关电源芯片中包含的各个功能模块提供所需的基准电压。Further, the voltage regulator module may further include a reference voltage unit, which is used to provide a required reference voltage for each functional module included in the switching power supply chip.
第三方面,基于如上所述的开关电源芯片,本发明还提供了一种开关电源系统,具体可以包括:如上所述的开关电源芯片,以及,设置在所述开关电源芯片外部的输入滤波电容、电感、第二二极管、上分压电阻、下分压电阻、前馈电容和输出滤波电容。In a third aspect, based on the switching power supply chip as described above, the present invention also provides a switching power supply system, which may specifically include: the switching power supply chip as described above, and an input filter capacitor disposed outside the switching power supply chip , inductor, second diode, upper voltage divider resistor, lower voltage divider resistor, feedforward capacitor and output filter capacitor.
其中,所述输入滤波电容的正极与所述开关电源芯片的输入电压连接,所述输入滤波电容的负极以及所述开关电源芯片的接地端均与所述参考地端连接。The positive pole of the input filter capacitor is connected to the input voltage of the switching power supply chip, and the negative pole of the input filter capacitor and the ground terminal of the switching power supply chip are both connected to the reference ground terminal.
所述电感的一端与所述开关电源芯片的开关控制端以及所述第二二极管的阴极连接,另一端与所述上分压电阻的一端以及所述前馈电容的上极板连接,所述上分压电阻的另一端与所述下分压电阻的一端、所述前馈电容的下极板以及所述第一输出电压反馈引脚FB连接,且所述下分压电阻的另一端以及所述第二二极管的阳极均与所述参考地端连接。One end of the inductor is connected to the switch control end of the switching power supply chip and the cathode of the second diode, and the other end is connected to one end of the upper voltage dividing resistor and the upper plate of the feedforward capacitor, The other end of the upper voltage dividing resistor is connected to one end of the lower voltage dividing resistor, the lower plate of the feedforward capacitor and the first output voltage feedback pin FB, and the other end of the lower voltage dividing resistor is connected. One end and the anode of the second diode are both connected to the reference ground.
所述输出滤波电容的正极与所述开关控制端连接,所述输出滤波电容的负极与所述参考地端连接。The positive pole of the output filter capacitor is connected to the switch control terminal, and the negative pole of the output filter capacitor is connected to the reference ground terminal.
进一步的,所述开关电源芯片还具有用于外接所述电容的滤波电容接入引脚、用于外接所述第二MOS管的第二输出端以及用于外接所述采样电阻的第三输出端。Further, the switching power supply chip also has a filter capacitor access pin for external connection of the capacitor, a second output terminal for external connection of the second MOS transistor, and a third output for external connection of the sampling resistor. end.
其中,所述恒流放电控制模块中的所述电容的上极板与所述开关电源芯片的滤波电容接入引脚连接,所述电容的下极板与所述参考地端连接。Wherein, the upper plate of the capacitor in the constant current discharge control module is connected to the filter capacitor access pin of the switching power supply chip, and the lower plate of the capacitor is connected to the reference ground.
所述第二MOS管的栅极与所述开关电源芯片的第二输出端连接,所述第二MOS管的源极和所述采样电阻的一端均与所述开关电源芯片的第三输出端连接,所述第二MOS管的漏极与所述电感、所述上分压电阻的一端以及所述输出滤波电容的阳极连接,所述采样电阻的另一端与所述参考地端连接。The gate of the second MOS transistor is connected to the second output terminal of the switching power supply chip, and the source of the second MOS transistor and one end of the sampling resistor are both connected to the third output terminal of the switching power supply chip The drain of the second MOS transistor is connected to the inductor, one end of the upper voltage dividing resistor and the anode of the output filter capacitor, and the other end of the sampling resistor is connected to the reference ground.
所述第八电阻的一端与所述输出滤波电容的阳极、所述上分压电阻的一端以及所述电感的另一端连接,另一端与所述第九电阻的一端以及所述开关电源芯片的所述第二输出电压反馈引脚FB1连接,所述第九电阻的另一端与所述参考地端连接。One end of the eighth resistor is connected to the anode of the output filter capacitor, one end of the upper voltage dividing resistor and the other end of the inductor, and the other end is connected to one end of the ninth resistor and the switching power supply chip. The second output voltage feedback pin FB1 is connected, and the other end of the ninth resistor is connected to the reference ground.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明提供了一种解决开关电源芯片的输出端电压发生电压过冲的电压过冲保护电路。具体通过电压过冲控制模块采集开关电源芯片的输出端电压,并在所述输出端电压高于第一电压阈值(输出端电压过冲)的情况下,启动恒流放电控制模块,以通过恒流放电控制模块中的放电回路将所述过冲电压所产生的多余能量以热量的方式散发掉(放电),进而降低输出端电压,抑制了开关电源芯片的输出端发生电压过冲,进而避免了对后级单元的损坏,提高了开关电源芯片的性能和可靠性。The invention provides a voltage overshoot protection circuit for solving the voltage overshoot of the output terminal voltage of a switching power supply chip. Specifically, the output terminal voltage of the switching power supply chip is collected by the voltage overshoot control module, and when the output terminal voltage is higher than the first voltage threshold (the output terminal voltage overshoot), the constant current discharge control module is activated to pass the constant current discharge control module. The discharge circuit in the current discharge control module dissipates (discharges) the excess energy generated by the overshoot voltage in the form of heat, thereby reducing the output terminal voltage, suppressing the voltage overshoot at the output terminal of the switching power supply chip, thereby avoiding The damage to the rear stage unit is avoided, and the performance and reliability of the switching power supply chip are improved.
此外,由于本发明提供的电压过冲保护电路中的部分元器件可以设置在开关电源芯片的外部,从而使用户可以根据实际需求,自行配置设置在开关电源芯片的外部的元器件,进而提高了开关电源芯片的设计灵活性和稳定性。In addition, since some components in the voltage overshoot protection circuit provided by the present invention can be arranged outside the switching power supply chip, users can configure the components arranged outside the switching power supply chip according to actual needs, thereby improving the Design flexibility and stability of switching power supply chips.
附图说明Description of drawings
图1为本发明一实施例中提供的一种电压过冲保护电路的电路示意图。FIG. 1 is a schematic circuit diagram of a voltage overshoot protection circuit provided in an embodiment of the present invention.
图2为本发明一实施例中提供的开关电源芯片的电路示意图。FIG. 2 is a schematic circuit diagram of a switching power supply chip provided in an embodiment of the present invention.
图3为本发明一实施例中提供的开关电源系统的电路示意图。FIG. 3 is a schematic circuit diagram of a switching power supply system provided in an embodiment of the present invention.
图4a~图4d为本发明一实施例中提供的采用本发明的电压过冲保护电路的开关电源系统的各关键节点波形图与未使用本发明提供的电压过冲保护电路的开关电源系统的输出电压对比图。4a to 4d are waveform diagrams of key nodes of a switching power supply system using the voltage overshoot protection circuit of the present invention provided in an embodiment of the present invention and a switching power supply system not using the voltage overshoot protection circuit provided by the present invention. Output voltage comparison chart.
其中,附图中,Among them, in the attached drawings,
10-功率管电流采集模块; 20-恒流放电控制模块;10-Power tube current acquisition module; 20-Constant current discharge control module;
30-电压过冲控制模块; 40-稳压模块;30-voltage overshoot control module; 40-voltage regulator module;
50-锯齿波生成模块; 60-脉冲调制信号生成模块;50-sawtooth wave generation module; 60-pulse modulation signal generation module;
70-功率管驱动模块; 80-频率补偿模块;70-power tube drive module; 80-frequency compensation module;
VIN-输入电压; V1-第一电压;VIN-input voltage; V1-first voltage;
V2-第二电压/功率管电流采集模块 10的输出端电压;V2-the output terminal voltage of the second voltage/power tube current acquisition module 10;
M1-第一MOS管; M2-第二MOS管;M1-the first MOS tube; M2-the second MOS tube;
A-功率管; OP1-第一运算放大器;A-power tube; OP1-first operational amplifier;
OP2-第二运算放大器; OP3-第一运算放大器;OP2-second operational amplifier; OP3-first operational amplifier;
COMP1-第四运算放大器; NOT1-非门;COMP1- the fourth operational amplifier; NOT1- NOT gate;
VREF/VREF1-基准电压; GND-参考地端;VREF/VREF1-reference voltage; GND-reference ground terminal;
100-开关电源芯片; R1~R11-第一至第十一电阻;100-switching power supply chip; R1~R11-first to eleventh resistors;
VO-输出电压; VH-第一电压阈值/上阈值电压;VO-output voltage; VH-first voltage threshold/upper threshold voltage;
VL-第二电压阈值/下阈值电压; VDD-芯片内部的供电电压;VL-the second voltage threshold/lower threshold voltage; VDD-the power supply voltage inside the chip;
C1-电容; RCS-采样电阻;C1-capacitor; RCS-sampling resistor;
FB-第一输出电压反馈引脚; SW-开关控制端;FB-the first output voltage feedback pin; SW-switch control terminal;
CT-滤波电容接入引脚; MGATE-第二输出端;CT- filter capacitor access pin; MGATE- the second output terminal;
MCS-第三输出端; CIN/C2-输入滤波电容;MCS-the third output terminal; CIN/C2-input filter capacitor;
COUT-输出滤波电容; D1-第一二极管;COUT-output filter capacitor; D1-first diode;
D2-第二二极管; L1-电感;D2-the second diode; L1-inductance;
OTA1-跨导放大器; RT-上分压电阻;OTA1-transconductance amplifier; RT-upper divider resistor;
RB-下分压电阻; CFF-前馈电容;RB-lower divider resistor; CFF-feedforward capacitor;
FB1-第二输出电压反馈引脚FB1; RD-功率管A的采样电阻;FB1-the second output voltage feedback pin FB1; RD-sampling resistance of power tube A;
-功率管A的输出电流; -流过M2的电流。 - output current of power tube A; - Current flowing through M2.
具体实施方式Detailed ways
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。In order to make the objects, advantages and features of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the accompanying drawings are all in a very simplified form and are not drawn to scale, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention. Furthermore, the structures shown in the drawings are often part of the actual structure. In particular, each drawing needs to show different emphases, and sometimes different scales are used.
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本发明中所使用的,一元件设置于另一元件,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。As used herein, the singular forms "a," "an," and "the" include plural referents, the term "or" is generally employed in its sense including "and/or", and the term "a number" It is usually used in the sense including "at least one", the term "at least two" is usually used in the sense including "two or more", in addition, the terms "first", "the second" "Second" and "Third" are for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as "first", "second", "third" may expressly or implicitly include one or at least two of those features, "one end" and "the other end" and "proximal end" and "Distal" usually refers to two corresponding parts, which not only include end points, and the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two elements or the interaction relationship between the two elements. In addition, as used in the present invention, the arrangement of one element on another element generally only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the relationship between the two elements may be direct or indirect through intermediate elements connection, coupling, cooperation or transmission, and should not be construed as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any position inside, outside, above, below or on one side of the other element, unless the content Also clearly stated. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
诚如背景技术所述,虽然,目前根据开关电源芯片的自身原理,在其连接的负载发生由重载到轻载的切换过程中,开关电源芯片可以通过内部调整以缓解输出端电压过冲的问题。但是,由于开关电源芯片的调整需要一定时间,故当开关电源芯片检测到输出端存在过冲时,该芯片也需要若干个周期才能彻底关掉功率管,因此,在开关电源芯片内部调整过程中,控制开关电源芯片关闭与否的功率管一直处于开关状态,从而导致开关电源芯片的输出端电压进一步上升,使过冲增大。As mentioned in the background art, although, according to the principle of the switching power supply chip, during the switching process of the connected load from heavy load to light load, the switching power supply chip can be adjusted internally to alleviate the voltage overshoot at the output terminal. question. However, since the adjustment of the switching power supply chip takes a certain amount of time, when the switching power supply chip detects that there is an overshoot at the output, the chip also needs several cycles to completely turn off the power tube. Therefore, during the internal adjustment process of the switching power supply chip , the power tube that controls whether the switching power supply chip is turned off or not is always in the switching state, which causes the output terminal voltage of the switching power supply chip to further rise and increase the overshoot.
因此,为了解决上述问题,本发明的核心思想在于提供一种电压过冲保护电路、开关电源芯片及开关电源系统,以在开关电源芯片的负载由重载向轻载突变时,抑制所述开关电源芯片的输出端发生电压过冲,进而提高开关电源芯片的性能和可靠性。Therefore, in order to solve the above problems, the core idea of the present invention is to provide a voltage overshoot protection circuit, a switching power supply chip and a switching power supply system, so as to suppress the switching when the load of the switching power supply chip changes from heavy load to light load abruptly Voltage overshoot occurs at the output end of the power supply chip, thereby improving the performance and reliability of the switching power supply chip.
以下将对本发明的一种电压过冲保护电路、开关电源芯片及开关电源系统作进一步的详细描述。下面将参照附图1至附图4a~附图4d对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。A voltage overshoot protection circuit, a switching power supply chip and a switching power supply system of the present invention will be described in further detail below. The present invention will be described in more detail below with reference to Fig. 1 to Fig. 4a to Fig. 4d, wherein preferred embodiments of the present invention are shown, and it should be understood that those skilled in the art can modify the invention described herein and still implement the present invention Advantageous effects of the invention. Therefore, the following description should be construed as widely known to those skilled in the art and not as a limitation of the present invention.
请参考图1,并结合图2,图1本发明本发明一实施例的电压过冲保护电路的电路示意图,图2为包含图1所述的电压过冲保护电路的开关电源芯片的电路示意图。具体的,本发明实施例中提供的电压过冲保护电路具体可以应用于一开关电源芯片(如图2所示)的输出电压过冲控制。其中,所述开关电源芯片具有连接输入电压的输入端VIN、用于控制输入电压是否输出的开关控制端SW、用于反馈所述输出电压变化的输出电压反馈引脚FB、用于等效所述输出电压反馈引脚的电压FB的第二输出电压反馈引脚FB1以及用于调节所述输出电压的功率管A。具体的,本发明提供的电压过冲保护电路可以包括:功率管电流采集模块10、恒流放电控制模块20和电压过冲控制模块30,其中,Please refer to FIG. 1 , in conjunction with FIG. 2 , FIG. 1 is a schematic circuit diagram of a voltage overshoot protection circuit according to an embodiment of the present invention, and FIG. 2 is a circuit schematic diagram of a switching power supply chip including the voltage overshoot protection circuit described in FIG. 1 . Specifically, the voltage overshoot protection circuit provided in the embodiment of the present invention can be specifically applied to the output voltage overshoot control of a switching power supply chip (as shown in FIG. 2 ). The switching power supply chip has an input terminal VIN for connecting the input voltage, a switch control terminal SW for controlling whether the input voltage is output, an output voltage feedback pin FB for feeding back the change of the output voltage, and a The second output voltage feedback pin FB1 of the voltage FB of the output voltage feedback pin and the power transistor A used to adjust the output voltage. Specifically, the voltage overshoot protection circuit provided by the present invention may include: a power tube current collection module 10, a constant current
所述功率管电流采集模块10,连接所述功率管A的输出端,以用于检测在所述开关电源芯片的输出电压发生过冲前所述功率管A的输出电流,并输出将所述输出电流转换为电压后的第二电压V2。The power tube current acquisition module 10 is connected to the output end of the power tube A, so as to detect the output current of the power tube A before the output voltage of the switching power supply chip overshoots , and the output will be the output current The second voltage V2 after being converted into a voltage.
需要说明的是,在图1所示的电压过冲保护电路,为了便于理解,可以将所述功率管A等效为其对应的采样电阻RD(功率管A的导通电阻),而在其他实施例中,也可以将所述功率管等效为与该功率管串联的电阻。It should be noted that, in the voltage overshoot protection circuit shown in FIG. 1 , in order to facilitate understanding, the power tube A can be equivalent to its corresponding sampling resistance RD (the on-resistance of the power tube A), and in other In the embodiment, the power tube can also be equivalent to a resistor connected in series with the power tube.
具体的,所述功率管电流采集模块10可以包括第一至第四电阻R1~R4、第一运算放大器OP1、第二运算放大器OP2和第一二极管D1,其中,所述第一运算放大器OP1和第二运算放大器OP2均可以包括同相输入端(+)、反相输入端(-)和输出端。Specifically, the power tube current collection module 10 may include first to fourth resistors R1 ˜ R4 , a first operational amplifier OP1 , a second operational amplifier OP2 and a first diode D1 , wherein the first operational amplifier Both OP1 and the second operational amplifier OP2 may include a non-inverting input terminal (+), an inverting input terminal (-) and an output terminal.
其中,所述第一电阻R1的一端与所述功率管A(或者其对应的采样电阻RD的一端)的源极以及所述输入电压VIN连接,另一端与所述第三电阻R3的一端以及所述第一运算放大器OP1的反相输入端(-)连接,所述功率管A的漏极与所述第二电阻R2的一端连接,所述第二电阻R2的另一端与所述第四电阻R4的一端以及所述第一运算放大器OP1的同相输入端(+)连接,所述第四电阻R4的另一端与参考地端GND连接;所述第三电阻R3的另一端与所述第一运算放大器OP1的输出端以及所述第二运算放大器OP2的同相输入端(+)连接,所述第二运算放大器OP2的输出端与所述第一二极管D1的阳极连接,所述第一二极管D1的阴极与所述第二运算放大器OP2的反相输入端(-)连接,并作为所述功率管电流采集模块10的输出端,连接所述恒流放电控制模块20。One end of the first resistor R1 is connected to the source of the power tube A (or one end of the corresponding sampling resistor RD) and the input voltage VIN, and the other end is connected to one end of the third resistor R3 and the input voltage VIN. The inverting input terminal (-) of the first operational amplifier OP1 is connected, the drain of the power transistor A is connected to one end of the second resistor R2, and the other end of the second resistor R2 is connected to the fourth One end of the resistor R4 is connected to the non-inverting input terminal (+) of the first operational amplifier OP1, the other end of the fourth resistor R4 is connected to the reference ground terminal GND; the other end of the third resistor R3 is connected to the first The output terminal of an operational amplifier OP1 is connected to the non-inverting input terminal (+) of the second operational amplifier OP2, the output terminal of the second operational amplifier OP2 is connected to the anode of the first diode D1, and the first operational amplifier OP2 is connected to the anode of the first diode D1. The cathode of a diode D1 is connected to the inverting input terminal (-) of the second operational amplifier OP2, and serves as the output terminal of the power tube current collection module 10, and is connected to the constant current
在本实施例中,所述功率管电流采集模块10具体用于检测所述开关电源芯片在输出端电压过冲之前的所述功率管A的输出电流,以将该输出电流的峰值电流对应的电压作为所述恒流放电控制模块20的泄放电流的基准电压,以使所述恒流放电控制模块20的泄放电流处于一个合理的值,并将所述泄放电流转换为第二电压V2,以通过所述功率管电流采集模块10提供的所述第二运算放大器OP2,将所述功率管A的输出电流传递到恒流放电控制模块20。其中,所述第一电阻R1~第四电阻R4与所述第一运算放大器OP1组成差分放大器,由于所述第一运算放大器OP1的反相输入端(-)的输入电压较高,因此,为了保证该第一运算放大器OP1可以正常工作,则需要将所述第一运算放大器OP1的供电端与所述输入电压VIN连接,而其接地端与所述参考地端GND连接。In this embodiment, the power tube current acquisition module 10 is specifically configured to detect the output current of the power tube A before the voltage overshoot of the output terminal of the switching power supply chip , to this output current The voltage corresponding to the peak current of the constant current
示例性的,若所述第一电阻R1~第四电阻R4的阻值均相等,即,R1=R2=R3=R4,则所述第一运算放大器OP1的输出电压V1可以表示为如下公式:Exemplarily, if the resistance values of the first resistor R1 to the fourth resistor R4 are all equal, that is, R1=R2=R3=R4, the output voltage V1 of the first operational amplifier OP1 can be expressed as the following formula:
其中,为开关电源芯片内部连接的所述功率管A的输出电流,RD为所述功率管A对应的采样电阻。in, is the output current of the power tube A connected inside the switching power supply chip, and RD is the sampling resistance corresponding to the power tube A.
此外,所述第二运算放大器OP2与所述第一二极管D1组成电压跟随器,而恒流放电控制模块20中的所述第五电阻R5与所述电容C1组成滤波器。因此,无论恒流放电控制模块20是处于放电工作模式还是处于关闭放电工作模式,由于第一二极管D1的存在,导致具有存储能量作用的电容C1无法通过第二运算放大器OP2放电,故所述第二电压V2的电压都是所述第一电压V1的峰值电压;而只有忽略恒流放电控制模块20时,所述功率管电流采集模块10的输出端电压的第二电压V2的电压值与所述第一电压V1的电压值才相等(电压跟随特性),即,V2=V1,从而实现了将所述功率管A的输出电流传递到恒流放电控制模块20。In addition, the second operational amplifier OP2 and the first diode D1 form a voltage follower, and the fifth resistor R5 and the capacitor C1 in the constant current
可以理解的是,由于功率管工作时,一般都会工作于某一占空比上,故所述功率管A的输出电流通常为脉冲信号,因此,所述第一电压V1与第二电压V2通常也为脉冲信号。并且,由于本发明实施例中的所述功率管电流采集模块10的输出端连接有所述第一二极管D1,因此,在所述恒流放电控制模块20处于放电工作模式时,其采集的是功率管A的最大电流。It can be understood that, since the power tube generally works on a certain duty cycle, the output current of the power tube A is Usually it is a pulse signal, therefore, the first voltage V1 and the second voltage V2 are also usually a pulse signal. In addition, since the output end of the power tube current collection module 10 in the embodiment of the present invention is connected with the first diode D1, when the constant current
进一步的,所述恒流放电控制模块20,连接所述功率管电流采集模块10和电压过冲控制模块30,用于以所述第二电压V2为基准电压且在所述电压过冲控制模块30的控制下,开启放电工作模式,并对在开关电源芯片的输出电压发生过冲时,对所述过冲电压所产生的多余能量进行泄放,以降低所述输出电压VO。Further, the constant current
具体的,所述恒流放电控制模块20可以包括第五R5至第七电阻R7、电容C1、第一MOS管M1、第二MOS管M2、第三运算放大器OP3和采样电阻RCS,其中,所述第三运算放大器OP3可以包括同相输入端(+)、反相输入端(-)和输出端。Specifically, the constant current
所述第五电阻R5的一端与所述功率管电流采集模块10的输出端连接,另一端与所述电容C1的上极板以及所述第一MOS管M1的漏极连接,所述第一MOS管M1的源极与所述第六电阻R6的一端以及所述第三运算放大器OP3的同相输入端(+)连接,所述第一MOS管M1的栅极与所述电压过冲控制模块30的输出端连接,所述第三运算放大器OP3的输出端与所述第七电阻R7以及所述第二MOS管M2的栅极连接,所述第二MOS管M2的漏极与所述电压过冲控制模块30的输入端(或理解为与所述开关电源芯片的输出电压)连接,且所述第二MOS管M2的源极与所述第三运算放大器OP3的反相输入端(-)以及所述采样电阻RCS的一端连接,所述采样电阻RCS的另一端、所述第七电阻R7的另一端、所述第六电阻R6的另一端以及所述电容C1的下极板均与所述参考地端GND连接。One end of the fifth resistor R5 is connected to the output end of the power tube current collection module 10, and the other end is connected to the upper plate of the capacitor C1 and the drain of the first MOS transistor M1. The source of the MOS transistor M1 is connected to one end of the sixth resistor R6 and the non-inverting input terminal (+) of the third operational amplifier OP3, and the gate of the first MOS transistor M1 is connected to the voltage
在本实施例中,所述恒流放电控制模块10中的第五电阻R5和所述电容C1组成滤波电路,故在M1关闭时,由于功率管电流采集模块10中的第二运算放大器OP2输出端串有所述第一二极管D1,因此,电容C1只能通过电阻R5充电,而无放电回路。这样,虽然电压V2为脉冲信号,但电压V3也会一点点冲到电压V2的最大值。另外,由于电容C1无放电回路,即使电压V2降为0V,电容C1两端的电压可以较长时间的保持。而第二MOS管M2和采样电阻RCS组成泄放电路,以通过所述电压过冲控制模块30的输出端电压V7控制所述第一MOS管M1的导通与关闭,且通过M1的导通与关闭控制所述MOS管M2的导通与关闭,从而在V7为高电压时,控制M1导通,由于第六电阻R6的阻值设置的非常大,可以认为第三运算放大器OP3的同相输入端(+)的电压V4与电容C1两端的电压V3相同,从而在开关电源芯片的输出电压发生过冲时,对过冲电压所产生的多余的能量以热量的方式在M2处散发掉,进而实现降低所述输出端电压VO的目的。In this embodiment, the fifth resistor R5 in the constant current discharge control module 10 and the capacitor C1 form a filter circuit, so when M1 is turned off, the second operational amplifier OP2 in the power tube current acquisition module 10 outputs The first diode D1 is connected in series at the end, so the capacitor C1 can only be charged through the resistor R5 without a discharge loop. In this way, although the voltage V2 is a pulse signal, the voltage V3 also rushes to the maximum value of the voltage V2 little by little. In addition, since the capacitor C1 has no discharge loop, even if the voltage V2 drops to 0V, the voltage across the capacitor C1 can be maintained for a long time. The second MOS transistor M2 and the sampling resistor RCS form a bleeder circuit, so as to control the turn-on and turn-off of the first MOS transistor M1 through the output terminal voltage V7 of the voltage
具体的,当电压过冲控制模块30检测到V8电压大于VH,则说明输出端电压VO过冲,由于V8电压大于VH,因此,V7输出高电平,V7高电平控制恒流放电控制模块20的第一MOS管M1导通,M1导通,控制M2导通,即,所述恒流放电控制模块20工作在放电工作模式(通过恒流放电控制模块20中第二MOS管M2对所述输出电压VO进行放电,以使其降到正常值);当电压过冲控制模块30检测到V8电压小于VL,则说明输出端电压VO正常,由于V8电压小于VL,因此,V7输出低电平,V7低电平控制恒流放电控制模块20的第一MOS管M1关闭,M1关闭,控制M2关闭,即,所述恒流放电控制模块20的M2不再放电。Specifically, when the voltage
并且,当V8电压小于VL,V7输出低电平,V7低电平控制恒流放电控制模块20的第一MOS管M1关闭时,第六电阻R6将第三运算放大器OP3的同相输入端(+)接地,以防止第三运算放大器OP3的同相输入端(+)悬空导致异常。而在M1导通时,由于第六电阻R6的存在,电容C1的电压V3会逐渐下降,但实际我们只需要电容C1的电压V3在M1导通时,保持一小段时间即可,故对电容C1的容量要求不是非常高。In addition, when the voltage of V8 is lower than VL, V7 outputs a low level, and the low level of V7 controls the first MOS tube M1 of the constant current
更进一步的,由于在所述恒流放电控制模块20中,所述第三运算放大器OP3、第二MOS管M2、采样电阻RCS和第六电阻R6组成线性恒流放电回路,故流过所述M2的电流可以表示为:Furthermore, in the constant current
由上述公式可知,如果将采样电阻RCS的阻值设置为与所述功率管A的等效电阻RD的阻值相等,则当M1关闭时,V4电压为0V,流过M2的电流为0A;当M1导通时,流过M2的电流约为之前时刻所述功率管的输出电流的峰值。因此,本发明通过这部分电路,可以将输出电压VO过冲所产生的多余的电能消耗在所述第二MOS管M2上,从而保证开关电源系统中的输出电容基本不过冲,或者过冲的程度在一个可以接受的范围内,进而保证后级工作的稳定,并且,将M2外置,可以通过合理的计算,设置合适的散热条件,保证系统工作稳定,具体如何将M2外置,本发明将在如下附图3所示的开关电源系统对应的部分详细说明。It can be seen from the above formula that if the resistance value of the sampling resistor RCS is set to be equal to the resistance value of the equivalent resistance RD of the power tube A, then when M1 is turned off, the voltage of V4 is 0V, and the current flowing through M2 is 0A; when M1 is turned on, the current flowing through M2 about the output current of the power tube at the previous moment Peak. Therefore, through this part of the circuit, the present invention can consume the excess electric energy generated by the overshoot of the output voltage VO on the second MOS transistor M2, thereby ensuring that the output capacitor in the switching power supply system is basically overshoot, or overshoot The degree of control is within an acceptable range, so as to ensure the stability of the post-stage operation. Moreover, if the M2 is externally installed, appropriate heat dissipation conditions can be set through reasonable calculations to ensure the stable operation of the system. Specifically, how to externally install the M2, the present invention It will be described in detail in the corresponding part of the switching power supply system shown in FIG. 3 below.
其中,由于第二MOS管M2需要外置,故电阻R7的作用是为防止第二MOS管M2因其栅极-源极GS之间电荷积累过多而导致MOS管损坏。Wherein, since the second MOS transistor M2 needs to be externally installed, the function of the resistor R7 is to prevent the second MOS transistor M2 from being damaged due to excessive charge accumulation between the gate and the source GS of the second MOS transistor M2.
进一步的,所述电压过冲控制模块30,连接所述第二输出电压反馈引脚FB1和所述恒流放电控制模块20,并用于在所述第二输出电压反馈引脚FB1的电压高于第一电压阈值VH时,控制所述恒流放电控制模块20开启放电工作模式,以及,在所述第二输出电压反馈引脚FB1的电压低于第二电压阈值VL时,控制所述恒流放电控制模块20关闭放电工作模式。Further, the voltage
具体的,所述电压过冲控制模块30可以包括输入端、输出端、第八R8至第十一电阻R11、第四运算放大器COMP1和非门NOT1,其中,所述第四运算放大器COMP1包括同相输入端(+)、反相输入端(-)和输出端。Specifically, the voltage
所述第八电阻R8的一端与所述第二输出电压反馈引脚FB1连接,并作为所述电压过冲控制模块30的输入端,以采集所述开关电源芯片的输出电压VO,另一端与所述第九电阻R9以及所述第四运算放大器COMP1的反相输入端(-)连接,所述第九电阻R9的另一端与所述参考地端GND连接;所述第四运算放大器COMP1的同相输入端(+)与所述第十电阻R10的一端以及所述第十一电阻R11的一端连接,所述第十电阻R10的另一端与预设基准电压VREF1连接,所述第十一电阻R11的另一端与所述第四运算放大器COMP1的输出端以及所述非门NOT1的输入端连接,所述非门NOT1的输出端作为所述电压过冲控制模块30的输出端,连接所述恒流放电控制模块20,以根据对采集的所述输出电压VO进行分压而得到的所述第二输出电压反馈引脚FB1的电压与所述第一电压阈值VH和/或所述第二电压阈值VL的比较结果,控制所述恒流放电控制模块20是否开启放电工作模式。One end of the eighth resistor R8 is connected to the second output voltage feedback pin FB1, and is used as the input end of the voltage
其中,所述第四运算放大器COMP1还包括供电端和接地端,所述第四运算放大器COMP1的供电端接入芯片内部的供电电压VDD,以使所述第四运算放大器COMP1通过所述芯片内部的供电电压VDD获取电能,且所述第四运算放大器COMP1通过所述接地端与所述参考地端GND连接。The fourth operational amplifier COMP1 further includes a power supply terminal and a ground terminal, and the power supply terminal of the fourth operational amplifier COMP1 is connected to the power supply voltage VDD inside the chip, so that the fourth operational amplifier COMP1 passes through the inside of the chip The power supply voltage VDD obtains power, and the fourth operational amplifier COMP1 is connected to the reference ground terminal GND through the ground terminal.
在本发明实施例中,所述第八电阻R8和第九电阻R9通过电阻分压,采集所述开关电源芯片的输出电压VO,从而得到分压后的电压为V8,具体的,所述V8可以用如下公式表示:In the embodiment of the present invention, the eighth resistor R8 and the ninth resistor R9 are divided by resistors to collect the output voltage VO of the switching power supply chip, so that the divided voltage is V8. Specifically, the V8 It can be expressed by the following formula:
其中,VO是开关电源系统的输出电压,R8和R9为电阻的阻值。从上述公式可以看出,通过检测电压V8的电压值就可知道所述开关电源系统的输出电压VO是否过冲,即,若V8过高,则说明VO过高。Among them, VO is the output voltage of the switching power supply system, and R8 and R9 are the resistance values of the resistors. It can be seen from the above formula that whether the output voltage VO of the switching power supply system is overshoot can be known by detecting the voltage value of the voltage V8, that is, if V8 is too high, it means that VO is too high.
并且,由图1所示可知,所述第十电阻R10、第十一电阻R11、第四运算放大器COMP1以及所述非门NOT1组成滞回比较器,其中,所述第四运算放大器COMP1是可以轨到轨输出的比较器,故最高输出电压为VDD,最低输出电压为0V,那么,该滞回比较器的上阈值电压VH(第一电压阈值)和下阈值电压VL(第二电压阈值)分别可以表示为:Moreover, as shown in FIG. 1 , the tenth resistor R10 , the eleventh resistor R11 , the fourth operational amplifier COMP1 and the NOT gate NOT1 form a hysteresis comparator, wherein the fourth operational amplifier COMP1 can be Rail-to-rail output comparator, so the highest output voltage is VDD and the lowest output voltage is 0V, then, the upper threshold voltage VH (first voltage threshold) and lower threshold voltage VL (second voltage threshold) of the hysteresis comparator can be expressed as:
和 and
当电压V8大于滞回比较器的上阈值电压VH(第一电压阈值)时,则说明输出电压VO过高,此时,非门NOT1的输出端电压V7输出高电平;当电压V8小于滞回比较器的下阈值电压VL(第二电压阈值),则说明输出电压VO正常,则非门NOT1的输出端电压V7输出低电平;当电压V8处于VL和VH之间时,非门NOT1的输出端电压V7保持之前的工作状态不变。此处用滞回比较器的原因是防止第二MOS管M2放电时M2的控制电路振荡,影响电路的性能。When the voltage V8 is greater than the upper threshold voltage VH (the first voltage threshold) of the hysteresis comparator, it means that the output voltage VO is too high. At this time, the output terminal voltage V7 of the NOT1 NOT1 outputs a high level; Back to the lower threshold voltage VL of the comparator (the second voltage threshold), it means that the output voltage VO is normal, then the output terminal voltage V7 of the NOT gate NOT1 outputs a low level; when the voltage V8 is between VL and VH, the NOT1 NOT1 The output terminal voltage V7 keeps the previous working state unchanged. The reason for using the hysteresis comparator here is to prevent the control circuit of M2 from oscillating when the second MOS transistor M2 is discharged, which affects the performance of the circuit.
在本发明提供的一种解决开关电源芯片的输出端电压发生电压过冲的电压过冲保护电路中,其通过电压过冲控制模块采集开关电源芯片的输出端电压,并在所述输出端电压高于第一电压阈值(输出端电压过冲)的情况下,启动恒流放电控制模块,以通过恒流放电控制模块中的放电回路将所述过冲电压所产生的多余能量以热量的方式散发掉(放电),进而降低输出端电压,抑制了开关电源芯片的输出端发生电压过冲,进而避免了对后级单元的损坏,提高了开关电源芯片的性能和可靠性。In a voltage overshoot protection circuit to solve the voltage overshoot of the output terminal voltage of the switching power supply chip provided by the present invention, the voltage overshoot control module collects the output terminal voltage of the switching power supply chip, and the output terminal voltage is When the voltage is higher than the first voltage threshold (overshoot of the output terminal voltage), the constant current discharge control module is activated to convert the excess energy generated by the overshoot voltage into heat through the discharge loop in the constant current discharge control module Dissipated (discharged), thereby reducing the voltage at the output terminal, suppressing the voltage overshoot at the output terminal of the switching power supply chip, thereby avoiding damage to the subsequent unit, and improving the performance and reliability of the switching power supply chip.
继续参见图2,并结合图3,基于同一发明构思,本发明还提供了一种开关电源芯片100,包括如图所述的除了所述电容C1、所述第二MOS管M2、所述采样电阻RCS、所述第八电阻R8以及所述第九电阻R9之外的所述电压过冲保护电路(如图1所示)包含的其他所有元器件。Continuing to refer to FIG. 2 and in conjunction with FIG. 3 , based on the same inventive concept, the present invention further provides a switching power supply chip 100 , including the capacitor C1 , the second MOS transistor M2 , the sampling All other components included in the voltage overshoot protection circuit (as shown in FIG. 1 ) except the resistor RCS, the eighth resistor R8 and the ninth resistor R9.
并且,将所述电压过冲保护电路中包含的所述电容C1、所述第二MOS管M2、所述采样电阻RCS、所述第八电阻R8以及所述第九电阻R9均设置在所述开关电源芯片100的外部,以使用户通过自行配置设置在所述开关电源芯片100的外部的所述元器件,提高所述开关电源芯片的灵活性。In addition, the capacitor C1, the second MOS transistor M2, the sampling resistor RCS, the eighth resistor R8 and the ninth resistor R9 included in the voltage overshoot protection circuit are all arranged in the The outside of the switching power supply chip 100 enables the user to configure the components arranged outside the switching power supply chip 100 to improve the flexibility of the switching power supply chip.
在本实施例中,为了提高所述开关电源芯片100的灵活性和稳定性,并且,基于一些元器件需要人工手动操作的情况,本发明发明人提出将其设计的电压过冲保护电路中的部分元器件通过添加开关电源芯片100的外接引脚的方式设置在开关电源芯片的外部,具体的,本发明是将所述电容C1、所述第二MOS管M2、所述采样电阻RCS、所述第八电阻R8以及所述第九电阻R9设置在开关电源芯片100的外部。因此,所述开关电源芯片100还可以具有用于外接所述电容C1的滤波电容接入引脚CT、用于外接所述第二MOS管M2的第二输出端MGATE以及用于外接所述采样电阻RCS的第三输出端MCS。In this embodiment, in order to improve the flexibility and stability of the switching power supply chip 100, and based on the fact that some components need to be manually operated, the inventor of the present invention proposes to design the voltage overshoot protection circuit in the circuit. Some components are arranged outside the switching power supply chip by adding the external pins of the switching power supply chip 100. Specifically, the present invention is to combine the capacitor C1, the second MOS transistor M2, the sampling resistor RCS, the The eighth resistor R8 and the ninth resistor R9 are disposed outside the switching power supply chip 100 . Therefore, the switching power supply chip 100 may also have a filter capacitor access pin CT for external connection of the capacitor C1, a second output terminal MGATE for external connection of the second MOS transistor M2, and an external connection for the sampling The third output terminal MCS of the resistor RCS.
其中,由于第二MOS管M2需要外置,故电阻R7的作用是为防止M2因栅极-源极GS之间电荷积累过多而导致MOS管损坏。Among them, since the second MOS transistor M2 needs to be externally installed, the function of the resistor R7 is to prevent the MOS transistor from being damaged due to excessive charge accumulation between the gate and the source GS of the M2.
进一步的,继续参见图2所示,所述开关电源芯片100的内部还可以设置有跨导放大器OTA1、稳压模块40、锯齿波生成模块50、脉冲调制信号生成模块60、功率管驱动模块70以及频率补偿模块80。Further, as shown in FIG. 2 , the switching power supply chip 100 may also be provided with a transconductance amplifier OTA1, a voltage regulator module 40, a sawtooth wave generation module 50, a pulse modulation signal generation module 60, and a power tube drive module 70. and a frequency compensation module 80 .
其中,所述跨导放大器OTA1用于对基准电压和输出电压反馈引脚FB的电压之差进行误差放大。Wherein, the transconductance amplifier OTA1 is used to amplify the error of the difference between the reference voltage and the voltage of the output voltage feedback pin FB.
所述稳压模块40用于为所述开关电源芯片中包含的各功能模块提供工作电压。The voltage regulator module 40 is used to provide working voltage for each functional module included in the switching power supply chip.
所述锯齿波生成模块50用于形成锯齿波信号。The sawtooth wave generating module 50 is used for forming a sawtooth wave signal.
所述脉冲调制信号生成模块60用于比较所述锯齿波信号和所述跨导放大器OTA1的输出信号,以形成脉冲调制信号。The pulse modulation signal generating module 60 is configured to compare the sawtooth wave signal with the output signal of the transconductance amplifier OTA1 to form a pulse modulation signal.
所述功率管驱动模块70用于将所述脉冲调制信号变换为功率管驱动信号,并通过所述功率管驱动信号驱动所述功率管A,以使所述输出电压反馈引脚FB的电压与所述基准电压VREF相等。The power tube driving module 70 is used for converting the pulse modulation signal into a power tube driving signal, and driving the power tube A through the power tube driving signal, so that the voltage of the output voltage feedback pin FB is the same as that of the output voltage feedback pin FB. The reference voltages VREF are equal.
所述频率补偿模块80用于对所述跨导放大器的输出信号进行频率补偿,以稳定所述开关电源芯片的输出电压,从而得到稳定输出电压的目的。The frequency compensation module 80 is used to perform frequency compensation on the output signal of the transconductance amplifier, so as to stabilize the output voltage of the switching power supply chip, so as to obtain the purpose of stabilizing the output voltage.
进一步的,所述稳压模块40还包括基准电压单元(未图示),以用于为所述开关电源芯片中包含的各个功能模块提供所需的基准电压。Further, the voltage regulator module 40 further includes a reference voltage unit (not shown) for providing a required reference voltage for each functional module included in the switching power supply chip.
由于本发明提供的电压过冲保护电路中的部分元器件可以设置在开关电源芯片100的外部,从而使用户可以根据实际需求,自行配置设置在开关电源芯片的外部的元器件,进而提高了开关电源芯片100的设计灵活性和稳定性。Since some components in the voltage overshoot protection circuit provided by the present invention can be arranged outside the switching power supply chip 100, the user can configure the components arranged outside the switching power supply chip according to actual needs, thereby improving the switching performance. Design flexibility and stability of the power chip 100 .
并且,参见图3,基于同一发明构思,本发明还提供了开关电源系统,图3为本发明一实施例中提供的开关电源系统的电路示意图。如图3所示,本发明提供的开关电源系统可以包括:如图2所示的开关电源芯片100,以及,设置在所述开关电源芯片100外部的输入滤波电容CIN、电感L1、第二二极管D2、上分压电阻RT、下分压电阻RB、前馈电容CFF和输出滤波电容COUT。Also, referring to FIG. 3 , based on the same inventive concept, the present invention also provides a switching power supply system, and FIG. 3 is a schematic circuit diagram of the switching power supply system provided in an embodiment of the present invention. As shown in FIG. 3 , the switching power supply system provided by the present invention may include: a switching power supply chip 100 as shown in FIG. 2 , and an input filter capacitor CIN, an inductor L1 , a second two The pole tube D2, the upper voltage dividing resistor RT, the lower voltage dividing resistor RB, the feedforward capacitor CFF and the output filter capacitor COUT.
其中,所述输入滤波电容CIN的正极与所述开关电源芯片100的输入电压VIN连接,所述输入滤波电容CIN的负极以及所述开关电源芯片100的接地端gnd均与所述参考地端GND连接。The positive pole of the input filter capacitor CIN is connected to the input voltage VIN of the switching power supply chip 100 , the negative pole of the input filter capacitor CIN and the ground terminal gnd of the switching power supply chip 100 are both connected to the reference ground terminal GND connect.
所述电感L1的一端与所述开关电源芯片100的开关控制端SW以及所述第二二极管D2的阴极连接,另一端与所述上分压电阻RT的一端、所述前馈电容CFF的上极板连接,所述上分压电阻RT的另一端与所述下分压电阻RB的一端、所述前馈电容CFF的下极板以及所述第一输出电压反馈引脚FB连接,且所述下分压电阻RB的另一端以及所述第二二极管D2的阳极均与所述参考地端GND连接。One end of the inductor L1 is connected to the switch control end SW of the switching power supply chip 100 and the cathode of the second diode D2, and the other end is connected to one end of the upper voltage dividing resistor RT and the feedforward capacitor CFF. The upper plate is connected to the upper plate, the other end of the upper voltage dividing resistor RT is connected to one end of the lower voltage dividing resistor RB, the lower plate of the feedforward capacitor CFF and the first output voltage feedback pin FB is connected, And the other end of the lower voltage dividing resistor RB and the anode of the second diode D2 are both connected to the reference ground GND.
所述输出滤波电容COUT的正极与所述开关控制端SW连接,所述输出滤波电容COUT的负极与所述参考地端GND连接。The positive pole of the output filter capacitor COUT is connected to the switch control terminal SW, and the negative pole of the output filter capacitor COUT is connected to the reference ground terminal GND.
除此之外,本发明提供的电压过冲保护电路中的设置在开关电源芯片100外部的部分元器件与所述开关电源芯片100的连接具体可以为:所述恒流放电控制模块10中的所述电容C1的上极板与所述开关电源芯片100的滤波电容接入引脚CT连接,所述电容C1的下极板与所述参考地端GND连接。In addition, the connection between some components arranged outside the switching power supply chip 100 in the voltage overshoot protection circuit provided by the present invention and the switching power supply chip 100 may specifically be: The upper plate of the capacitor C1 is connected to the filter capacitor access pin CT of the switching power supply chip 100 , and the lower plate of the capacitor C1 is connected to the reference ground terminal GND.
所述第二MOS管M2的栅极与所述开关电源芯片100的第二输出端MGATE连接,所述第二MOS管M2的源极和所述采样电阻RCS的一端均与所述开关电源芯片100的第三输出端MCS连接,所述第二MOS管M2的漏极与所述电感L1、所述电位器的等效电阻RT的一端以及所述输出滤波电容COUT的阳极连接,所述采样电阻RCS的另一端与所述参考地端GND连接。The gate of the second MOS transistor M2 is connected to the second output terminal MGATE of the switching power supply chip 100 , and the source of the second MOS transistor M2 and one end of the sampling resistor RCS are both connected to the switching power supply chip. The third output terminal MCS of 100 is connected, the drain of the second MOS transistor M2 is connected to the inductor L1, one end of the equivalent resistance RT of the potentiometer and the anode of the output filter capacitor COUT, the sampling The other end of the resistor RCS is connected to the reference ground terminal GND.
所述第八电阻R8的一端与所述输出滤波电容COUT的阳极、所述电位器的等效电阻RT的一端以及所述电感L1的另一端连接,所述第八电阻R8的另一端与所述第九电阻R9的一端以及所述开关电源芯片100的所述第二输出电压反馈引脚FB1连接,所述第九电阻R9的另一端与所述参考地端GND连接。One end of the eighth resistor R8 is connected to the anode of the output filter capacitor COUT, one end of the equivalent resistance RT of the potentiometer, and the other end of the inductor L1, and the other end of the eighth resistor R8 is connected to the One end of the ninth resistor R9 is connected to the second output voltage feedback pin FB1 of the switching power supply chip 100 , and the other end of the ninth resistor R9 is connected to the reference ground GND.
在本实施例中,在实际使用中应满足所述电位器的RT/RB=R8/R9,这样可以保证在正常工作时,FB电压与FB1电压一致(不将FB电压与FB1电压合并的原因是FB电压上分压电阻常常会添加前馈电容CFF,在输出电压VO剧烈变化时,FB电压与FB1电压是不同的)。In this embodiment, RT/RB=R8/R9 of the potentiometer should be satisfied in actual use, so as to ensure that the FB voltage is consistent with the FB1 voltage during normal operation (the reason why the FB voltage and the FB1 voltage are not combined) It is that the divider resistor on the FB voltage often adds a feedforward capacitor CFF. When the output voltage VO changes drastically, the FB voltage is different from the FB1 voltage).
需要说明的是,在本发明提供的开关电源系统中,所述输入滤波电容CIN、和所述输出滤波电容COUT均即可以为一个电容器件,也可以是多个并联的电容器件。示例性的,如图3所示,所述电容C2也为输入滤波电容。It should be noted that, in the switching power supply system provided by the present invention, both the input filter capacitor CIN and the output filter capacitor COUT may be one capacitor device or multiple capacitor devices connected in parallel. Exemplarily, as shown in FIG. 3 , the capacitor C2 is also an input filter capacitor.
参见图4a~图4d,图4a~图4d为本发明一实施例中提供的采用本发明的电压过冲保护电路的开关电源系统的各关键节点波形图与未使用本发明提供的电压过冲保护电路的开关电源系统的输出电压对比图。其中,图4a、图4b和图4c均为采用本发明的电压过冲保护电路的开关电源系统当输出负载波动大时,各关键节点波形图,图4d为未使用本发明提供的电压过冲保护电路的开关电源系统的输出电压波形图。Referring to FIG. 4a to FIG. 4d, FIG. 4a to FIG. 4d are the waveform diagrams of each key node of the switching power supply system using the voltage overshoot protection circuit of the present invention provided in an embodiment of the present invention and the voltage overshoot provided by the present invention is not used. The output voltage comparison diagram of the switching power supply system of the protection circuit. 4a, 4b and 4c are the waveform diagrams of each key node in the switching power supply system using the voltage overshoot protection circuit of the present invention when the output load fluctuates greatly, and FIG. 4d is the voltage overshoot without the use of the present invention. The output voltage waveform diagram of the switching power supply system of the protection circuit.
由图4a可知,采用本发明的电压过冲保护电路的开关电源系统的输出电压VO过冲没有超过5.5V,这样的过冲对于后级系统是非常安全的。由图4b可知,采用本发明的电压过冲保护电路的开关电源系统的输出端电流IO的最大值约为3A,最小值约为0A,同时从图4b中还可以看出,从3A到0A的过程,所述输出端电流IO的下降速度非常快,一般来说,速度越快,对电源的考验也越大。图4c是流过MOS管M2的电流波形图,从图4c可知,当系统负载电流由重到轻的瞬间,MOS管M2迅速流过大电流,为多余的能量提供泄放回路,从而降低输出电压的过冲问题。而从图4d可知,在系统负载突变的情形(负载条件相同)时,系统输出端电压VO出现了非常明显的过冲,过冲电压接近7V,这对后面的负载是非常大的挑战。显然,采用本发明的电压过冲保护电路的开关电源系统在遇到负载由重载向轻载突变时,其输出端电压的过冲得到良好的抑制。It can be seen from FIG. 4a that the overshoot of the output voltage VO of the switching power supply system using the voltage overshoot protection circuit of the present invention does not exceed 5.5V, which is very safe for the post-stage system. It can be seen from Figure 4b that the maximum value of the output current IO of the switching power supply system using the voltage overshoot protection circuit of the present invention is about 3A, and the minimum value is about 0A. During the process, the drop speed of the output current IO is very fast. Generally speaking, the faster the speed, the greater the test for the power supply. Figure 4c is a waveform diagram of the current flowing through the MOS tube M2. It can be seen from Figure 4c that when the system load current changes from heavy to light, the MOS tube M2 quickly flows a large current to provide a discharge loop for excess energy, thereby reducing the output. Voltage overshoot problem. As can be seen from Figure 4d, when the system load suddenly changes (the load conditions are the same), the system output voltage VO has a very obvious overshoot, and the overshoot voltage is close to 7V, which is a very big challenge for the subsequent loads. Obviously, when the switching power supply system using the voltage overshoot protection circuit of the present invention encounters a sudden change of load from heavy load to light load, the overshoot of the output terminal voltage is well suppressed.
综上所述,本发明提供了一种解决开关电源芯片的输出端电压发生电压过冲的电压过冲保护电路。具体通过电压过冲控制模块采集开关电源芯片的输出端电压,并在所述输出端电压高于第一电压阈值(输出端电压过冲)的情况下,启动恒流放电控制模块,以通过恒流放电控制模块中的放电回路将所述过冲电压所产生的多余能量以热量的方式散发掉(放电),进而降低输出端电压,抑制了开关电源芯片的输出端发生电压过冲,进而避免了对后级单元的损坏,提高了开关电源芯片的性能和可靠性。To sum up, the present invention provides a voltage overshoot protection circuit for solving the voltage overshoot of the output terminal voltage of the switching power supply chip. Specifically, the output terminal voltage of the switching power supply chip is collected by the voltage overshoot control module, and when the output terminal voltage is higher than the first voltage threshold (the output terminal voltage overshoot), the constant current discharge control module is activated to pass the constant current discharge control module. The discharge circuit in the current discharge control module dissipates (discharges) the excess energy generated by the overshoot voltage in the form of heat, thereby reducing the output terminal voltage, suppressing the voltage overshoot at the output terminal of the switching power supply chip, thereby avoiding The damage to the rear stage unit is avoided, and the performance and reliability of the switching power supply chip are improved.
此外,由于本发明提供的电压过冲保护电路中的部分元器件可以设置在开关电源芯片的外部,从而使用户可以根据实际需求,自行配置设置在开关电源芯片的外部的元器件,进而提高了开关电源芯片的设计灵活性和稳定性。In addition, since some components in the voltage overshoot protection circuit provided by the present invention can be arranged outside the switching power supply chip, users can configure the components arranged outside the switching power supply chip according to actual needs, thereby improving the Design flexibility and stability of switching power supply chips.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”或“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," or "specific example," etc., means a specific feature, structure, material, or characteristic described in connection with the embodiment or example. Included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in one or more embodiments. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification.
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。The above are only preferred embodiments of the present invention, and do not have any limiting effect on the present invention. Any person skilled in the art, within the scope of not departing from the technical solution of the present invention, makes any form of equivalent replacement or modification to the technical solution and technical content disclosed in the present invention, all belong to the technical solution of the present invention. content still falls within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110770075.8A CN113422505B (en) | 2021-07-08 | 2021-07-08 | Voltage overshoot protection circuit, switching power supply chip and switching power supply system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110770075.8A CN113422505B (en) | 2021-07-08 | 2021-07-08 | Voltage overshoot protection circuit, switching power supply chip and switching power supply system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113422505A true CN113422505A (en) | 2021-09-21 |
CN113422505B CN113422505B (en) | 2022-04-08 |
Family
ID=77720546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110770075.8A Active CN113422505B (en) | 2021-07-08 | 2021-07-08 | Voltage overshoot protection circuit, switching power supply chip and switching power supply system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113422505B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114362499A (en) * | 2021-11-30 | 2022-04-15 | 漳州科华技术有限责任公司 | Protection circuit and full-control rectification circuit |
CN114860017A (en) * | 2022-04-15 | 2022-08-05 | 芯海科技(深圳)股份有限公司 | LDO circuit, control method, chip and electronic equipment |
CN115623466A (en) * | 2022-12-19 | 2023-01-17 | 北京紫光青藤微系统有限公司 | Method and device for controlling power tube, electronic equipment and storage medium |
CN115955085A (en) * | 2023-03-10 | 2023-04-11 | 晶艺半导体有限公司 | Drive circuit, drive method thereof, control circuit and power supply chip |
CN117255445A (en) * | 2023-11-16 | 2023-12-19 | 佛山联创华联电子有限公司 | LED drive control circuit |
CN117457050A (en) * | 2023-10-30 | 2024-01-26 | 无锡中微亿芯有限公司 | FPGA memory cell power supply circuit with overshoot protection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110037448A1 (en) * | 2009-08-17 | 2011-02-17 | Richtek Technology Corporation | Switching regulator with transient control function and control circuit and method therefor |
US20120105035A1 (en) * | 2010-11-01 | 2012-05-03 | Himax Analogic, Inc. | Buck Circuit Having Fast Transient Response Mechanism and Operation of the Same |
CN106612067A (en) * | 2017-01-06 | 2017-05-03 | 浙江凯耀照明股份有限公司 | Overcharging preventive rapid charging circuit |
CN111817563A (en) * | 2020-07-08 | 2020-10-23 | 无锡力芯微电子股份有限公司 | Buck type DC-DC converter |
CN112383216A (en) * | 2021-01-15 | 2021-02-19 | 上海芯龙半导体技术股份有限公司 | Current-limiting control circuit and switching power supply chip with same |
-
2021
- 2021-07-08 CN CN202110770075.8A patent/CN113422505B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110037448A1 (en) * | 2009-08-17 | 2011-02-17 | Richtek Technology Corporation | Switching regulator with transient control function and control circuit and method therefor |
US20120105035A1 (en) * | 2010-11-01 | 2012-05-03 | Himax Analogic, Inc. | Buck Circuit Having Fast Transient Response Mechanism and Operation of the Same |
CN106612067A (en) * | 2017-01-06 | 2017-05-03 | 浙江凯耀照明股份有限公司 | Overcharging preventive rapid charging circuit |
CN111817563A (en) * | 2020-07-08 | 2020-10-23 | 无锡力芯微电子股份有限公司 | Buck type DC-DC converter |
CN112383216A (en) * | 2021-01-15 | 2021-02-19 | 上海芯龙半导体技术股份有限公司 | Current-limiting control circuit and switching power supply chip with same |
Non-Patent Citations (2)
Title |
---|
MENG-WEI CHIEN,ETAL: "Suppressing output overshoot voltage technique with 47.1mW/μs power-recycling rate and 93% peak efficiency DC-DC converter for multi-core processors", 《ESSCIRC CONFERENCE 2015 - 41ST EUROPEAN SOLID-STATE CIRCUITS CONFERENCE (ESSCIRC)》 * |
马亚东: "具有快速瞬态响应的低压差线性稳压器的分析与设计", 《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114362499A (en) * | 2021-11-30 | 2022-04-15 | 漳州科华技术有限责任公司 | Protection circuit and full-control rectification circuit |
CN114362499B (en) * | 2021-11-30 | 2024-02-02 | 漳州科华电气技术有限公司 | Protection circuit and full-control rectifying circuit |
CN114860017A (en) * | 2022-04-15 | 2022-08-05 | 芯海科技(深圳)股份有限公司 | LDO circuit, control method, chip and electronic equipment |
CN114860017B (en) * | 2022-04-15 | 2023-09-26 | 芯海科技(深圳)股份有限公司 | LDO circuit, control method, chip and electronic equipment |
CN115623466A (en) * | 2022-12-19 | 2023-01-17 | 北京紫光青藤微系统有限公司 | Method and device for controlling power tube, electronic equipment and storage medium |
CN115623466B (en) * | 2022-12-19 | 2023-02-28 | 北京紫光青藤微系统有限公司 | Method and device for controlling power tube, electronic equipment and storage medium |
CN115955085A (en) * | 2023-03-10 | 2023-04-11 | 晶艺半导体有限公司 | Drive circuit, drive method thereof, control circuit and power supply chip |
CN117457050A (en) * | 2023-10-30 | 2024-01-26 | 无锡中微亿芯有限公司 | FPGA memory cell power supply circuit with overshoot protection |
CN117457050B (en) * | 2023-10-30 | 2024-11-26 | 无锡中微亿芯有限公司 | FPGA memory unit power supply circuit with overshoot protection |
CN117255445A (en) * | 2023-11-16 | 2023-12-19 | 佛山联创华联电子有限公司 | LED drive control circuit |
CN117255445B (en) * | 2023-11-16 | 2024-02-09 | 佛山联创华联电子有限公司 | LED drive control circuit |
Also Published As
Publication number | Publication date |
---|---|
CN113422505B (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113422505B (en) | Voltage overshoot protection circuit, switching power supply chip and switching power supply system | |
US10530256B1 (en) | Multi-level buck converter with reverse charge capability | |
TWI375143B (en) | ||
JP5076536B2 (en) | DC-DC conversion circuit, DC-DC conversion control circuit, and DC-DC conversion control method | |
TW201618454A (en) | Multi-stage amplifier | |
CN113067469B (en) | Quick response loop compensation circuit, loop compensation chip and switching power supply | |
CN205829445U (en) | Switching power supply and power supply equipment using same | |
US11682964B2 (en) | Driving circuit and driving method | |
EP1988623A2 (en) | D. c. converter, speaker apparatus and d. c. converter control method | |
CN111819779B (en) | power supply | |
CN205300667U (en) | A excitation circuit for electric -magnetic flow meter | |
JP5514460B2 (en) | Input current limiting circuit and power supply device using the same | |
CN111509978A (en) | DC-DC converter and power management system | |
CN115603569B (en) | Switching converter and control circuit thereof | |
CN114583984A (en) | A power supply circuit and its power conversion system and control chip | |
CN211701859U (en) | Negative voltage input and negative voltage output switch type voltage reduction conversion circuit | |
CN114649936A (en) | Switch converter and control circuit thereof | |
CN113258771B (en) | Control circuit and power chip | |
CN1661877A (en) | active current sharing circuit | |
CN113162424B (en) | Piezoelectric ceramic actuator driving method and driving circuit | |
CN105651348A (en) | Excitation circuit for electromagnetic flow meter | |
TWI704756B (en) | Boost converter | |
CN211405854U (en) | Digital display adjustable switch voltage-stabilized source | |
CN219514259U (en) | LED drive circuit and LED lighting device | |
CN210123940U (en) | Constant voltage source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250214 Address after: Building 18, No. 1888, Xinjinqiao Road, China (Shanghai) Pilot Free Trade Zone, Pudong New Area, Shanghai, 201206 Patentee after: SHANGHAI XINLONG SEMICONDUCTOR TECHNOLOGY CO.,LTD. Country or region after: China Address before: Room 147, No.88 Xingda Road, Dachang street, Jiangbei new district, Nanjing, Jiangsu Province Patentee before: Shanghai Xinlong Semiconductor Technology Co.,Ltd. Nanjing Branch Country or region before: China |
|
TR01 | Transfer of patent right |