CN113420147A - Special equipment accident reason identification method and system - Google Patents

Special equipment accident reason identification method and system Download PDF

Info

Publication number
CN113420147A
CN113420147A CN202110691047.7A CN202110691047A CN113420147A CN 113420147 A CN113420147 A CN 113420147A CN 202110691047 A CN202110691047 A CN 202110691047A CN 113420147 A CN113420147 A CN 113420147A
Authority
CN
China
Prior art keywords
accident
case
cause
similar
historical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110691047.7A
Other languages
Chinese (zh)
Other versions
CN113420147B (en
Inventor
李光海
谷梦瑶
曹逻炜
葛江勤
陆新元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Special Equipment Inspection and Research Institute
Original Assignee
China Special Equipment Inspection and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Special Equipment Inspection and Research Institute filed Critical China Special Equipment Inspection and Research Institute
Priority to CN202110691047.7A priority Critical patent/CN113420147B/en
Publication of CN113420147A publication Critical patent/CN113420147A/en
Application granted granted Critical
Publication of CN113420147B publication Critical patent/CN113420147B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/284Lexical analysis, e.g. tokenisation or collocates

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供了一种特种设备事故原因识别方法及系统,本发明基于事故原因库采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;利用扎根‑因子分析法对各历史案例的事故情景要素进行分析形成特种设备的事故情景要素体系;根据事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因;基于当前案例中各层对应的多个最终事故原因构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别,进而提高了事故原因识别的准确率。

Figure 202110691047

The invention provides a special equipment accident cause identification method and system. Based on the accident cause database, the invention adopts the fuzzy analytic hierarchy process to calculate the initial importance corresponding to each accident cause in each historical case; According to the accident scenario elements in the accident scenario element system, historical cases similar to the current case are selected as similar accident cases from each historical case; The initial importance corresponding to each similar accident cause determines multiple final accident causes corresponding to each layer in the current case; builds an accident cause tree corresponding to the current case based on the multiple final accident causes corresponding to each layer in the current case, and uses the corresponding The accident cause tree is used to identify the cause of the accident in the current case, thereby improving the accuracy of the identification of the cause of the accident.

Figure 202110691047

Description

一种特种设备事故原因识别方法及系统A kind of special equipment accident cause identification method and system

技术领域technical field

本发明涉及事故原因识别技术领域,特别是涉及一种特种设备事故原因识别方法及系统。The invention relates to the technical field of accident cause identification, in particular to a special equipment accident cause identification method and system.

背景技术Background technique

截至2019年底,全国特种设备总量达1525.47万台,比2018年底上升9.4%,比2017年底上升17.08%,基本呈平稳上升趋势。但由于特种设备是在高温、高压或高速下运行,且通常盛载易燃、易爆、有毒介质或大量人员,因此一旦发生事故极易造成群死群伤及重大财产损失。为此,做好特种设备的事故防控工作尤为重要。而快速、准确的识别事故原因是有效防控特种设备事故的关键。目前已有的事故原因识别研究主要集中于交通事故领域,但是特种设备事故毕竟不同于交通事故,两者的事故成因、事故机理等差别较大,因此无法直接借用交通事故的原因识别方法。同时有限的特种设备事故原因研究主要围绕两个方面:1)对大量事故的原因进行统计分析,但其结果通用性较强,无法准确识别具体事故的具体原因;2)针对某一例事故,利用事故调查技术分析原因,但其需借助如无损检测等专业技术,过程漫长,要求较高,无法快速识别事故原因。另外,上述研究更多是面向事后的,无法实现事前、事中等其他情况下的事故原因识别。显然,有必要针对快速、准确的特种设备事故原因识别方法展开深入研究。As of the end of 2019, the total number of special equipment in the country reached 15.2547 million units, an increase of 9.4% over the end of 2018 and an increase of 17.08% over the end of 2017, basically showing a steady upward trend. However, because special equipment operates at high temperature, high pressure or high speed, and usually contains flammable, explosive, toxic media or a large number of people, it is very easy to cause mass death and serious property damage in the event of an accident. For this reason, it is particularly important to do a good job in the accident prevention and control of special equipment. Rapid and accurate identification of accident causes is the key to effectively preventing and controlling special equipment accidents. At present, the existing research on accident cause identification mainly focuses on the field of traffic accidents, but special equipment accidents are different from traffic accidents after all. At the same time, the limited research on the causes of special equipment accidents mainly focuses on two aspects: 1) Statistical analysis of the causes of a large number of accidents, but the results are very general and cannot accurately identify the specific causes of specific accidents; 2) For a certain accident, use Accident investigation technology analyzes the cause, but it requires professional techniques such as non-destructive testing, which is a long process and requires high requirements, and cannot quickly identify the cause of the accident. In addition, the above-mentioned research is more oriented to the post-event, and cannot realize the identification of the accident cause in other situations such as the pre-event and the event. Obviously, it is necessary to carry out in-depth research on the rapid and accurate identification method of special equipment accident causes.

形成对事故原因的全面、系统认知是快速、准确的识别特种设备事故原因的前提。目前已有如海因里希模型、2-4模型等事故致因模型,但各模型的侧重点不同,致使其对特种设备的事故原因表示均不全面,例如海因里希模型未具体化管理因素、2-4模型未考虑触发原因等。另外,学者们也常用故障树来分析事故原因间的因果关系,但不同学者所建事故原因树千差万别。综上,基于上述方法进行事故原因识别存在准确率低的问题。Forming a comprehensive and systematic cognition of the causes of accidents is the premise to identify the causes of special equipment accidents quickly and accurately. At present, there are accident cause models such as the Heinrich model and the 2-4 model, but the emphases of each model are different, resulting in incomplete representation of the accident causes of special equipment. For example, the Heinrich model does not have specific management. factors, the 2-4 model does not consider triggering reasons, etc. In addition, scholars often use fault trees to analyze the causal relationship between accident causes, but the accident cause trees built by different scholars vary widely. To sum up, the identification of accident causes based on the above methods has the problem of low accuracy.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种特种设备事故原因识别方法及系统,以提高事故原因识别的准确率。The purpose of the present invention is to provide a special equipment accident cause identification method and system to improve the accuracy of accident cause identification.

为实现上述目的,本发明提供了一种特种设备事故原因识别方法,所述方法包括:In order to achieve the above purpose, the present invention provides a method for identifying the cause of a special equipment accident, the method comprising:

利用事故致因模型和故障树建立特种设备的事故原因表征模型;Use the accident cause model and fault tree to establish the accident cause characterization model of special equipment;

基于所述事故原因表征模型,提取各历史案例的事故原因,形成事故原因库;Based on the accident cause representation model, the accident causes of each historical case are extracted to form an accident cause database;

基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;每个历史案例包括多层,每层包括多个事故原因;Based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case; each historical case includes multiple layers, and each layer includes multiple accident causes;

利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系;Use the grounded-factor analysis method to analyze the accident scene elements of each historical case to form the accident scene element system of special equipment;

根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;每个相似事故案例包括多层,每层包括多个相似事故原因;According to each accident scenario element in the accident scenario element system, historical cases similar to the current case are selected from each historical case as similar accident cases; each similar accident case includes multiple layers, and each layer includes multiple similar accident causes;

根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因;Determine multiple final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case;

基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别。Based on the multiple final accident causes corresponding to each layer in the current case, construct the accident cause tree corresponding to the current case according to the structure diagram of the house of quality and the accident cause tree of similar accident cases, and use the accident cause tree corresponding to the current case to carry out the accident analysis of the current case. Cause identification.

可选地,所述基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度,具体包括:Optionally, based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case, specifically including:

基于所述事故原因库,采用模糊层次分析法建立各历史案例对应的模糊互补判断矩阵;Based on the accident cause database, a fuzzy complementary judgment matrix corresponding to each historical case is established by using the fuzzy analytic hierarchy process;

基于各历史案例对应的模糊互补判断矩阵计算各历史案例中各事故原因对应的初始重要度。Based on the fuzzy complementary judgment matrix corresponding to each historical case, the initial importance corresponding to each accident cause in each historical case is calculated.

可选地,所述根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例,具体包括:Optionally, according to each accident scenario element in the accident scenario element system, a historical case similar to the current case is selected from each historical case as a similar accident case, specifically including:

利用ICTCLAS和停留词表对当前案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得当前有效特征词集合;利用ICTCLAS和停留词表对历史案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得历史有效特征词集合;Use ICTCLAS and stop vocabulary to perform word segmentation and de-stop word processing on the descriptive text of each accident scene element in the current case to obtain the current effective feature word set; use ICTCLAS and stop vocabulary to describe the descriptive text of each accident scene element in the historical case The text is subjected to word segmentation and de-stop word processing to obtain a set of historically effective feature words;

利用当前有效特征词集合和历史有效特征词集合确定当前案例和各历史案例关于各事故情景要素对应的情景要素相似度;Using the current effective feature word set and the historical effective feature word set to determine the similarity of the current case and each historical case with respect to the scene elements corresponding to each accident scene element;

将不同情景下各事故情景要素对应的情景要素相似度进行信息融合,得不同情景下当前案例和各历史案例的情景相似度;Integrate information on the similarity of the scenario elements corresponding to each accident scenario element under different scenarios to obtain the scenario similarity of the current case and each historical case under different scenarios;

确定情景相似度阈值SQ;Determine the scenario similarity threshold SQ;

判断Sim*d是否大于或等于SQ;如果Sim*d大于或等于SQ时,将历史案例Zd作为当前案例的相似事故案例,将历史案例Zd各层的事故原因作为相似事故案例各层的相似事故原因;其中,Sim*d为不同情景下当前案例和历史案例Zd的情景相似度,d=1,2,...,D,D表示历史案例的总个数。Determine whether Sim *d is greater than or equal to SQ; if Sim *d is greater than or equal to SQ, take the historical case Z d as a similar accident case of the current case, and take the accident causes of each layer of the historical case Z d as the similar accident case at each layer. Similar accident causes; where Sim *d is the situation similarity between the current case and the historical case Z d under different scenarios, d=1, 2, ..., D, D represents the total number of historical cases.

可选地,所述根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因,具体包括:Optionally, the determining of multiple final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case specifically includes:

基于各相似事故案例中各相似事故原因对应的初始重要度、当前案例和各相似事故案例的情景相似度计算各相似事故案例中各相似事故原因对应的相似重要度;Calculate the similarity importance corresponding to each similar accident cause in each similar accident case based on the initial importance corresponding to each similar accident cause in each similar accident case, the current case and the scenario similarity of each similar accident case;

对各相似事故案例各层上的多个相似事故原因进行合并去重处理,获得当前案例各层对应的最终相似事故原因集合;Combine multiple similar accident causes on each layer of each similar accident case to remove duplicates, and obtain the final set of similar accident causes corresponding to each layer of the current case;

对各相似事故案例各层上的多个相同的相似事故原因对应的初始重要度进行加和处理,获得当前案例各层对应的最终重要度向量集合;The initial importance corresponding to the multiple identical similar accident causes on each layer of each similar accident case is added and processed, and the final importance vector set corresponding to each layer of the current case is obtained;

确定最终重要度阈值CQhDetermine the final importance threshold CQ h ;

判断

Figure BDA0003126742210000031
是否大于或等于CQh;如果
Figure BDA0003126742210000032
大于或等于CQh,则当前案例第h层第t个最终重要度对应的最终相似事故原因为当前案例中第h层对应的最终事故原因,
Figure BDA0003126742210000033
表示当前案例第h层第t个最终重要度,t=1,2,...,Th,Th为当前案例第h层最终重要度的总个数,h=1,2,...,7。judge
Figure BDA0003126742210000031
is greater than or equal to CQ h ; if
Figure BDA0003126742210000032
is greater than or equal to CQ h , then the final similar accident cause corresponding to the t-th final importance degree of the h-th layer of the current case is the final accident cause corresponding to the h-th layer in the current case,
Figure BDA0003126742210000033
Indicates the t-th final importance degree of the h-th layer of the current case, t=1, 2, ..., T h , Th is the total number of the h-th layer final importance degrees of the current case, h=1, 2, ... ., 7.

可选地,所述基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和各相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别,具体包括:Optionally, the accident cause tree corresponding to the current case is constructed according to the structure diagram of the house of quality and the accident cause tree of each similar accident case based on the multiple final accident causes corresponding to each layer in the current case, and the accident cause corresponding to the current case is used. The cause tree identifies the cause of the accident in the current case, including:

根据质量屋结构图和各相似事故案例的事故原因树,建立当前案例相邻两层中各最终事故原因的相关矩阵;According to the structure diagram of the house of quality and the accident cause tree of each similar accident case, establish the correlation matrix of each final accident cause in the two adjacent layers of the current case;

建立当前案例中第h层多个最终事故原因的自与相关矩阵,h=1,,2,...,7;Establish the autocorrelation matrix of multiple final accident causes in the hth layer in the current case, h=1, , 2, ..., 7;

建立当前案例中第h层多个最终事故原因的自或相关矩阵;Build the auto-correlation matrix of multiple final accident causes in the h-th layer of the current case;

根据相关矩阵、自与相关矩阵和自或相关度进行排序构建当前案例对应的事故原因树;Build the accident cause tree corresponding to the current case according to the correlation matrix, autocorrelation matrix and autocorrelation matrix;

根据所述当前案例对应的事故原因树识别当前案例的事故原因。Identify the accident cause of the current case according to the accident cause tree corresponding to the current case.

本发明还提供一种特种设备事故原因识别系统,所述系统包括:The present invention also provides a special equipment accident cause identification system, the system includes:

事故原因表征模型构建模块,用于利用事故致因模型和故障树建立特种设备的事故原因表征模型;The accident cause characterization model building module is used to establish the accident cause characterization model of special equipment by using the accident cause model and fault tree;

事故原因库构建模块,用于基于所述事故原因表征模型,提取各历史案例的事故原因,形成事故原因库;The accident cause library building module is used to extract the accident cause of each historical case based on the accident cause representation model to form an accident cause library;

初始重要度计算模块,用于基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;每个历史案例包括多层,每层包括多个事故原因;The initial importance degree calculation module is used to calculate the initial importance degree corresponding to each accident cause in each historical case based on the accident cause database using the fuzzy analytic hierarchy process; each historical case includes multiple layers, and each layer includes multiple accident causes;

事故情景要素体系构建模块,用于利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系;The accident scenario element system building module is used to analyze the accident scenario elements of each historical case by using the grounded-factor analysis method to form the accident scenario element system of special equipment;

相似事故案例确定模块,用于根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;每个相似事故案例包括多层,每层包括多个相似事故原因;A similar accident case determination module is used to select historical cases similar to the current case from each historical case as a similar accident case according to each accident scenario element in the accident scenario element system; each similar accident case includes multiple layers, each layer Include multiple similar accident causes;

最终事故原因确定模块,用于根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因;The final accident cause determination module is used to determine multiple final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case;

事故原因识别模块,用于基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别。The accident cause identification module is used to construct an accident cause tree corresponding to the current case based on the multiple final accident causes corresponding to each layer in the current case, according to the structure diagram of the house of quality and the accident cause tree of similar accident cases, and use the accidents corresponding to the current case. The cause tree identifies the cause of the accident in the current case.

可选地,所述初始重要度计算模块,具体包括:Optionally, the initial importance calculation module specifically includes:

模糊互补判断矩阵确定单元,用于基于所述事故原因库,采用模糊层次分析法建立各历史案例对应的模糊互补判断矩阵;a fuzzy complementary judgment matrix determination unit, used for establishing a fuzzy complementary judgment matrix corresponding to each historical case by adopting the fuzzy analytic hierarchy process based on the accident cause database;

初始重要度计算单元,用于基于各历史案例对应的模糊互补判断矩阵计算各历史案例中各事故原因对应的初始重要度。The initial importance calculation unit is used to calculate the initial importance corresponding to each accident cause in each historical case based on the fuzzy complementary judgment matrix corresponding to each historical case.

可选地,所述相似事故案例确定模块,具体包括:Optionally, the similar accident case determination module specifically includes:

有效特征词集合确定单元,用于利用ICTCLAS和停留词表对当前案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得当前有效特征词集合;利用ICTCLAS和停留词表对历史案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得历史有效特征词集合;The valid feature word set determination unit is used to use ICTCLAS and the stop word list to perform word segmentation and de-stop word processing on the descriptive text of each accident scenario element in the current case, and obtain the current effective feature word set; use ICTCLAS and stop word list to compare historical The descriptive text of each accident scene element in the case is subjected to word segmentation and de-stop word processing to obtain a set of historically effective feature words;

情景要素相似度计算单元,用于利用当前有效特征词集合和历史有效特征词集合确定当前案例和各历史案例关于各事故情景要素对应的情景要素相似度;A situation element similarity calculation unit, which is used to determine the situation element similarity corresponding to each accident situation element in the current case and each historical case by using the current effective feature word set and the historical effective feature word set;

情景相似度计算单元,用于将不同情景下各事故情景要素对应的情景要素相似度进行信息融合,得不同情景下当前案例和各历史案例的情景相似度;Scenario similarity calculation unit, used for information fusion of the similarity of the scenario elements corresponding to each accident scenario element under different scenarios, to obtain the scenario similarity of the current case and each historical case under different scenarios;

情景相似度阈值确定单元,用于确定情景相似度阈值SQ;a context similarity threshold determination unit, used to determine the context similarity threshold SQ;

第一判断单元,用于判断Sim*d是否大于或等于SQ;如果Sim*d大于或等于SQ时,将历史案例Zd作为当前案例的相似事故案例,将历史案例Zd各层的事故原因作为相似事故案例各层的相似事故原因;其中,Sim*d为不同情景下当前案例和历史案例Zd的情景相似度,d=1,2,...,D,D表示历史案例的总个数。The first judgment unit is used to judge whether Sim *d is greater than or equal to SQ; if Sim *d is greater than or equal to SQ, the historical case Z d is regarded as a similar accident case of the current case, and the accident causes of each layer of the historical case Z d are As the similar accident causes at each level of similar accident cases; where Sim *d is the situation similarity between the current case and the historical case Z d under different scenarios, d=1, 2, ..., D, D represents the total number of historical cases number.

可选地,所述最终事故原因确定模块,具体包括:Optionally, the final accident cause determination module specifically includes:

相似重要度计算单元,用于基于各相似事故案例中各相似事故原因对应的初始重要度、当前案例和各相似事故案例的情景相似度计算各相似事故案例中各相似事故原因对应的相似重要度;The similarity importance calculation unit is used to calculate the similarity importance corresponding to each similar accident cause in each similar accident case based on the initial importance corresponding to each similar accident cause in each similar accident case, the current case and the scenario similarity of each similar accident case ;

合并去重单元,用于对各相似事故案例各层上的多个相似事故原因进行合并去重处理,获得当前案例各层对应的最终相似事故原因集合;The combined deduplication unit is used to merge and deduplicate multiple similar accident causes on each layer of each similar accident case, and obtain the final set of similar accident causes corresponding to each layer of the current case;

加和处理单元,用于对各相似事故案例各层上的多个相同的相似事故原因对应的初始重要度进行加和处理,获得当前案例各层对应的最终重要度向量集合;The summation processing unit is used to add and process the initial importance degrees corresponding to multiple identical similar accident causes on each layer of each similar accident case, and obtain the final importance vector set corresponding to each layer of the current case;

最终重要度阈值确定单元,用于确定最终重要度阈值CQha final importance threshold determination unit, used for determining the final importance threshold CQ h ;

第二判断单元,用于判断

Figure BDA0003126742210000051
是否大于或等于CQh;如果
Figure BDA0003126742210000052
大于或等于CQh,则当前案例第h层第t个最终重要度对应的最终相似事故原因为当前案例中第h层对应的最终事故原因,
Figure BDA0003126742210000053
表示当前案例第h层第t个最终重要度,t=1,2,...,Th,Th为当前案例第h层最终重要度的总个数,h=1,2,...,7。The second judging unit is used for judging
Figure BDA0003126742210000051
is greater than or equal to CQ h ; if
Figure BDA0003126742210000052
is greater than or equal to CQ h , then the final similar accident cause corresponding to the t-th final importance degree of the h-th layer of the current case is the final accident cause corresponding to the h-th layer in the current case,
Figure BDA0003126742210000053
Indicates the t-th final importance degree of the h-th layer of the current case, t=1, 2, ..., T h , Th is the total number of the h-th layer final importance degrees of the current case, h=1, 2, ... ., 7.

可选地,所述事故原因识别模块,具体包括:Optionally, the accident cause identification module specifically includes:

相关矩阵建立单元,用于根据质量屋结构图和各相似事故案例的事故原因树,建立当前案例相邻两层中各最终事故原因的相关矩阵;The correlation matrix establishment unit is used to establish the correlation matrix of each final accident cause in the two adjacent layers of the current case according to the structure diagram of the house of quality and the accident cause tree of each similar accident case;

自与相关矩阵建立单元,用于建立当前案例中第h层多个最终事故原因的自与相关矩阵,h=1,,2,...,7;The autocorrelation matrix establishment unit is used to establish the autocorrelation matrix of multiple final accident causes of the hth layer in the current case, h=1,,2,...,7;

自或相关矩阵建立单元,用于建立当前案例中第h层多个最终事故原因的自或相关矩阵;The self-or correlation matrix establishment unit is used to establish the self-or correlation matrix of multiple final accident causes of the h-th layer in the current case;

事故原因树建立单元,用于根据相关矩阵、自与相关矩阵和自或相关度进行排序构建当前案例对应的事故原因树;The accident cause tree establishment unit is used to construct the accident cause tree corresponding to the current case by sorting according to the correlation matrix, the autocorrelation matrix and the autocorrelation degree;

事故原因识别单元,用于根据所述当前案例对应的事故原因树识别当前案例的事故原因。The accident cause identification unit is configured to identify the accident cause of the current case according to the accident cause tree corresponding to the current case.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

本发明公开的先利用故障树和各事故致因理论,建立事故原因表征模型,形成各层级事故原因库,而后利用模糊层次分析法、情景相似度等分别针对不同情景下的各层事故原因进行分析,最后利用质量屋分析各层事故原因间的关联关系,由此建立当前案例的事故原因树,实现不同情景下事故原因间的层级关系识别,提高了事故原因识别的准确率。According to the method disclosed in the present invention, a fault tree and various accident causation theories are firstly used to establish an accident cause representation model to form an accident cause database at each level, and then the fuzzy analytic hierarchy process, scenario similarity, etc. are used to analyze the accident causes at each level in different scenarios respectively. Finally, the house of quality is used to analyze the relationship between the accident causes at each level, thereby establishing the accident cause tree of the current case, realizing the hierarchical relationship identification between accident causes in different scenarios, and improving the accuracy of accident cause identification.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.

图1为本发明特种设备事故原因识别方法流程图;Fig. 1 is the flow chart of the method for identifying the cause of special equipment accident of the present invention;

图2为本发明特种设备事故原因表征模型示意图;Fig. 2 is the schematic diagram of the characterization model of the accident cause of the special equipment of the present invention;

图3为本发明确定相似事故案例流程图;Fig. 3 is the flow chart of determining similar accident cases according to the present invention;

图4为本发明确定最终事故原因流程图;Fig. 4 is the flow chart of determining the final accident cause according to the present invention;

图5为本发明特种设备事故原因识别系统结构图。FIG. 5 is a structural diagram of the accident cause identification system for special equipment according to the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

本发明的目的是提供一种特种设备事故原因识别方法及系统,以提高事故原因识别的准确率。The purpose of the present invention is to provide a special equipment accident cause identification method and system to improve the accuracy of accident cause identification.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

本发明结合故障树和各事故致因模型,提出特种设备事故的原因表征模型,利用事故原因表征模型有利于全面、规范的表示特种设备事故原因。另外,本发明利用采用情景分析法、结合历史案例来快速、准确来识别事故原因。The present invention proposes a cause characterization model for special equipment accidents by combining fault trees and various accident cause models, and using the accident cause characterization model is conducive to comprehensively and standardized representation of special equipment accident causes. In addition, the present invention utilizes the situation analysis method combined with historical cases to quickly and accurately identify the cause of the accident.

如图1所示,本发明公开一种特种设备事故原因识别方法,其特征在于,所述方法包括:As shown in FIG. 1, the present invention discloses a method for identifying the cause of special equipment accident, characterized in that the method includes:

S1:利用事故致因模型和故障树建立特种设备的事故原因表征模型。S1: Use the accident cause model and fault tree to establish the accident cause representation model of special equipment.

S2:基于所述事故原因表征模型,提取各历史案例的事故原因,形成事故原因库。S2: Based on the accident cause representation model, the accident causes of each historical case are extracted to form an accident cause database.

S3:基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;每个历史案例包括多层,每层包括多个事故原因。S3: Based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case; each historical case includes multiple layers, and each layer includes multiple accident causes.

S4:利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系。S4: Use the grounded-factor analysis method to analyze the accident scenario elements of each historical case to form an accident scenario element system for special equipment.

S5:根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;每个相似事故案例包括多层,每层包括多个相似事故原因。S5: According to each accident scenario element in the accident scenario element system, select a historical case similar to the current case from each historical case as a similar accident case; each similar accident case includes multiple layers, and each layer includes multiple similar accident causes .

S6:根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因。S6: Determine a plurality of final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case.

S7:基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别。S7: Based on the multiple final accident causes corresponding to each layer in the current case, construct the accident cause tree corresponding to the current case according to the structure diagram of the house of quality and the accident cause tree of similar accident cases, and use the accident cause tree corresponding to the current case to analyze the current case. Identify the cause of the accident.

下面对各个步骤进行详细论述:Each step is discussed in detail below:

S1:利用事故致因模型和故障树建立特种设备的事故原因表征模型;所述事故致因模型包括海因里希模型和2-4模型。S1: Use the accident cause model and the fault tree to establish an accident cause characterization model for special equipment; the accident cause model includes the Heinrich model and the 2-4 model.

在识别事故原因前,需对事故原因的类型、因果关系等有比较全面、系统的认知。Before identifying the cause of the accident, it is necessary to have a comprehensive and systematic understanding of the type and causal relationship of the cause of the accident.

建立如图2所示的特种设备的事故原因表征模型。所述事故原因表征模型主要由两级触发原因、两级直接原因、间接原因、根本原因和根源原因这七层事故原因组成,并通过故障树的与/或关系表示各层原因间的因果关系。其中两级触发原因分别为设备及其介质、周围物等的能量(包括机械能、电能等)意外释放和对能量起约束、限制作用的控制或屏蔽措施的失效或破坏。两级直接原因主要为人(操作人员、指挥人员等)的不安全行为、物(设备、周围物等)的不安全状态、环境(气候等周围自然环境和介质等设备作业环境)的不安全条件这三方面,且又根据致因关系,将人/物/环境分为加害方和起因方这两层。间接原因为安全生理不佳等组织内部的习惯性行为、组织外部的供应商产品和服务质量。根本原因为安全操作规程欠缺等组织内部的安全管理体系欠缺,如政治、经济等组织外部的社会环境以及人类遗传基因。根源原因为如安全重要程度等组织内部的安全文化缺失、组织外部的监管以及其他组织的影响。A characterization model of accident causes for special equipment as shown in Figure 2 is established. The accident cause representation model is mainly composed of seven layers of accident causes, namely two-level trigger causes, two-level direct causes, indirect causes, root causes and root causes, and the causal relationship between the causes at each layer is represented by the AND/or relationship of the fault tree. . The two-level triggering reasons are the accidental release of energy (including mechanical energy, electrical energy, etc.) of the equipment, its medium, and surrounding objects, and the failure or destruction of the control or shielding measures that constrain and limit the energy. The two-level direct causes are mainly the unsafe behavior of people (operators, commanders, etc.), the unsafe state of objects (equipment, surrounding objects, etc.), and the unsafe conditions of the environment (climate and other surrounding natural environments and media and other equipment operating environments) These three aspects, and according to the causal relationship, divide the person/object/environment into two layers: the infringer and the cause. Indirect reasons are habitual behaviors within the organization such as poor safety physiology, and the quality of supplier products and services outside the organization. The fundamental reason is the lack of safety operation procedures and other internal safety management systems, such as political, economic and other external social environments and human genetics. The root causes are the lack of safety culture within the organization such as safety importance, the supervision outside the organization, and the influence of other organizations.

S2:基于事故原因表征模型,提取各历史案例的事故原因,形成事故原因库。S2: Based on the accident cause representation model, the accident causes of each historical case are extracted to form an accident cause database.

针对《2005-2013特种设备典型事故案例集》中的490个特种设备事故案例(其中锅炉90个、压力容器116个、压力管道26个、起重机械97个、场内机动车辆43个、电梯86个、客运索道4个、大型游乐设施28个),分析各历史案例的事故原因构成及其因果关系;其次,基于图1中的事故原因表征模型确定各历史案例的事故原因所属分类及层级,形成事故原因表单,建立各历史案例的事故原因树;再次,根据各类事故原因的名称及频次比,按照简单多数原则,即以频次比高的、简单明了的原因名称为优先项,对事故原因名称进行归一化处理;最后,根据归一化后的事故原因名称,更新事故原因表单和各历史案例的事故原因树,并建立特种设备的事故原因库。For the 490 special equipment accident cases in the "2005-2013 Special Equipment Typical Accident Cases" (including 90 boilers, 116 pressure vessels, 26 pressure pipelines, 97 hoisting machinery, 43 on-site motor vehicles, elevators 86 passenger ropeways, 4 passenger ropeways, and 28 large-scale amusement facilities), analyze the accident causes and causal relationships of each historical case; secondly, determine the classification and level of the accident causes of each historical case based on the accident cause representation model in Figure 1 , form an accident cause form, and establish an accident cause tree for each historical case; thirdly, according to the names and frequency ratios of various accident causes, according to the principle of simple majority, that is, the name of the cause with a high frequency ratio and a simple and clear reason is the priority item, and the The accident cause name is normalized; finally, according to the normalized accident cause name, the accident cause table and the accident cause tree of each historical case are updated, and the accident cause database of special equipment is established.

S3:基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度,每个历史案例包括多层,每层包括多个事故原因。S3: Based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case. Each historical case includes multiple layers, and each layer includes multiple accident causes.

S3:基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度,具体包括:S3: Based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case, specifically including:

S31:基于所述事故原因库,采用模糊层次分析法建立各历史案例对应的模糊互补判断矩阵。S31: Based on the accident cause database, a fuzzy complementary judgment matrix corresponding to each historical case is established by using the fuzzy analytic hierarchy process.

假设

Figure BDA0003126742210000091
为依据表1中的互补型九标度判断标准,则基于所述事故原因库建立模糊互补判断矩阵,具体公式为:Assumption
Figure BDA0003126742210000091
In order to base on the complementary nine-scale judgment criteria in Table 1, a fuzzy complementary judgment matrix is established based on the accident cause database, and the specific formula is:

Figure BDA0003126742210000092
Figure BDA0003126742210000092

其中,Rd为历史案例Zd(d=1,2,...,D)对应的模糊互补判断矩阵,

Figure BDA0003126742210000093
为历史案例Zd(d=1,2,...,D)第h(h=1,2,...,7)层第i(i=1,2,...,Ndh)个事故原因和第j(j=1,2,...,Ndh)个事故原因的相对重要度比较结果,
Figure BDA0003126742210000094
D为历史案例的总个数,Ndh为第h层包括事故原因的总个数。Among them, R d is the fuzzy complementary judgment matrix corresponding to the historical case Z d (d=1, 2, ..., D),
Figure BDA0003126742210000093
is the historical case Z d (d= 1 , 2, . The comparison result of the relative importance of the accident cause and the jth (j=1, 2, ..., N dh ) accident cause,
Figure BDA0003126742210000094
D is the total number of historical cases, and N dh is the total number of accident causes in the h-th layer.

表1九标度判断尺度表Table 1 Nine-scale judgment scale table

Figure BDA0003126742210000095
Figure BDA0003126742210000095

S32:基于各历史案例对应的模糊互补判断矩阵计算各历史案例各层中各事故原因对应的初始重要度,具体包括:S32: Calculate the initial importance corresponding to each accident cause in each layer of each historical case based on the fuzzy complementary judgment matrix corresponding to each historical case, specifically including:

S321:将各历史案例对应的模糊互补判断矩阵进行一致性转换,获得各历史案例对应的模糊一致性矩阵,具体公式为:S321: Consistency conversion is performed on the fuzzy complementary judgment matrix corresponding to each historical case to obtain the fuzzy consistency matrix corresponding to each historical case. The specific formula is:

Figure BDA0003126742210000101
Figure BDA0003126742210000101

其中,

Figure BDA0003126742210000102
1≤i,j≤Ndh
Figure BDA0003126742210000103
为历史案例Zd第h层第i个事故原因和第j个事故原因的相对重要度比较结果,Bd表示历史案例Zd对应的模糊一致性矩阵,
Figure BDA0003126742210000104
为历史案例Zd(d=1,2,...,D)第h层第i(i=1,2,...,Ndh)个事故原因相对于第j(j=1,2,...,Ndh)个事故原因的模糊一致性值。in,
Figure BDA0003126742210000102
1≤i, j≤N dh ,
Figure BDA0003126742210000103
is the comparison result of the relative importance of the i-th accident cause and the j-th accident cause in the h-th layer of the historical case Z d , B d represents the fuzzy consistency matrix corresponding to the historical case Z d ,
Figure BDA0003126742210000104
For the historical case Z d (d=1, 2, ..., D) the i-th (i=1, 2, ..., N dh ) accident cause of the h-th layer relative to the j-th (j=1, 2 , ..., N dh ) fuzzy consistency values for accident causes.

S322:对各历史案例对应的模糊一致性矩阵中各行分别进行归一求解,获得各历史案例各层各事故原因对应的初始重要度,具体公式为:S322: Normalize and solve each row in the fuzzy consistency matrix corresponding to each historical case, and obtain the initial importance corresponding to each accident cause at each level of each historical case. The specific formula is:

Figure BDA0003126742210000105
Figure BDA0003126742210000105

其中,

Figure BDA0003126742210000106
表示历史案例Zd(d=1,2,...,D)第h(h=1,2,...,7)层第i(i=1,2,...,Ndh)个事故原因对应的初始重要度,
Figure BDA0003126742210000107
为历史案例Zd(d=1,2,...,D)第h层第i(i=1,2,…,Ndh)个事故原因相对于第j(j=1,2,...,Ndh)个事故原因的模糊一致性值。in,
Figure BDA0003126742210000106
Represents the history case Z d (d=1, 2, . . . , D ) h (h=1, 2, . The initial importance corresponding to each accident cause,
Figure BDA0003126742210000107
For the historical case Z d (d=1, 2, ..., D) the i-th (i=1, 2, ..., N dh ) accident cause of the h-th layer is relative to the j-th (j=1, 2, . .., N dh ) fuzzy consistency values for accident causes.

S4:利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系。本发明将扎根理论和-因子分析法简称扎根-因子分析法。S4: Use the grounded-factor analysis method to analyze the accident scenario elements of each historical case to form an accident scenario element system for special equipment. In the present invention, grounded theory and factor analysis are referred to as grounded factor analysis.

在进行事故情景相似度计算前,需先明确事故情景要素的类型、数量和维度等。因此本发明给出了利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备事故情景要素库具体过程如下:Before calculating the similarity of accident scenarios, it is necessary to clarify the types, quantities and dimensions of accident scenario elements. Therefore, the present invention provides that the grounded-factor analysis method is used to analyze the accident scenario elements of each historical case, and the specific process of forming a special equipment accident scenario element library is as follows:

(1)确定各特种设备事故的情景要素范畴:针对490个历史案例,利用扎根理论的开放性译码对历史案例的情景要素描述性文本进行概念提取和范畴确定,由此形成28个特种设备事故的事故情景要素范畴。(1) Determining the category of scene elements of each special equipment accident: For 490 historical cases, the open decoding of grounded theory is used to extract the concept and category of the descriptive text of the scene elements of historical cases, thus forming 28 special equipment The category of accident scenario elements of the accident.

(2)根据情景要素范畴确定事故情景要素的主范畴,具体步骤如下:(2) Determine the main category of accident scenario elements according to the category of scenario elements. The specific steps are as follows:

首先,基于28个特种设备事故的事故情景要素范畴,利用Likert量表获取各范畴对特种设备事故情景的影响程度,然后利用公式(6)进行因子分析,得到各事故情景要素范畴的分类结果。First, based on the accident scene element categories of 28 special equipment accidents, the Likert scale is used to obtain the influence degree of each category on the special equipment accident scene, and then the factor analysis is carried out using formula (6) to obtain the classification results of each accident scene element category.

其次,根据各事故情景要素范畴的分类结果,利用扎根理论的主轴译码,归纳得与各类事故情景要素范畴相对应的主范畴。Secondly, according to the classification results of each accident scene element category, using the main axis decoding of grounded theory, the main categories corresponding to various accident scene element categories are summarized.

最后,对主范畴和各事故情景要素范畴之间的关系进行适度调整,直至主范畴所代表的意义集合能完全覆盖事故情景要素范畴,由此得到8个事故情景要素的主范畴。Finally, the relationship between the main category and each accident scenario element category is adjusted appropriately until the meaning set represented by the main category can completely cover the category of accident scenario elements, thus obtaining the main categories of 8 accident scenario elements.

Figure BDA0003126742210000111
Figure BDA0003126742210000111

式中,Xl为第l个初始的情景要素的主范畴,Ao为第o个情景要素范畴,

Figure BDA0003126742210000112
为因子系数。In the formula, X l is the main category of the l-th initial scenario element, A o is the o-th scenario element category,
Figure BDA0003126742210000112
is the factor coefficient.

(3)根据事故情景要素的主范畴确定事故情景要素的核心范畴,具体步骤如下:(3) Determine the core category of accident scenario elements according to the main category of accident scenario elements. The specific steps are as follows:

首先,根据8个事故情景要素主范畴,利用Likert量表分析其对特种设备事故情景的影响程度,并利用公式(6)进行因子分析,得到各主范畴的分类。First, according to the main categories of 8 accident scene elements, the Likert scale is used to analyze the degree of its influence on the accident scene of special equipment, and formula (6) is used for factor analysis to obtain the classification of each main category.

其次,利用扎根理论的选择性译码,总结得与各类主范畴相对应的核心范畴。Secondly, using the selective decoding of grounded theory, the core categories corresponding to various main categories are summarized.

最后,对核心范畴与主范畴的关系进行适度调整,直至核心范畴所代表的意义集合能完全覆盖主范畴,由此得到3个事故情景要素核心范畴。最终形成如表3所示的特种设备事故情景要素体系,其主要分为核心范畴、主范畴和事故情景要素范畴三个层级。同时,根据各历史案例的事故情景要素进行分析,进而形成特种设备的事故情景要素体系表,如表2所示。Finally, the relationship between the core category and the main category is adjusted appropriately until the meaning set represented by the core category can completely cover the main category, and three core categories of accident scenario elements are obtained. Finally, the special equipment accident scenario element system shown in Table 3 is formed, which is mainly divided into three levels: core category, main category and accident scenario element category. At the same time, according to the accident scenario elements of each historical case, an accident scenario element system table of special equipment is formed, as shown in Table 2.

表2事故情景要素体系表Table 2 Accident scenario element system table

Figure BDA0003126742210000121
Figure BDA0003126742210000121

S5:根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例。S5: According to each accident scenario element in the accident scenario element system, select a historical case similar to the current case from each historical case as a similar accident case.

对于事前原因识别,主要是基于表2中的事前情景要素,进行事故案例的情景相似度计算。对于事中原因识别,则是基于表2中的事前和事中这两类情景要素,而对于事后原因识别,则是基于表2中的全部情景要素,也即事前、事中和事后这三类情景要素。For prior cause identification, the scenario similarity calculation of accident cases is mainly based on the prior scenario elements in Table 2. For in-event cause identification, it is based on the two types of situational elements in Table 2, before and in the event, while for post-event cause identification, it is based on all the situational elements in Table 2, that is, before, during and after the event. Scenario-like elements.

如图3所示,S5具体步骤包括:As shown in Figure 3, the specific steps of S5 include:

S51:利用ICTCLAS和停留词表对当前案例Z*中各事故情景要素的描述性文本进行分词和去停留词处理,获得当前有效特征词集合T*q;利用ICTCLAS和停留词表对历史案例Zd(d=1,2,...,D)中各事故情景要素的描述性文本进行分词和去停留词处理,获得历史有效特征词集合Tdq,其中,

Figure BDA0003126742210000122
Figure BDA0003126742210000123
Figure BDA0003126742210000124
为当前有效特征词集合中第E*q个有效特征词,
Figure BDA0003126742210000125
为历史有效特征词集合中第Fdq个有效特征词,D表示历史案例的总个数。T*q表示当前案例Z*对应的有效特征词集合,简称当前有效特征词集,Tdq表示历史案例Zd对应的有效特征词集合,简称历史有效特征词集合。本实施例中,汉语词法分析系统(Institute ofComputing Technology,Chinese LexicalAnalysisSystem,简称ICTCLAS)。S51: Use ICTCLAS and the stop word list to perform word segmentation and de-stop word processing on the descriptive text of each accident scenario element in the current case Z * , and obtain the current effective feature word set T *q ; use ICTCLAS and stop word list to analyze the historical case Z The descriptive text of each accident scenario element in d (d=1, 2, ..., D) is subjected to word segmentation and de-stop word processing to obtain a set of historically valid feature words T dq , where,
Figure BDA0003126742210000122
Figure BDA0003126742210000123
Figure BDA0003126742210000124
is the E *qth valid feature word in the current valid feature word set,
Figure BDA0003126742210000125
is the Fdqth effective feature word in the historical valid feature word set, and D represents the total number of historical cases. T *q represents the valid feature word set corresponding to the current case Z * , referred to as the current valid feature word set, and T dq represents the valid feature word set corresponding to the historical case Z d , referred to as the historical valid feature word set. In this embodiment, the Chinese Lexical Analysis System (Institute of Computing Technology, Chinese Lexical Analysis System, ICTCLAS for short).

S52:利用当前有效特征词集合T*q和历史有效特征词集合Tdq确定当前案例Z*和历史案例Zd关于各事故情景要素对应的情景要素相似度,具体公式为:S52: Use the current valid feature word set T *q and the historical valid feature word set T dq to determine the similarity of the current case Z * and the historical case Z d with respect to the scenario elements corresponding to each accident scenario element, and the specific formula is:

Figure BDA0003126742210000131
Figure BDA0003126742210000131

其中,

Figure BDA0003126742210000132
表示当前案例Z*和历史案例Zd关于事故情形要素Aq的情景要素相似度,l2n()为特征词的总长度,T*q表示当前有效特征词集,Tdq表示历史有效特征词集合,ρ表示调整系数,可参考经验而定,一般取ρ=0洠4~0洠6,q=1,2,...,28,d=1,2,...,D。in,
Figure BDA0003126742210000132
Represents the similarity of the situation elements of the current case Z * and the historical case Z d with respect to the accident situation element A q , l2n() is the total length of the feature words, T *q represents the current valid feature word set, and T dq represents the historical valid feature word set , ρ represents the adjustment coefficient, which can be determined with reference to experience. Generally, ρ=0×4~0×6, q=1, 2,..., 28, d=1, 2,...,D.

S53:将不同情景下各事故情景要素对应的情景要素相似度进行信息融合,得不同情景下当前案例Z*和历史案例Zd的情景相似度Sim*d,具体公式为:S53: Integrate information on the similarity of the scenario elements corresponding to each accident scenario element under different scenarios to obtain the scenario similarity Sim *d of the current case Z * and the historical case Z d under different scenarios, the specific formula is:

Figure BDA0003126742210000133
Figure BDA0003126742210000133

其中,

Figure BDA0003126742210000134
表示当前案例Z*和历史案例Zd关于事故情景要素Aq的情景要素相似度。in,
Figure BDA0003126742210000134
Represents the similarity of the current case Z * and the historical case Z d with respect to the accident scenario element A q .

S54:确定情景相似度阈值,具体公式为:S54: Determine the scenario similarity threshold, and the specific formula is:

SQ=δ×max{Sim*d|d=1,2,...,D}(9);SQ=δ×max{Sim *d |d=1,2,...,D}(9);

其中,δ表示当前案例Z*和历史案例Zd间的最大相似度的百分比,0<δ≤1,δ值根据历史数据与经验而定,D表示历史案例的总个数,Sim*d表示不同情景下当前案例Z*和历史案例Zd的情景相似度,SQ表示情景相似度阈值。Among them, δ represents the percentage of the maximum similarity between the current case Z * and the historical case Z d , 0<δ≤1, the value of δ is determined according to historical data and experience, D represents the total number of historical cases, Sim *d represents Scenario similarity of current case Z * and historical case Zd under different scenarios, SQ represents scenario similarity threshold.

S55:判断Sim*d是否大于SQ;如果Sim*d≥SQ时,将历史案例Zd作为当前案例Z*的相似事故案例Z*g,g=1,2,...,G,G≤D。将历史案例Zd各层的事故原因作为相似事故案例Z*g各层的相似事故原因。S55: Determine whether Sim *d is greater than SQ; if Sim *d ≥SQ, take the historical case Z d as the similar accident case Z *g of the current case Z * , g=1, 2, ..., G, G≤ D. The accident causes of each layer of the historical case Z d are regarded as the similar accident causes of each layer of the similar accident case Z * g .

假设当前案例Z*共有G(G≤D)个相似事故案例,Z*g为当前案例Z*的第g(g=1,2,...,G)个相似事故案例,则相似事故案例Z*g的第h(h=1,2,...,7)层的第i(i=1,2,...,Ngh)个相似事故原因对应的初始重要度为

Figure BDA0003126742210000141
当前案例Z*和相似事故案例Z*g的情景相似度为Sim*g。Assuming that there are G (G≤D) similar accident cases in the current case Z * , Z *g is the g (g=1, 2, ..., G) similar accident case of the current case Z * , then the similar accident case The initial importance corresponding to the i - th (i=1, 2, .
Figure BDA0003126742210000141
The situational similarity between the current case Z * and the similar accident case Z *g is Sim *g .

结合相似事故案例各层各相似事故原因对应的初始重要度,以及相似事故案例的情景相似度,计算事故原因的最终重要度,并结合重要度阈值,确定当前案例的各层级事故原因。而后结合历史案例的事故原因层级关系,分析当前案例的事故原因层级关系,建立当前案例的事故原因树,由此实现当前案例的各层级事故原因识别。如图4所示,具体过程如下:Combined with the initial importance corresponding to each similar accident cause at each level of similar accident cases, and the scenario similarity of similar accident cases, the final importance of the accident cause is calculated, and combined with the importance threshold, the accident cause of each level of the current case is determined. Then combined with the accident cause hierarchy relationship of historical cases, analyze the accident cause hierarchy relationship of the current case, and establish the accident cause tree of the current case, thereby realizing the identification of accident causes at all levels of the current case. As shown in Figure 4, the specific process is as follows:

S6:根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因,具体包括:S6: Determine multiple final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case, specifically including:

S61:基于各相似事故案例中各相似事故原因对应的初始重要度、当前案例和各相似事故案例的情景相似度计算各相似事故案例中各相似事故原因对应的相似重要度,具体公式为S61: Calculate the similarity importance corresponding to each similar accident cause in each similar accident case based on the initial importance corresponding to each similar accident cause in each similar accident case, the current case and the scenario similarity of each similar accident case, and the specific formula is:

Figure BDA0003126742210000142
Figure BDA0003126742210000142

其中,

Figure BDA0003126742210000143
表示相似事故案例Z*g第h层第i个相似事故原因对应的相似重要度,Sim*g表示当前案例Z*和相似事故案例Z*g的情景相似度,
Figure BDA0003126742210000144
表示相似事故案例Z*g中第h层的第i个相似事故原因对应的初始重要度,G表示当前案例Z*共有相似事故案例的总个数,h=1,2,...,7,i=1,2,...,Ngh,Ngh表示第h层有相似事故原因总个数。in,
Figure BDA0003126742210000143
Represents the similarity importance corresponding to the i-th similar accident cause in the h-th layer of the similar accident case Z *g , Sim *g represents the situation similarity between the current case Z * and the similar accident case Z *g ,
Figure BDA0003126742210000144
Represents the initial importance corresponding to the i-th similar accident cause of the h-th layer in the similar accident case Z *g , G represents the total number of similar accident cases in the current case Z * , h=1, 2, ..., 7 , i=1, 2, ..., N gh , N gh represents the total number of similar accident causes in the h-th layer.

对于不同的相似事故案例,其相似事故原因可能存在重复的情况,例如相似事故案例Z*1和Z*2的第6层都有“应急预案欠缺”这一相似事故原因,因此,需要依次对相似事故案例的相似事故原因,也即当前案例Z*的初始相似事故原因进行合并去重和加和处理,具体过程为:For different similar accident cases, the similar accident causes may be repeated. For example, the 6th layer of similar accident cases Z *1 and Z *2 have the similar accident cause of "lack of emergency plan". The similar accident causes of similar accident cases, that is, the initial similar accident causes of the current case Z * , are merged, de-duplicated and summed. The specific process is as follows:

首先,需对所有相似事故案例第h(h=1,2,...,7)层的多个相似事故原因进行汇总;然后对其中相同的事故原因进行合并去重,例如,汇总后相似事故案例的第6层共有4个“应急预案欠缺”,则可将其合并为1个“应急预案欠缺”;最后,对这些相同的相似事故原因的初始重要度进行加和处理,例如上述4个“应急预案欠缺”的最终重要度依次为0.1、0.1、0.15和0.12,则通过加和处理,得合并后的这1个“应急预案欠缺”的最终重要度为0.1+0.1+0.15+0.2=0.55。由此得到当前案例Z*的第h层最终相似事故原因及对应的最终重要度。First, it is necessary to summarize multiple similar accident causes in the h (h=1, 2, ..., 7) layer of all similar accident cases; then merge and deduplicate the same accident causes. There are 4 "deficiencies in emergency plans" in the sixth layer of the accident case, which can be combined into one "deficiency in emergency plans"; finally, the initial importance of these same similar accident causes is summed up, for example, the above 4 The final importance of each "lack of emergency plan" is 0.1, 0.1, 0.15, and 0.12, then through the addition process, the final importance of the combined "lack of emergency plan" is 0.1+0.1+0.15+0.2 =0.55. From this, the h-th layer of the current case Z * is finally similar to the accident cause and the corresponding final importance.

S62:对相似事故案例Z*g第h层上的多个相似事故原因进行合并去重处理,获得当前案例Z*第h层对应的最终相似事故原因集合

Figure BDA0003126742210000151
其中,
Figure BDA0003126742210000152
表示当前案例Z*的第h层第Th个最终相似事故原因,
Figure BDA0003126742210000153
S62: Combine multiple similar accident causes on the h-th layer of similar accident cases Z *g to remove duplicates, and obtain the final set of similar accident causes corresponding to the current case Z * -h-th layer
Figure BDA0003126742210000151
in,
Figure BDA0003126742210000152
represents the h -th final similar accident cause of the h-th layer of the current case Z * ,
Figure BDA0003126742210000153

S63:对相似事故案例Z*g第h层多个相同的相似事故原因对应的初始重要度进行加和处理,获得当前案例Z*第h层对应的最终重要度向量集合

Figure BDA0003126742210000154
Figure BDA0003126742210000155
其中,
Figure BDA0003126742210000156
表示当前案例Z*的第h层第Th个最终相似事故原因对应的最终重要度。S63: Add up the initial importance degrees corresponding to multiple identical similar accident causes in the h-th layer of the similar accident cases Z *g , and obtain the final importance vector set corresponding to the current case Z * h-th layer
Figure BDA0003126742210000154
Figure BDA0003126742210000155
in,
Figure BDA0003126742210000156
Represents the final importance corresponding to the T hth final similar accident cause in the hth layer of the current case Z * .

S64:确定最终重要度阈值,具体公式为:S64: Determine the final importance threshold, the specific formula is:

Figure BDA0003126742210000157
Figure BDA0003126742210000157

其中,CQh表示最终重要度阈值,θ表示最大的最终重要度的百分比,0<θ≤1,

Figure BDA0003126742210000158
表示当前案例Z*第h层第t个最终重要度,t=1,2,...,Th。Among them, CQ h represents the final importance threshold, θ represents the maximum final importance percentage, 0<θ≤1,
Figure BDA0003126742210000158
Represents the current case Z * the t-th final importance of the h-th layer, t=1, 2, . . . , T h .

S65:判断

Figure BDA0003126742210000159
是否大于或等于CQh;如果
Figure BDA00031267422100001510
大于或等于CQh,则当前案例第h层第t个最终重要度对应的最终相似事故原因为当前案例Z*中第h层对应的最终事故原因,(t=1,2,...,Th)。S65: Judgment
Figure BDA0003126742210000159
is greater than or equal to CQ h ; if
Figure BDA00031267422100001510
is greater than or equal to CQ h , then the final similar accident cause corresponding to the t-th final importance degree of the h-th layer of the current case is the final accident cause corresponding to the h-th layer in the current case Z * , (t=1, 2,..., Th ).

S7:基于当前案例Z*中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例Z*g的事故原因树构建当前案例Z*对应的事故原因树,并利用当前案例Z*对应的事故原因树对当前案例Z*进行事故原因识别,具体包括:S7: Based on the multiple final accident causes corresponding to each layer in the current case Z * , construct the accident cause tree corresponding to the current case Z * according to the structure diagram of the house of quality and the accident cause tree of the similar accident case Z *g , and use the current case Z* * The corresponding accident cause tree identifies the cause of the accident for the current case Z * , including:

S71:根据质量屋结构图和相似事故案例Z*g的事故原因树,建立当前案例Z*第h层中多个最终事故原因和第h-1层中多个最终事故原因的相关矩阵,具体如表3所示。表3中假设当前案例Z*中第h层有Uh个最终事故原因,第h-1层有Uh-1个最终事故原因。S71: According to the structure diagram of the house of quality and the accident cause tree of similar accident cases Z *g , establish a correlation matrix of multiple final accident causes in the current case Z * h layer and multiple final accident causes in the h-1 layer, specifically as shown in Table 3. It is assumed in Table 3 that there are U h final accident causes in the h-th layer and U h-1 final accident causes in the h-1 layer in the current case Z * .

S72:建立当前案例Z*中第h层多个最终事故原因的自与相关矩阵,具体如表4所示。表4和表5中假设当前案例Z*中第h层有Uh个最终事故原因。S72: Establish an autocorrelation matrix of multiple final accident causes in the h-th layer in the current case Z * , as shown in Table 4. In Tables 4 and 5, it is assumed that there are Uh final accident causes in the hth layer in the current case Z * .

S73:建立当前案例Z*中第h层多个最终事故原因的自或相关矩阵,具体如表5所示。S73: Establish the auto-correlation matrix of multiple final accident causes in the h-th layer in the current case Z * , as shown in Table 5.

具体的,利用公式(12)计算表3中最终事故原因hu和(h-1)v之间的相关度;利用公式(13)计算表4中最终事故原因hu和ho之间的自与相关度,利用公式(14)计算表5中最终事故原因hu和ho之间的自或相关度。Specifically, formula (12) is used to calculate the correlation between the final accident cause hu and (h - 1) v in Table 3; formula (13) is used to calculate the correlation between the final accident cause hu and h o in Table 4 Auto-correlation degree, use formula (14) to calculate the auto-or correlation degree between the final accident causes hu and h o in Table 5.

Figure BDA0003126742210000161
Figure BDA0003126742210000161

Figure BDA0003126742210000162
Figure BDA0003126742210000162

Figure BDA0003126742210000163
Figure BDA0003126742210000163

其中,Sim*g表示当前案例Z*和相似事故案例Z*g的情景相似度,若在相似事故案例Z*g中最终事故原因hu和(h-1)v相关,则ηg=1,否则ηg=0。若在相似事故案例Z*g中最终事故原因hu和ho相与,则ξg=1,否则ξg=0。若在相似事故案例Z*g中最终事故原因hu和ho相或,则λg=1,否则λg=0。Among them, Sim *g represents the situation similarity between the current case Z * and the similar accident case Z *g . If the final accident cause hu and (h - 1) v are related in the similar accident case Z *g , then η g =1 , otherwise η g =0. If the final accident causes hu and ho are the same in the similar accident case Z *g , then ξ g =1, otherwise ξ g = 0 . If the final accident causes hu and ho are OR in the similar accident case Z *g , then λ g =1, otherwise λ g =0.

S74:根据所述相关矩阵、所述自与相关矩阵和所述自或相关度进行排序构建当前案例Z*对应的事故原因树。S74: Build an accident cause tree corresponding to the current case Z * according to the correlation matrix, the self-correlation matrix and the self-OR correlation degree.

S75:根据所述当前案例Z*对应的事故原因树识别当前案例Z*的事故原因。S75: Identify the accident cause of the current case Z * according to the accident cause tree corresponding to the current case Z * .

当事故原因较多时,可参考公式(9)和(11)设置相关度阈值,以进一步筛选当前案例Z*的关键事故原因及其相关关系。When there are many accident causes, the correlation threshold can be set with reference to formulas (9) and (11) to further screen the key accident causes and their correlations in the current case Z * .

表3当前案例Z*第h层和第h-1层最终事故原因的相关矩阵Table 3. Correlation matrix of final accident causes for current case Z * h-th layer and h-1 layer

Figure BDA0003126742210000164
Figure BDA0003126742210000164

Figure BDA0003126742210000171
Figure BDA0003126742210000171

表4当前案例Z*的第h层最终事故原因的自与相关矩阵Table 4 The autocorrelation matrix of the h-th tier final accident causes for the current case Z *

Figure BDA0003126742210000172
Figure BDA0003126742210000172

表5当前案例Z*的第h层最终事故原因的自或相关矩阵Table 5 The auto-correlation matrix of the h-th tier final accident causes for the current case Z *

Figure BDA0003126742210000173
Figure BDA0003126742210000173

与现有技术相比:Compared with the existing technology:

1、可快速、准确的实现不同情景下的事故原因识别1. It can quickly and accurately realize the identification of accident causes in different scenarios

已有的特种设备原因分析更多是针对事后情景的,而所提方法能通过事前、事中和事后三种情景下的情景相似度计算,快速重用相应历史案例的事故原因及其相关关系,以分别实现三个不同情景下的当前案例事故原因识别。而且所提方法能针对具体事故具体分析,无需事故调查技术,对使用者要求较低,便于推广应用。Existing cause analysis of special equipment is more for post-event scenarios, and the proposed method can quickly reuse the accident causes and their correlations in corresponding historical cases through the calculation of scenario similarity in three scenarios: pre-event, in-event and post-event. In order to realize the identification of the accident cause of the current case in three different scenarios respectively. Moreover, the proposed method can analyze specific accidents, without accident investigation technology, and has low requirements for users, which is convenient for popularization and application.

2、能识别事故原因间的层级关系2. Can identify the hierarchical relationship between the causes of accidents

已有的特种设备事故原因研究更多是面向同层事故原因的分析,无法形成类似故障树的层级事故原因识别,特别是事前、事中情景下的。所提方法先利用故障树和各事故致因理论,建立事故原因表征模型,形成各层级事故原因库,而后利用模糊层次分析法、情景相似度等分别针对不同情景下的各层事故原因进行分析,最后利用质量屋分析各层事故原因间的关联关系,由此建立当前案例的事故原因树,实现不同情景下事故原因间的层级关系识别。Existing research on accident causes of special equipment is mostly oriented to the analysis of accident causes at the same level, and cannot form a hierarchical accident cause identification similar to a fault tree, especially in the pre-event and in-event scenarios. The proposed method firstly uses fault tree and various accident causation theories to establish an accident cause representation model and form an accident cause database at each level. Finally, the house of quality is used to analyze the relationship between the accident causes at each layer, thereby establishing the accident cause tree of the current case, and realizing the hierarchical relationship identification between the accident causes in different scenarios.

如图5所示,本发明公开一种特种设备事故原因识别系统,所述系统包括:As shown in Figure 5, the present invention discloses a special equipment accident cause identification system, the system includes:

事故原因表征模型构建模块501,用于利用事故致因模型和故障树建立特种设备的事故原因表征模型。The accident cause characterization model building module 501 is used to establish an accident cause characterization model of the special equipment by using the accident cause model and the fault tree.

事故原因库构建模块502,用于基于所述事故原因表征模型,提取各历史案例的事故原因,形成事故原因库。The accident cause database building module 502 is used for extracting the accident causes of each historical case based on the accident cause representation model to form an accident cause database.

初始重要度计算模块503,用于基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;每个历史案例包括多层,每层包括多个事故原因。The initial importance degree calculation module 503 is used to calculate the initial importance degree corresponding to each accident cause in each historical case based on the accident cause database using the fuzzy analytic hierarchy process; each historical case includes multiple layers, and each layer includes multiple accident causes .

事故情景要素体系构建模块504,用于利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系。The accident scenario element system building module 504 is used to analyze the accident scenario elements of each historical case by using the grounded-factor analysis method to form an accident scenario element system of the special equipment.

相似事故案例确定模块505,用于根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;每个相似事故案例包括多层,每层包括多个相似事故原因。A similar accident case determination module 505 is configured to select historical cases similar to the current case from each historical case as similar accident cases according to each accident scenario element in the accident scenario element system; each similar accident case includes multiple layers, each Layers include multiple similar accident causes.

最终事故原因确定模块506,用于根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因。The final accident cause determination module 506 is configured to determine a plurality of final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case.

事故原因识别模块507,用于基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别。The accident cause identification module 507 is used to construct an accident cause tree corresponding to the current case based on the multiple final accident causes corresponding to each layer in the current case, according to the structure diagram of the house of quality and the accident cause tree of similar accident cases, and use the corresponding accident cause tree of the current case. The accident cause tree identifies the cause of the accident in the current case.

作为一种可选的实施方式,本发明所述初始重要度计算模块503,具体包括:As an optional implementation manner, the initial importance calculation module 503 of the present invention specifically includes:

模糊互补判断矩阵确定单元,用于基于所述事故原因库,采用模糊层次分析法建立各历史案例对应的模糊互补判断矩阵。The fuzzy complementary judgment matrix determination unit is used for establishing the fuzzy complementary judgment matrix corresponding to each historical case by adopting the fuzzy analytic hierarchy process based on the accident cause database.

初始重要度计算单元,用于基于各历史案例对应的模糊互补判断矩阵计算各历史案例中各事故原因对应的初始重要度。The initial importance calculation unit is used to calculate the initial importance corresponding to each accident cause in each historical case based on the fuzzy complementary judgment matrix corresponding to each historical case.

作为一种可选的实施方式,本发明所述相似事故案例确定模块505,具体包括:As an optional implementation manner, the similar accident case determination module 505 of the present invention specifically includes:

有效特征词集合确定单元,用于利用ICTCLAS和停留词表对当前案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得当前有效特征词集合;利用ICTCLAS和停留词表对历史案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得历史有效特征词集合。The valid feature word set determination unit is used to use ICTCLAS and the stop word list to perform word segmentation and de-stop word processing on the descriptive text of each accident scenario element in the current case, and obtain the current effective feature word set; use ICTCLAS and stop word list to compare historical The descriptive text of each accident scene element in the case is subjected to word segmentation and de-stop word processing to obtain a set of historically effective feature words.

情景要素相似度计算单元,用于利用当前有效特征词集合和历史有效特征词集合确定当前案例和各历史案例关于各事故情景要素对应的情景要素相似度。The situation element similarity calculation unit is used to determine the situation element similarity corresponding to each accident situation element in the current case and each historical case by using the current effective feature word set and the historical effective feature word set.

情景相似度计算单元,用于将不同情景下各事故情景要素对应的情景要素相似度进行信息融合,得不同情景下当前案例和各历史案例的情景相似度。The scenario similarity calculation unit is used for information fusion of the similarity of the scenario elements corresponding to each accident scenario element under different scenarios to obtain the scenario similarity of the current case and each historical case under different scenarios.

情景相似度阈值确定单元,用于确定情景相似度阈值SQ。The context similarity threshold determination unit is used to determine the context similarity threshold SQ.

第一判断单元,用于判断Sim*d是否大于或等于SQ;如果Sim*d大于或等于SQ时,将历史案例Zd作为当前案例的相似事故案例,将历史案例Zd各层的事故原因作为相似事故案例各层的相似事故原因;其中,Sim*d为不同情景下当前案例和历史案例Zd的情景相似度,d=1,2,...,D,D表示历史案例的总个数。The first judgment unit is used to judge whether Sim *d is greater than or equal to SQ; if Sim *d is greater than or equal to SQ, the historical case Z d is regarded as a similar accident case of the current case, and the accident causes of each layer of the historical case Z d are As the similar accident causes at each level of similar accident cases; where Sim *d is the situation similarity between the current case and the historical case Z d under different scenarios, d=1, 2, ..., D, D represents the total number of historical cases number.

作为一种可选的实施方式,本发明所述最终事故原因确定模块506,具体包括:As an optional implementation manner, the final accident cause determination module 506 of the present invention specifically includes:

相似重要度计算单元,用于基于各相似事故案例中各相似事故原因对应的初始重要度、当前案例和各相似事故案例的情景相似度计算各相似事故案例中各相似事故原因对应的相似重要度。The similarity importance calculation unit is used to calculate the similarity importance corresponding to each similar accident cause in each similar accident case based on the initial importance corresponding to each similar accident cause in each similar accident case, the current case and the scenario similarity of each similar accident case .

合并去重单元,用于对各相似事故案例各层上的多个相似事故原因进行合并去重处理,获得当前案例各层对应的最终相似事故原因集合。The merging deduplication unit is used to merge and deduplicate multiple similar accident causes on each layer of each similar accident case, and obtain the final set of similar accident causes corresponding to each layer of the current case.

加和处理单元,用于对各相似事故案例各层上的多个相同的相似事故原因对应的初始重要度进行加和处理,获得当前案例各层对应的最终重要度向量集合。The summation processing unit is used to add and process the initial importance degrees corresponding to multiple identical similar accident causes on each layer of each similar accident case, and obtain the final importance vector set corresponding to each layer of the current case.

最终重要度阈值确定单元,用于确定最终重要度阈值CQhThe final importance threshold determination unit is used to determine the final importance threshold CQ h .

第二判断单元,用于判断

Figure BDA0003126742210000201
是否大于或等于CQh;如果
Figure BDA0003126742210000202
大于或等于CQh,则当前案例第h层第t个最终重要度对应的最终相似事故原因为当前案例中第h层对应的最终事故原因,
Figure BDA0003126742210000203
表示当前案例第h层第t个最终重要度,t=1,2,...,Th,Th为当前案例第h层最终重要度的总个数,h=1,2,...,7。The second judging unit is used for judging
Figure BDA0003126742210000201
is greater than or equal to CQ h ; if
Figure BDA0003126742210000202
is greater than or equal to CQ h , then the final similar accident cause corresponding to the t-th final importance degree of the h-th layer of the current case is the final accident cause corresponding to the h-th layer in the current case,
Figure BDA0003126742210000203
Indicates the t-th final importance of the h-th layer of the current case, t=1, 2, ..., Th , Th is the total number of the h -th layer of the current case's final importance, h=1, 2, ... ., 7.

作为一种可选的实施方式,本发明所述事故原因识别模块507,具体包括:As an optional implementation manner, the accident cause identification module 507 of the present invention specifically includes:

相关矩阵建立单元,用于根据质量屋结构图和各相似事故案例的事故原因树,建立当前案例相邻两层中各最终事故原因的相关矩阵。The correlation matrix establishment unit is used to establish the correlation matrix of each final accident cause in the two adjacent layers of the current case according to the structure diagram of the house of quality and the accident cause tree of each similar accident case.

自与相关矩阵建立单元,用于建立当前案例中第h层多个最终事故原因的自与相关矩阵,h=1,,2,...,7。The autocorrelation matrix establishing unit is used to establish the autocorrelation matrix of multiple final accident causes of the hth layer in the current case, h=1, , 2, . . . , 7.

自或相关矩阵建立单元,用于建立当前案例中第h层多个最终事故原因的自或相关矩阵。The auto-correlation matrix establishment unit is used to establish the auto-correlation matrix of multiple final accident causes in the h-th layer in the current case.

事故原因树建立单元,用于根据相关矩阵、自与相关矩阵和自或相关度进行排序构建当前案例对应的事故原因树。The accident cause tree establishment unit is used to construct an accident cause tree corresponding to the current case by sorting according to the correlation matrix, the autocorrelation matrix and the autocorrelation degree.

事故原因识别单元,用于根据所述当前案例对应的事故原因树识别当前案例的事故原因。The accident cause identification unit is configured to identify the accident cause of the current case according to the accident cause tree corresponding to the current case.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.

Claims (10)

1.一种特种设备事故原因识别方法,其特征在于,所述方法包括:1. a special equipment accident cause identification method, is characterized in that, described method comprises: 利用事故致因模型和故障树建立特种设备的事故原因表征模型;Use the accident cause model and fault tree to establish the accident cause characterization model of special equipment; 基于所述事故原因表征模型,提取各历史案例的事故原因,形成事故原因库;Based on the accident cause representation model, the accident causes of each historical case are extracted to form an accident cause database; 基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;每个历史案例包括多层,每层包括多个事故原因;Based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case; each historical case includes multiple layers, and each layer includes multiple accident causes; 利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系;Use the grounded-factor analysis method to analyze the accident scene elements of each historical case to form the accident scene element system of special equipment; 根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;每个相似事故案例包括多层,每层包括多个相似事故原因;According to each accident scenario element in the accident scenario element system, historical cases similar to the current case are selected from each historical case as similar accident cases; each similar accident case includes multiple layers, and each layer includes multiple similar accident causes; 根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因;Determine multiple final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case; 基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别。Based on the multiple final accident causes corresponding to each layer in the current case, construct the accident cause tree corresponding to the current case according to the structure diagram of the house of quality and the accident cause tree of similar accident cases, and use the accident cause tree corresponding to the current case to carry out the accident analysis of the current case. Cause identification. 2.根据权利要求1所述的特种设备事故原因识别方法,其特征在于,所述基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度,具体包括:2. The special equipment accident cause identification method according to claim 1, characterized in that, based on the accident cause database, the fuzzy analytic hierarchy process is used to calculate the initial importance corresponding to each accident cause in each historical case, specifically comprising: : 基于所述事故原因库,采用模糊层次分析法建立各历史案例对应的模糊互补判断矩阵;Based on the accident cause database, a fuzzy complementary judgment matrix corresponding to each historical case is established by using the fuzzy analytic hierarchy process; 基于各历史案例对应的模糊互补判断矩阵计算各历史案例中各事故原因对应的初始重要度。Based on the fuzzy complementary judgment matrix corresponding to each historical case, the initial importance corresponding to each accident cause in each historical case is calculated. 3.根据权利要求1所述的特种设备事故原因识别方法,其特征在于,所述根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例,具体包括:3. The method for identifying the cause of special equipment accident according to claim 1, wherein, according to each accident scenario element in the accident scenario element system, a historical case similar to the current case is selected from each historical case as the similarity. Accident cases, including: 利用ICTCLAS和停留词表对当前案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得当前有效特征词集合;利用ICTCLAS和停留词表对历史案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得历史有效特征词集合;Use ICTCLAS and stop vocabulary to perform word segmentation and de-stop word processing on the descriptive text of each accident scene element in the current case to obtain the current effective feature word set; use ICTCLAS and stop vocabulary to describe the descriptive text of each accident scene element in the historical case The text is subjected to word segmentation and de-stop word processing to obtain a set of historically effective feature words; 利用当前有效特征词集合和历史有效特征词集合确定当前案例和各历史案例关于各事故情景要素对应的情景要素相似度;Using the current effective feature word set and the historical effective feature word set to determine the similarity of the current case and each historical case with respect to the scene elements corresponding to each accident scene element; 将不同情景下各事故情景要素对应的情景要素相似度进行信息融合,得不同情景下当前案例和各历史案例的情景相似度;Integrate information on the similarity of the scenario elements corresponding to each accident scenario element under different scenarios to obtain the scenario similarity of the current case and each historical case under different scenarios; 确定情景相似度阈值SQ;Determine the scenario similarity threshold SQ; 判断Sim*d是否大于或等于SQ;如果Sim*d大于或等于SQ时,将历史案例Zd作为当前案例的相似事故案例,将历史案例Zd各层的事故原因作为相似事故案例各层的相似事故原因;其中,Sim*d为不同情景下当前案例和历史案例Zd的情景相似度,d=1,2,...,D,D表示历史案例的总个数。Determine whether Sim *d is greater than or equal to SQ; if Sim *d is greater than or equal to SQ, take the historical case Z d as a similar accident case of the current case, and take the accident causes of each layer of the historical case Z d as the similar accident case at each layer. Similar accident causes; where Sim *d is the situation similarity between the current case and the historical case Z d under different scenarios, d=1, 2, ..., D, D represents the total number of historical cases. 4.根据权利要求1所述的特种设备事故原因识别方法,其特征在于,所述根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因,具体包括:4. The method for identifying accident causes of special equipment according to claim 1, characterized in that, according to the initial importance corresponding to each similar accident cause in each similar accident case, a plurality of final accident causes corresponding to each layer in the current case is determined , including: 基于各相似事故案例中各相似事故原因对应的初始重要度、当前案例和各相似事故案例的情景相似度计算各相似事故案例中各相似事故原因对应的相似重要度;Calculate the similarity importance corresponding to each similar accident cause in each similar accident case based on the initial importance corresponding to each similar accident cause in each similar accident case, the current case and the scenario similarity of each similar accident case; 对各相似事故案例各层上的多个相似事故原因进行合并去重处理,获得当前案例各层对应的最终相似事故原因集合;Combine multiple similar accident causes on each layer of each similar accident case to remove duplicates, and obtain the final set of similar accident causes corresponding to each layer of the current case; 对各相似事故案例各层上的多个相同的相似事故原因对应的初始重要度进行加和处理,获得当前案例各层对应的最终重要度向量集合;The initial importance corresponding to the multiple identical similar accident causes on each layer of each similar accident case is added and processed, and the final importance vector set corresponding to each layer of the current case is obtained; 确定最终重要度阈值CQhDetermine the final importance threshold CQ h ; 判断
Figure FDA0003126742200000021
是否大于或等于CQh;如果
Figure FDA0003126742200000022
大于或等于CQh,则将当前案例第h层第t个最终重要度对应的最终相似事故原因作为当前案例中第h层对应的最终事故原因,
Figure FDA0003126742200000023
k示当前案例第h层第t个最终重要度,t=1,2,...,Th,Th为当前案例第h层最终重要度的总个数,h=1,2,...,7。
judge
Figure FDA0003126742200000021
is greater than or equal to CQ h ; if
Figure FDA0003126742200000022
is greater than or equal to CQ h , then take the final similar accident cause corresponding to the t-th final importance degree of the h-th layer of the current case as the final accident cause corresponding to the h-th layer in the current case,
Figure FDA0003126742200000023
k represents the t-th final importance of the h-th layer of the current case, t=1, 2, ..., T h , T h is the total number of the h-th layer final importance of the current case, h=1, 2, . .., 7.
5.根据权利要求1所述的特种设备事故原因识别方法,其特征在于,所述基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和各相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别,具体包括:5. The method for identifying accident causes of special equipment according to claim 1, characterized in that, based on the multiple final accident causes corresponding to each layer in the current case, according to the structure diagram of the House of Quality and the accident cause tree of each similar accident case Build the accident cause tree corresponding to the current case, and use the accident cause tree corresponding to the current case to identify the accident cause of the current case, including: 根据质量屋结构图和各相似事故案例的事故原因树,建立当前案例相邻两层中各最终事故原因的相关矩阵;According to the structure diagram of the house of quality and the accident cause tree of each similar accident case, establish the correlation matrix of each final accident cause in the two adjacent layers of the current case; 建立当前案例中第h层多个最终事故原因的自与相关矩阵,h=1,,2,...,7;Establish the autocorrelation matrix of multiple final accident causes in the hth layer in the current case, h=1, , 2, ..., 7; 建立当前案例中第h层多个最终事故原因的自或相关矩阵;Build the auto-correlation matrix of multiple final accident causes in the h-th layer of the current case; 根据相关矩阵、自与相关矩阵和自或相关度进行排序构建当前案例对应的事故原因树;Build the accident cause tree corresponding to the current case according to the correlation matrix, autocorrelation matrix and autocorrelation matrix; 根据所述当前案例对应的事故原因树识别当前案例的事故原因。Identify the accident cause of the current case according to the accident cause tree corresponding to the current case. 6.一种特种设备事故原因识别系统,其特征在于,所述系统包括:6. A special equipment accident cause identification system, characterized in that the system comprises: 事故原因表征模型构建模块,用于利用事故致因模型和故障树建立特种设备的事故原因表征模型;The accident cause characterization model building module is used to establish the accident cause characterization model of special equipment by using the accident cause model and fault tree; 事故原因库构建模块,用于基于所述事故原因表征模型,提取各历史案例的事故原因,形成事故原因库;The accident cause library building module is used to extract the accident cause of each historical case based on the accident cause representation model to form an accident cause library; 初始重要度计算模块,用于基于所述事故原因库,采用模糊层次分析法计算各历史案例中各事故原因对应的初始重要度;每个历史案例包括多层,每层包括多个事故原因;The initial importance degree calculation module is used to calculate the initial importance degree corresponding to each accident cause in each historical case based on the accident cause database using the fuzzy analytic hierarchy process; each historical case includes multiple layers, and each layer includes multiple accident causes; 事故情景要素体系构建模块,用于利用扎根-因子分析法对各历史案例的事故情景要素进行分析,形成特种设备的事故情景要素体系;The accident scenario element system building module is used to analyze the accident scenario elements of each historical case by using the grounded-factor analysis method to form the accident scenario element system of special equipment; 相似事故案例确定模块,用于根据所述事故情景要素体系中各事故情景要素,从各历史案例中选取与当前案例相似的历史案例作为相似事故案例;每个相似事故案例包括多层,每层包括多个相似事故原因;A similar accident case determination module is used to select historical cases similar to the current case from each historical case as a similar accident case according to each accident scenario element in the accident scenario element system; each similar accident case includes multiple layers, each layer Include multiple similar accident causes; 最终事故原因确定模块,用于根据各相似事故案例中各相似事故原因对应的初始重要度确定当前案例中各层对应的多个最终事故原因;The final accident cause determination module is used to determine multiple final accident causes corresponding to each layer in the current case according to the initial importance corresponding to each similar accident cause in each similar accident case; 事故原因识别模块,用于基于当前案例中各层对应的多个最终事故原因,根据质量屋结构图和相似事故案例的事故原因树构建当前案例对应的事故原因树,并利用当前案例对应的事故原因树对当前案例进行事故原因识别。The accident cause identification module is used to construct an accident cause tree corresponding to the current case based on the multiple final accident causes corresponding to each layer in the current case, according to the structure diagram of the house of quality and the accident cause tree of similar accident cases, and use the accidents corresponding to the current case. The cause tree identifies the cause of the accident in the current case. 7.根据权利要求6所述的特种设备事故原因识别系统,其特征在于,所述初始重要度计算模块,具体包括:7. The special equipment accident cause identification system according to claim 6, wherein the initial importance calculation module specifically comprises: 模糊互补判断矩阵确定单元,用于基于所述事故原因库,采用模糊层次分析法建立各历史案例对应的模糊互补判断矩阵;a fuzzy complementary judgment matrix determination unit, used for establishing a fuzzy complementary judgment matrix corresponding to each historical case by adopting the fuzzy analytic hierarchy process based on the accident cause database; 初始重要度计算单元,用于基于各历史案例对应的模糊互补判断矩阵计算各历史案例中各事故原因对应的初始重要度。The initial importance calculation unit is used to calculate the initial importance corresponding to each accident cause in each historical case based on the fuzzy complementary judgment matrix corresponding to each historical case. 8.根据权利要求6所述的特种设备事故原因识别系统,其特征在于,所述相似事故案例确定模块,具体包括:8. The special equipment accident cause identification system according to claim 6, wherein the similar accident case determination module specifically comprises: 有效特征词集合确定单元,用于利用ICTCLAS和停留词表对当前案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得当前有效特征词集合;利用ICTCLAS和停留词表对历史案例中各事故情景要素的描述性文本进行分词和去停留词处理,获得历史有效特征词集合;The valid feature word set determination unit is used to use ICTCLAS and the stop word list to perform word segmentation and de-stop word processing on the descriptive text of each accident scenario element in the current case, and obtain the current effective feature word set; use ICTCLAS and stop word list to compare historical The descriptive text of each accident scene element in the case is subjected to word segmentation and de-stop word processing to obtain a set of historically effective feature words; 情景要素相似度计算单元,用于利用当前有效特征词集合和历史有效特征词集合确定当前案例和各历史案例关于各事故情景要素对应的情景要素相似度;A situation element similarity calculation unit, which is used to determine the situation element similarity corresponding to each accident situation element in the current case and each historical case by using the current effective feature word set and the historical effective feature word set; 情景相似度计算单元,用于将不同情景下各事故情景要素对应的情景要素相似度进行信息融合,得不同情景下当前案例和各历史案例的情景相似度;Scenario similarity calculation unit, used for information fusion of the similarity of the scenario elements corresponding to each accident scenario element under different scenarios, to obtain the scenario similarity of the current case and each historical case under different scenarios; 情景相似度阈值确定单元,用于确定情景相似度阈值SQ;a context similarity threshold determination unit, used to determine the context similarity threshold SQ; 第一判断单元,用于判断Sim*d是否大于SQ;如果Sim*d大于或等于SQ时,将历史案例Zd作为当前案例的相似事故案例,将历史案例Zd各层的事故原因作为相似事故案例各层的相似事故原因;其中,Sim*d为不同情景下当前案例和历史案例Zd的情景相似度,d=1,2,...,D,D表示历史案例的总个数。The first judgment unit is used to judge whether Sim *d is greater than SQ; if Sim *d is greater than or equal to SQ, the historical case Z d is regarded as a similar accident case of the current case, and the accident causes of each layer of the historical case Z d are regarded as similar accident cases. Similar accident causes at each level of accident cases; where Sim *d is the situation similarity between the current case and the historical case Z d under different scenarios, d=1, 2, ..., D, D represents the total number of historical cases . 9.根据权利要求6所述的特种设备事故原因识别系统,其特征在于,所述最终事故原因确定模块,具体包括:9. The special equipment accident cause identification system according to claim 6, wherein the final accident cause determination module specifically comprises: 相似重要度计算单元,用于基于各相似事故案例中各相似事故原因对应的初始重要度、当前案例和各相似事故案例的情景相似度计算各相似事故案例中各相似事故原因对应的相似重要度;The similarity importance calculation unit is used to calculate the similarity importance corresponding to each similar accident cause in each similar accident case based on the initial importance corresponding to each similar accident cause in each similar accident case, the current case and the scenario similarity of each similar accident case ; 合并去重单元,用于对各相似事故案例各层上的多个相似事故原因进行合并去重处理,获得当前案例各层对应的最终相似事故原因集合;The combined deduplication unit is used to merge and deduplicate multiple similar accident causes on each layer of each similar accident case, and obtain the final set of similar accident causes corresponding to each layer of the current case; 加和处理单元,用于对各相似事故案例各层上的多个相同的相似事故原因对应的初始重要度进行加和处理,获得当前案例各层对应的最终重要度向量集合;The summation processing unit is used to add and process the initial importance degrees corresponding to multiple identical similar accident causes on each layer of each similar accident case, and obtain the final importance vector set corresponding to each layer of the current case; 最终重要度阈值确定单元,用于确定最终重要度阈值CQha final importance threshold determination unit, used for determining the final importance threshold CQ h ; 第二判断单元,用于判断
Figure FDA0003126742200000051
是否大于或等于CQh;如果
Figure FDA0003126742200000052
大于或等于CQh,则当前案例第h层第t个最终重要度对应的最终相似事故原因为当前案例中第h层对应的最终事故原因,
Figure FDA0003126742200000053
表示当前案例第h层第t个最终重要度,t=1,2,...,Th,Th为当前案例第h层最终重要度的总个数,h=1,2,...,7。
The second judging unit is used for judging
Figure FDA0003126742200000051
is greater than or equal to CQ h ; if
Figure FDA0003126742200000052
is greater than or equal to CQ h , then the final similar accident cause corresponding to the t-th final importance degree of the h-th layer of the current case is the final accident cause corresponding to the h-th layer in the current case,
Figure FDA0003126742200000053
Indicates the t-th final importance degree of the h-th layer of the current case, t=1, 2, ..., T h , Th is the total number of the h-th layer final importance degrees of the current case, h=1, 2, ... ., 7.
10.根据权利要求6所述的特种设备事故原因识别系统,其特征在于,所述事故原因识别模块,具体包括:10. The special equipment accident cause identification system according to claim 6, wherein the accident cause identification module specifically comprises: 相关矩阵建立单元,用于根据质量屋结构图和各相似事故案例的事故原因树,建立当前案例相邻两层中各最终事故原因的相关矩阵;The correlation matrix establishment unit is used to establish the correlation matrix of each final accident cause in the two adjacent layers of the current case according to the structure diagram of the house of quality and the accident cause tree of each similar accident case; 自与相关矩阵建立单元,用于建立当前案例中第h层多个最终事故原因的自与相关矩阵,h=1,,2,...,7;The autocorrelation matrix establishment unit is used to establish the autocorrelation matrix of multiple final accident causes of the hth layer in the current case, h=1,,2,...,7; 自或相关矩阵建立单元,用于建立当前案例中第h层多个最终事故原因的自或相关矩阵;The self-or correlation matrix establishment unit is used to establish the self-or correlation matrix of multiple final accident causes of the h-th layer in the current case; 事故原因树建立单元,用于根据相关矩阵、自与相关矩阵和自或相关度进行排序构建当前案例对应的事故原因树;The accident cause tree establishment unit is used to construct the accident cause tree corresponding to the current case by sorting according to the correlation matrix, the autocorrelation matrix and the autocorrelation degree; 事故原因识别单元,用于根据所述当前案例对应的事故原因树识别当前案例的事故原因。The accident cause identification unit is configured to identify the accident cause of the current case according to the accident cause tree corresponding to the current case.
CN202110691047.7A 2021-06-22 2021-06-22 Special equipment accident cause identification method and system Active CN113420147B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110691047.7A CN113420147B (en) 2021-06-22 2021-06-22 Special equipment accident cause identification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110691047.7A CN113420147B (en) 2021-06-22 2021-06-22 Special equipment accident cause identification method and system

Publications (2)

Publication Number Publication Date
CN113420147A true CN113420147A (en) 2021-09-21
CN113420147B CN113420147B (en) 2024-01-26

Family

ID=77789841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110691047.7A Active CN113420147B (en) 2021-06-22 2021-06-22 Special equipment accident cause identification method and system

Country Status (1)

Country Link
CN (1) CN113420147B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107721A1 (en) * 2000-10-24 2002-08-08 International Business Machines Corporation Story-based organizational assessment and effect system
US20080133288A1 (en) * 2006-11-30 2008-06-05 Microsoft Corporation Grouping Failures to Infer Common Causes
CN103500283A (en) * 2013-10-11 2014-01-08 国家电网公司 Power transformer risk assessment method based on fault tree
CN106920040A (en) * 2017-03-01 2017-07-04 西南交通大学 Risk Assessment Method of Expressway Tunnel Traffic Accidents Based on Fuzzy Hierarchy Analysis
CN110580580A (en) * 2019-09-02 2019-12-17 长沙理工大学 A risk assessment method for bridge hanging basket construction based on fuzzy analytic hierarchy process
CN112508416A (en) * 2020-12-11 2021-03-16 华南理工大学 Oil and gas storage and transportation station safety grade evaluation method based on cloud fuzzy analytic hierarchy process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107721A1 (en) * 2000-10-24 2002-08-08 International Business Machines Corporation Story-based organizational assessment and effect system
US20080133288A1 (en) * 2006-11-30 2008-06-05 Microsoft Corporation Grouping Failures to Infer Common Causes
CN103500283A (en) * 2013-10-11 2014-01-08 国家电网公司 Power transformer risk assessment method based on fault tree
CN106920040A (en) * 2017-03-01 2017-07-04 西南交通大学 Risk Assessment Method of Expressway Tunnel Traffic Accidents Based on Fuzzy Hierarchy Analysis
CN110580580A (en) * 2019-09-02 2019-12-17 长沙理工大学 A risk assessment method for bridge hanging basket construction based on fuzzy analytic hierarchy process
CN112508416A (en) * 2020-12-11 2021-03-16 华南理工大学 Oil and gas storage and transportation station safety grade evaluation method based on cloud fuzzy analytic hierarchy process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
谭章禄;宋庆正;: "基于扎根理论的煤矿安全事故致因分析", 煤矿安全, no. 09 *
邹永广;林炜铃;: ""驴友"安全事故影响因素重要度评价研究", 旅游导刊, no. 04 *

Also Published As

Publication number Publication date
CN113420147B (en) 2024-01-26

Similar Documents

Publication Publication Date Title
Rubin et al. Truth and deception at the rhetorical structure level
CN104820629B (en) A kind of intelligent public sentiment accident emergent treatment system and method
WO2020000847A1 (en) News big data-based method and system for monitoring and analyzing risk perception index
CN101763401B (en) A Hot Spot Prediction and Analysis Method of Internet Public Opinion
CN115330268B (en) Comprehensive emergency command method and system for coping with mine disasters
WO2014094332A1 (en) Method for creating knowledge base engine for emergency management of sudden event and method for querying in knowledge base engine
CN111475655A (en) A power dispatching text entity linking method based on distribution network knowledge graph
CN113688169A (en) Identification and early warning system of mine safety hazards based on big data analysis
CN109472018A (en) Enterprise&#39;s public sentiment monitoring method, device, computer equipment and storage medium
CN111159396A (en) Method for establishing text data classification hierarchical model facing data sharing exchange
Chen et al. Association mining of near misses in hydropower engineering construction based on convolutional neural network text classification
CN115409018A (en) Company public opinion monitoring system and method based on big data
CN115544272A (en) Attention mechanism-based chemical accident cause knowledge graph construction method
CN116881395A (en) Public opinion information detection method and device
CN114528405A (en) Public opinion monitoring method based on network burst hotspot
Liu et al. Credit assessment of contractors: a rough set method
CN113379214A (en) Method for automatically filling and assisting decision of power grid accident information based on affair map
CN113420147A (en) Special equipment accident reason identification method and system
Wang et al. Deep learning-based relation extraction from construction safety regulations for automated field compliance checking
CN117768618A (en) Method for analyzing personnel violation based on video image
Wan et al. Evaluation model of power operation and maintenance based on text emotion analysis
Nurdeni et al. Extracting information from Twitter data to identify types of assistance for victims of natural disasters: an Indonesian case study
CN114328819A (en) Power safety production hidden danger pre-control method based on knowledge graph
Wu [Retracted] Design of Question Answering Interactive Open Platform for Power Grid Business Acceptance Robot
CN116028881B (en) Method and system for predicting recurrence of restrictive behavior based on multidimensional database

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant