CN113417898A - Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof - Google Patents

Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof Download PDF

Info

Publication number
CN113417898A
CN113417898A CN202110722525.6A CN202110722525A CN113417898A CN 113417898 A CN113417898 A CN 113417898A CN 202110722525 A CN202110722525 A CN 202110722525A CN 113417898 A CN113417898 A CN 113417898A
Authority
CN
China
Prior art keywords
actuator
piston
proportional valve
electro
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110722525.6A
Other languages
Chinese (zh)
Other versions
CN113417898B (en
Inventor
张辉
张思龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202110722525.6A priority Critical patent/CN113417898B/en
Publication of CN113417898A publication Critical patent/CN113417898A/en
Application granted granted Critical
Publication of CN113417898B publication Critical patent/CN113417898B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B9/00Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member
    • F15B9/02Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type
    • F15B9/08Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor
    • F15B9/09Servomotors with follow-up action, e.g. obtained by feed-back control, i.e. in which the position of the actuated member conforms with that of the controlling member with servomotors of the reciprocatable or oscillatable type controlled by valves affecting the fluid feed or the fluid outlet of the servomotor with electrical control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback

Abstract

The invention provides an electro-hydraulic actuator system based on an electromagnetic proportional valve and a displacement control method thereof.

Description

Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof
Technical Field
The invention relates to the field of electro-hydraulic actuators, in particular to a method for controlling the accurate position of an electro-hydraulic actuator.
Background
The electro-hydraulic actuator system is widely applied to various industrial fields. The system is characterized by the ability to deliver large forces and high dynamic response, and has high durability and high power-to-weight ratio, and can provide large forces at high speeds in relatively small size. In recent years, high-precision position control of electro-hydraulic actuator systems has received much attention, and various electro-hydraulic actuator systems and control schemes thereof have been widely applied to the fields of mobile equipment, machine tools, plastic industry, automobile detection, mine oil exploration and the like.
Disclosure of Invention
Aiming at the application requirements of the electro-hydraulic actuator, the invention provides an electro-hydraulic actuator system based on an electromagnetic proportional valve and a displacement control method thereof.
The technical scheme of the invention is as follows:
an electro-hydraulic actuator system based on a solenoid proportional valve, comprising: the device comprises a three-position four-way electromagnetic proportional valve 1, a displacement pump 2, a double-acting hydraulic piston cylinder 3, a position sensor 4 and an oil tank 5;
the three-position four-way electromagnetic proportional valve 1 is respectively connected with the double-action hydraulic piston cylinder 3, the displacement pump 2 and the oil tank 5 through hydraulic pipelines;
and the position sensor 4 is connected with the piston of the double-acting hydraulic piston cylinder 3 to measure the actual position of the piston of the double-acting hydraulic piston cylinder.
Further, the three-position four-way electromagnetic proportional valve 1 controls the flow direction of fluid, and keeps the flow and the pressure of an actuator by controlling the opening of a port of the proportional valve.
Further, the displacement pump 2 is used as a pressurizing power source and is coupled with an electric motor to provide constant pressurized fluid for the system.
Further, a pressure regulating valve 6 is included as a system safety valve.
A displacement control method using the electro-hydraulic actuator system comprises the following steps:
s1, establishing a dynamic model of an actuating mechanism of the electro-hydraulic actuator system:
Figure BDA0003136410100000021
wherein A iskIs the piston area, M is the piston external load mass,
Figure BDA0003136410100000022
in order to accelerate the actuator, the acceleration of the actuator is measured,
Figure BDA0003136410100000023
is the actuator speed, C is the leakage coefficient, P1And P2The pressures of the left and right piston chambers are shown respectively.
The pressure of the left piston cavity and the right piston cavity of the actuator is as follows:
Figure BDA0003136410100000024
Figure BDA0003136410100000025
wherein beta is the fluid bulk modulus, VhIs half the volume of the actuator, Q1、Q2Flow into and out of the actuator, Q, respectivelyLFor flow leaking from one chamber to another through the annular piston area, Y is the displacement of the actuator piston.
Flow rate Q of the inflow actuator and the outflow actuator1、Q2And meter the leakage flow rate QLCalculated from the following formula:
Figure BDA0003136410100000026
Figure BDA0003136410100000027
Figure BDA0003136410100000028
in the formula, CdIs the flow coefficient, APMetering the area of a port for a three-position four-way electromagnetic proportional valve, wherein rho is the fluid density and P issPressure supplied to the pump, PrFor reservoir pressureForce, dkTo the actuator diameter, hsIs a ring gap ofsIs the spool length.
The method for calculating the area of the metering port of the three-position four-way electromagnetic proportional valve comprises the following steps:
Figure BDA0003136410100000029
wherein r is radius of a metering port of the three-position four-way electromagnetic proportional valve, xSPThe valve core of the three-position four-way electromagnetic proportional valve is displaced.
The three-position four-way electromagnetic proportional valve drives the valve core after being electrified, and the relationship between the current and the displacement of the valve core is as follows:
xSP=f(ISC)
wherein, IscIs the current of the three-position four-way electromagnetic proportional valve.
S2, the position of the electro-hydraulic actuator is controlled by adopting a closed-loop PID controller, the position sensor feeds back a piston displacement signal to the PID controller in real time, and the PID controller inputs an expected input variable YdDifference with piston displacement Y to obtain displacement tracking error, i.e. e ═ YdY, the PID controller calculates and obtains a duty ratio eta according to the displacement tracking error e, wherein eta is more than or equal to 0 and less than or equal to 1, and drives the three-position four-way electromagnetic proportional valve to act through current to adjust the pressure of the left piston cavity and the right piston cavity so that the piston displacement Y of the electro-hydraulic actuator gradually reaches the expected displacement YdAnd completing the displacement closed-loop control of the electro-hydraulic actuator.
Compared with the prior art, the technical scheme of the invention adopts the three-position four-way electromagnetic valve to control the flow direction of the fluid, establishes a reliable mathematical model in a pertinence way, and realizes the position accurate control of high dynamic response and low tracking error of the electro-hydraulic actuator by matching with the PID controller.
Drawings
The invention may be better understood by reference to the following drawings. The components in the figures are not to be considered as drawn to scale, emphasis instead being placed upon illustrating the principles of the invention.
FIG. 1 is a schematic view of an electro-hydraulic actuator system of the present invention;
Detailed Description
For the purpose of facilitating an understanding and practicing the invention by those of ordinary skill in the art, the invention is described in further detail below with reference to the following detailed description of illustrative embodiments and drawings:
as shown in fig. 1, the electro-hydraulic actuator system based on the electromagnetic proportional valve of the present invention includes: the device comprises a three-position four-way electromagnetic proportional valve 1, a displacement pump 2, a double-acting hydraulic piston cylinder 3, a position sensor 4 and an oil tank 5; the three-position four-way electromagnetic proportional valve 1 is respectively connected with the double-action hydraulic piston cylinder 3, the displacement pump 2 and the oil tank 5 through hydraulic pipelines; and the position sensor 4 is connected with the piston of the double-acting hydraulic piston cylinder 3 to measure the actual position of the piston of the double-acting hydraulic piston cylinder.
The three-position four-way electromagnetic proportional valve 1 controls the flow direction of fluid, and keeps the flow and the pressure of an actuator by controlling the opening of a port of the proportional valve.
The displacement pump 2 is used as a pressurizing power source and is coupled with the motor to form a structure, and constant pressurized fluid is provided for the system.
And a pressure regulating valve 6 as a system safety valve.
A displacement control method using the electro-hydraulic actuator system comprises the following steps:
s1, establishing a dynamic model of an actuating mechanism of the electro-hydraulic actuator system:
Figure BDA0003136410100000031
wherein A iskIs the piston area, M is the piston external load mass,
Figure BDA0003136410100000032
in order to accelerate the actuator, the acceleration of the actuator is measured,
Figure BDA0003136410100000033
is the actuator speed, C is the leakage coefficient, P1And P2The pressures of the left and right piston chambers are shown respectively.
The pressure of the left piston cavity and the right piston cavity of the actuator is as follows:
Figure BDA0003136410100000034
Figure BDA0003136410100000041
wherein beta is the fluid bulk modulus, VhIs half the volume of the actuator, Q1、Q2Flow into and out of the actuator, Q, respectivelyLFor flow leaking from one chamber to another through the annular piston area, Y is the displacement of the actuator piston.
Flow rate Q of the inflow actuator and the outflow actuator1、Q2And meter the leakage flow rate QLCalculated from the following formula:
Figure BDA0003136410100000042
Figure BDA0003136410100000043
Figure BDA0003136410100000044
in the formula, CdIs the flow coefficient, APMetering the area of a port for a three-position four-way electromagnetic proportional valve, wherein rho is the fluid density and P issPressure supplied to the pump, PrIs the reservoir pressure, dkTo the actuator diameter, hsIs a ring gap ofsIs the spool length.
The method for calculating the area of the metering port of the three-position four-way electromagnetic proportional valve comprises the following steps:
Figure BDA0003136410100000045
wherein r is radius of a metering port of the three-position four-way electromagnetic proportional valve, xSPThe valve core of the three-position four-way electromagnetic proportional valve is displaced.
The three-position four-way electromagnetic proportional valve drives the valve core after being electrified, and the relationship between the current and the displacement of the valve core is as follows:
xSP=f(ISC)
wherein, IscIs the current of the three-position four-way electromagnetic proportional valve.
S2, the position of the electro-hydraulic actuator is controlled by adopting a closed-loop PID controller, the position sensor feeds back a piston displacement signal to the PID controller in real time, and the PID controller inputs an expected input variable YdDifference with piston displacement Y to obtain displacement tracking error, i.e. e ═ YdY, the PID controller calculates and obtains a duty ratio eta according to the displacement tracking error e, wherein eta is more than or equal to 0 and less than or equal to 1, and drives the three-position four-way electromagnetic proportional valve to act through current to adjust the pressure of the left piston cavity and the right piston cavity so that the piston displacement Y of the electro-hydraulic actuator gradually reaches the expected displacement YdAnd completing the displacement closed-loop control of the electro-hydraulic actuator.
In the present invention, unless otherwise expressly stated or limited, the terms "mounted," "connected," "secured," and the like are to be construed broadly and can, for example, be fixedly connected, detachably connected, or integrally formed; can be mechanically or electrically connected; either directly or indirectly through intervening media, either internally or in any other relationship. The specific meanings of the above terms in the present invention can be understood by those skilled in the art according to specific situations.
In the present invention, unless otherwise expressly stated or limited, "above" or "below" a first feature means that the first and second features are in direct contact, or that the first and second features are not in direct contact but are in contact with each other via another feature therebetween. Also, a first feature being "on," "above" or "over" a second feature includes the first feature being directly on or obliquely above the second feature, or simply indicating that the first feature is at a higher level than the second feature. A first feature being "under", beneath and "under" a second feature includes the first feature being directly under and obliquely under the second feature, or simply means that the first feature is at a lesser elevation than the second feature.
In the present invention, the terms "first", "second", third "and" fourth "are used for descriptive purposes only and are not to be construed as indicating or implying relative importance. The term "plurality" means two or more unless expressly limited otherwise.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (5)

1. An electro-hydraulic actuator system based on an electromagnetic proportional valve is characterized by comprising a three-position four-way electromagnetic proportional valve (1), a displacement pump (2), a double-action hydraulic piston cylinder (3), a position sensor (4) and an oil tank (5); the three-position four-way electromagnetic proportional valve (1) is respectively connected with the double-action hydraulic piston cylinder (3), the displacement pump (2) and the oil tank (5) through hydraulic pipelines; and the position sensor (4) is connected with the piston of the double-action hydraulic piston cylinder (3) to measure the actual position of the piston of the double-action hydraulic piston cylinder.
2. The electro-hydraulic actuator system of claim 1, wherein the three-position four-way solenoid proportional valve (1) controls fluid flow, maintaining flow and actuator pressure by controlling the opening of proportional valve ports.
3. The electro-hydraulic actuator system of claim 1, wherein the displacement pump (2) is coupled to the electric motor as a source of pressurized power to provide a constant pressurized fluid to the system.
4. The electro-hydraulic actuator system of claim 1, further comprising a pressure regulating valve (6), the pressure regulating valve (6) acting as a system relief valve.
5. A displacement control method using the electro-hydraulic actuator system of any one of claims 1-4, comprising the steps of:
s1, establishing a dynamic model of an actuating mechanism of the electro-hydraulic actuator system:
Figure FDA0003136410090000011
wherein A iskIs the piston area, M is the piston external load mass,
Figure FDA0003136410090000012
in order to accelerate the actuator, the acceleration of the actuator is measured,
Figure FDA0003136410090000013
is the actuator speed, C is the leakage coefficient, P1And P2The pressures of the left piston cavity and the right piston cavity are respectively;
the pressure of the left piston cavity and the right piston cavity of the actuator is as follows:
Figure FDA0003136410090000014
Figure FDA0003136410090000015
wherein beta is the fluid bulk modulus, VhIs half the volume of the actuator, Q1、Q2Flow into and out of the actuator, Q, respectivelyLFor flow leaking from one chamber to another through the annular piston area, Y is the displacement of the actuator piston;
flow rate Q of the inflow actuator and the outflow actuator1、Q2And a meterLeakage flow rate QLCalculated from the following formula:
Figure FDA0003136410090000016
Figure FDA0003136410090000017
Figure FDA0003136410090000018
in the formula, CdIs the flow coefficient, APMetering the area of a port for a three-position four-way electromagnetic proportional valve, wherein rho is the fluid density and P issPressure supplied to the pump, PrIs the reservoir pressure, dkTo the actuator diameter, hsIs a ring gap ofsIs the length of the valve core;
the method for calculating the area of the metering port of the three-position four-way electromagnetic proportional valve comprises the following steps:
Figure FDA0003136410090000021
wherein r is radius of a metering port of the three-position four-way electromagnetic proportional valve, xSPThe valve core of the three-position four-way electromagnetic proportional valve is displaced;
the three-position four-way electromagnetic proportional valve drives the valve core after being electrified, and the relationship between the current and the displacement of the valve core is as follows:
xSP=f(ISC)
wherein, IscThe current of the three-position four-way electromagnetic proportional valve;
s2, the position of the electro-hydraulic actuator is controlled by adopting a closed-loop PID controller, the position sensor feeds back a piston displacement signal to the PID controller in real time, and the PID controller inputs an expected input variable YdDifference with piston displacement Y to obtain displacement tracking error, i.e. e ═ Yd-Y, PID controller tracking error according to displacementCalculating the difference e to obtain a duty ratio eta, wherein eta is more than or equal to 0 and less than or equal to 1, and driving the three-position four-way electromagnetic proportional valve to act through current to adjust the pressure of the left piston cavity and the pressure of the right piston cavity so that the piston displacement Y of the electro-hydraulic actuator gradually reaches the expected displacement YdAnd completing the displacement closed-loop control of the electro-hydraulic actuator.
CN202110722525.6A 2021-06-28 2021-06-28 Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof Active CN113417898B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110722525.6A CN113417898B (en) 2021-06-28 2021-06-28 Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110722525.6A CN113417898B (en) 2021-06-28 2021-06-28 Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof

Publications (2)

Publication Number Publication Date
CN113417898A true CN113417898A (en) 2021-09-21
CN113417898B CN113417898B (en) 2022-07-12

Family

ID=77716901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110722525.6A Active CN113417898B (en) 2021-06-28 2021-06-28 Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof

Country Status (1)

Country Link
CN (1) CN113417898B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397808A (en) * 2021-12-09 2022-04-26 北京航空航天大学 High-precision control system and method for proportional valve of breathing machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159809A (en) * 1996-11-28 1998-06-16 Kobe Steel Ltd Flow controller for hydraulic actuator
CN204591851U (en) * 2015-04-30 2015-08-26 南京埃尔法电液技术有限公司 Multistage flow pressure compound control system
CN110873083A (en) * 2018-09-03 2020-03-10 江苏科技大学 Double-valve parallel electro-hydraulic servo system and control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159809A (en) * 1996-11-28 1998-06-16 Kobe Steel Ltd Flow controller for hydraulic actuator
CN204591851U (en) * 2015-04-30 2015-08-26 南京埃尔法电液技术有限公司 Multistage flow pressure compound control system
CN110873083A (en) * 2018-09-03 2020-03-10 江苏科技大学 Double-valve parallel electro-hydraulic servo system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397808A (en) * 2021-12-09 2022-04-26 北京航空航天大学 High-precision control system and method for proportional valve of breathing machine

Also Published As

Publication number Publication date
CN113417898B (en) 2022-07-12

Similar Documents

Publication Publication Date Title
US5179836A (en) Hydraulic system for a differential piston type cylinder
CA2748468C (en) Pump arrangement with two pump units, system, use and method
US20100154401A1 (en) Hydraulic control system having flow force compensation
US7210396B2 (en) Valve having a hysteretic filtered actuation command
CN100445575C (en) Method and arrangement for controlling at least two hydraulic consumers
US5152143A (en) Hydraulic drive system
CN1353794A (en) Pump control method and pump control device
CN113417898B (en) Electro-hydraulic actuator system based on electromagnetic proportional valve and displacement control method thereof
EP1167778B1 (en) Rotary servo valve and punch press hydraulic servo device using the rotary servo valve
GB1568100A (en) Pilot operated pressure compensated pump control
CN109139584A (en) Pump valve multiplex control system and method
JP4809559B2 (en) Apparatus and method for controlling discharge pressure of variable displacement hydraulic pump
JP5706431B2 (en) Method and apparatus for controlling a variable displacement hydraulic pump
CN110500330A (en) A kind of anti-bias load adjustable speed synchronous valve, synchronous control system and working method
CN103821783A (en) Constant-pressure and constant-flow device of hydraulic oil supply system
EP2459886A1 (en) Hydraulic power module
CN106438555B (en) Hydraulic control valve and hydraulic system
WO2012154462A2 (en) Method and apparatus for controlling multiple variable displacement hydraulic pumps
CN112922914A (en) High-efficiency precise synchronous lifting hydraulic control system for segment assembly of shield tunneling machine
CN1050579C (en) Method and equipment for the control of an hydraulic lift
US3863446A (en) Fluid positioning apparatus
WO2021070828A1 (en) Hydraulic drive device
CN109915427B (en) Three-pump direct-drive electro-hydrostatic actuator with back pressure control
CN209925343U (en) Digital hydraulic cylinder detection device
CN207762032U (en) A kind of ratio for deep sea pressure simulation test is pressurized depressurized system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant