CN113416794B - Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof - Google Patents

Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof Download PDF

Info

Publication number
CN113416794B
CN113416794B CN202110760926.0A CN202110760926A CN113416794B CN 113416794 B CN113416794 B CN 113416794B CN 202110760926 A CN202110760926 A CN 202110760926A CN 113416794 B CN113416794 B CN 113416794B
Authority
CN
China
Prior art keywords
gene
male flowers
dustpan
primer
dnaj
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110760926.0A
Other languages
Chinese (zh)
Other versions
CN113416794A (en
Inventor
周芳伟
李淑娴
尹佟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202110760926.0A priority Critical patent/CN113416794B/en
Publication of CN113416794A publication Critical patent/CN113416794A/en
Application granted granted Critical
Publication of CN113416794B publication Critical patent/CN113416794B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a fluorescent quantitative reference gene of male flowers of salix dustpan, and a special primer and application thereof. The invention selects dustpan willow male flowers as experimental materials, and the male flowers cover 4 different development stages: differentiation period, dormancy period, initial flowering period and full flowering period of male flowers. 2 internal reference genes (DnaJ and ACT) which accord with the fluorescent quantitative PCR applicable to the male flowers of the dustpan are screened out through fluorescent quantitative PCR analysis, amplification curve and melting curve analysis, LinRegPCR amplification efficiency analysis and gene expression stability analysis of geNorm, NormFinder and BestKeeper in sequence, wherein the gene sequence of the DnaJ gene is shown as SEQ ID No.1, and the gene sequence of the ACT gene is shown as SEQ ID No. 2. The method fills the current situation that the male flowers of the salix dustpan have no reference genes in different development periods, provides powerful support for accurate quantification of the genes related to the development of the male flowers of the salix dustpan, and can improve the stability and accuracy of research.

Description

Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof
Technical Field
The invention belongs to the technical field of willow fluorescence quantification, and particularly relates to a fluorescent quantitative reference gene of male flowers of salix dustpan and primers and application thereof.
Background
Willow (Salix) is widely distributed in northern hemisphere, and is often used as afforestation tree species due to its fast growth speed and strong environmental adaptability. The flowers of willows are unisexual flowers, male and female isoplants, and the mosla inflorescence, leaves of the flowers are opened first, and the male flowers generate a large amount of pollen after being mature, so that the willows not only cause environmental pollution, but also are important allergens, the pollen is small and light, a large amount of pollen floats in the air when blown by wind, and allergy is easily caused after people contact and inhale the pollen. Therefore, the research on the molecular mechanism of willow male flower development becomes a research hotspot in recent years.
The Salix dustpan (Salix suchowensis) belongs to Salix genus of Salicaceae family, is a shrub which is native in China and can bloom in the current year after cuttage, is short in individual and short in generation period, is easy to carry out large-scale field test, is a willow tree which analyzes a whole genome sequence at the earliest in Salix genus, belongs to a diploid shrub, can bloom in the current year, can be used as a mode species for forest functional gene excavation, but at present, no reference gene for the research related to the development of Salix dustpan male flowers exists, and the commonly used reference gene can show unstable characters under different plants and experimental conditions, so that the accuracy of target gene detection is influenced, and therefore, the screening of the reference gene which is stably expressed in different periods of the development of Salix dustpan male flowers is a key factor for real-time fluorescent quantitative result accuracy.
Disclosure of Invention
Aiming at the defects in the prior art, the invention aims to provide the fluorescent quantitative reference gene suitable for the male flowers of the salix dustpan, the gene can meet the requirement of real-time fluorescent quantitative detection on the transcriptional expression level of the male flowers of the salix dustpan, and the stability and reliability of gene expression analysis and research of the male flowers of the salix dustpan are improved. Another objective of the invention is to provide a primer special for the reference gene. The invention also aims to provide application of the reference gene or the special primer.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows:
the fluorescent quantitative reference genes suitable for the male flowers of the salix dustpan are DnaJ genes and ACT genes, wherein the gene sequence of the DnaJ gene is shown as SEQ ID NO.1, and the gene sequence of the ACT gene is shown as SEQ ID NO. 2.
The special primer suitable for the fluorescent quantitative reference gene of the male flowers of the salix dustpan has the following primer sequence of DnaJ gene:
DnaJ Forward primer 5'-GAGCCTATTTATGCCCTTTC-3' (SEQ ID NO.3)
DnaJ reverse primer 5'-GACGTAGTCCTTATCCACCTT-3' (SEQ ID NO. 4).
The special primer suitable for the fluorescent quantitative reference gene of the male flowers of the salix dustpan has the following primer sequences of the ACT gene:
ACT Forward primer 5'-CCAAGGAGGCTGCTGGTAAT-3' (SEQ ID NO.5)
ACT reverse primer 5'-CCAAGGCCACCATGTCTGTC-3' (SEQ ID NO. 6).
The application of the fluorescent quantitative reference gene suitable for the male flowers of the salix dustpan to fluorescent quantitation.
The application of the primer sequence of the DnaJ gene in the fluorescence quantification of the male flowers of the salix dustpan.
The application of the primer sequence of the ACT gene in the fluorescence quantification of the male flowers of the salix dustpan.
Compared with the prior art, the invention has the advantages that:
according to the application, gene stability evaluation is carried out on 9 internal references through GeNorm software, NormFinder software and BestKeeper software, and the internal reference genes stably expressed in different development periods of male flowers of the willows are screened out through analyzing results of the software. The method comprises the steps of obtaining two stably expressed reference genes which are DnaJ and ACT genes respectively, determining homologous genes in the salix dustpan by comparing with the whole genome of the salix dustpan, designing quantitative primers for each gene, screening the two reference genes suitable for the salix dustpan in different development periods by taking cDNA (complementary deoxyribonucleic acid) of the male flowers of the salix dustpan in 4 different development periods as templates, simultaneously disclosing the sequences of the two reference genes, and designing real-time fluorescent quantitative primers based on the sequences. The method solves the problem that no internal reference gene exists in the existing dustpan willow male flower detection, and the designed real-time fluorescent quantitative primer has strong primer specificity when being used for gene expression analysis in the dustpan willow male flower development process, so that the detection efficiency when good genes in the dustpan willow male flower are detected in a real-time fluorescent quantitative mode can be greatly improved, and the reliability of a detection result is improved.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments will be briefly described below.
FIG. 1 is a drawing showing a sample collected from a male flower of Salix dustpan, in which FIG. 1A shows a differentiation period of the male flower, FIG. 1B shows a resting period of the male flower, FIG. 1C shows an initial flowering period of the male flower, and FIG. 1D shows a full flowering period of the male flower;
FIG. 2 is a gel diagram of agarose gel electrophoresis for detecting RNA quality, wherein the leftmost side is Maker, and A, D, C, D sequentially corresponds to four samples in different periods in FIG. 1;
FIG. 3 is a boxed graph of Ct value distributions for 9 candidate reference genes;
FIG. 4 is a graph of the results of determination of the optimal number of reference genes for accurate quantitative analysis by geNorm;
FIG. 5 is a graph of expression stability of 9 candidate reference genes calculated by geNorm software;
FIG. 6 is a result chart of the selected reference gene by SmCAT assay.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The following examples are only for illustrating the technical solutions of the present invention more clearly, and therefore are only examples, and the protection scope of the present invention is not limited thereby. It is to be noted that, unless otherwise specified, technical or scientific terms used herein shall have the ordinary meaning as understood by those skilled in the art to which the invention pertains.
The main test materials used in the following examples were: the tested material was willow planted in white horse base of Nanjing forestry university. Randomly selecting 3 plants which grow well and have consistent height and growth vigor as samples, selecting four stages of male flower development (male flower differentiation period, dormancy period, early flowering period and full flowering period) from 2020, 9 to 2021, 3, collecting 3 male flowers from each tree in each period, quickly freezing by liquid nitrogen, and storing at-80 ℃ until use.
Examples
1. Total RNA extraction and cDNA synthesis of plant tissue
Total RNA was isolated from male flowers at different stages of development using the RNAprep Pure Polysaccharide Plant Total RNA ExtrACTion Kit (TIANGEN, NanJing, China), and RNA concentration and quality were determined using a spectrophotometer (METTLER TOLEDO, Switzeridand). RNA was detected by electrophoresis on 1.0% agar gel. Preparation of cDNA reverse transcription reaction System for real-time fluorescence relative quantitative PCR analysis A20. mu.L cDNA reverse transcription reaction system was constructed using 1. mu.g total RNA, according to One-Step gDNA Removal and cDNA Synthesis SuperMix (Trans, NanJeng, China)) instructions. After the reaction is finished, the reaction solution is stored at-20 ℃ for later use.
2. Selection of reference genes and design of primers
The major reference genes in other plants were queried according to literature and the 9 reference genes needed for the experiment were finally designed, DnaJ (SEQ ID NO.1), ACT (SEQ ID NO.2), α -TUB2(SEQ ID NO.7), H2A (SEQ ID NO.8), α -TUB1(SEQ ID NO.9), CDC2(SEQ ID NO.10), GAPDH (SEQ ID NO.11), TIP41(SEQ ID NO.12), β -TUB (SEQ ID NO.13), respectively. Firstly, the applicant compares the sequence with the genome sequence of the salix dustpan to determine the full-length sequence and the full-length transcript sequence of each candidate gene, designs a primer by using PrimerPremier 5.0 according to the transcribed full-length sequence of the gene, and identifies the specificity of the primer by using a BLAST tool. The primers were all synthesized by Biotechnology, Inc. (Table 1), and the specificity of the products was examined by initially screening the primers by ordinary PCR, observing the bands of the PCR products using agarose gel and gel imaging systems. Selecting a primer with correct band size, good band specificity and no primer dimer, further detecting the primer specificity by qRT-PCR, and selecting a primer with a single peak image, no miscellaneous peak and no peak in negative control as a final primer.
TABLE 1 reference genes and their corresponding primers
Figure BDA0003149055290000051
Figure BDA0003149055290000061
3. Establishment of reference gene primer standard curve
And (3) preparing respective standard curves for the primers of each pair of reference genes, and calculating the amplification efficiency of the corresponding primers. The reverse transcribed cDNA was diluted 5-fold into 5 gradients (1, 1/5, 1/25, 1/125, 1/625) as template for the establishment of the standard curve. At the same time, by dd H2And O is used as a negative control template to detect reagents or artificial pollution in the experimental process. All samples were replicated 3 times to ensure confidence in the experimental data. qRT-PCR was performed using Applied Biosystems StepOne (Thermo Fisher Scientific, USA), and the amplification efficiency and slope of each candidate gene were determined using the obtained data results, and the amplification efficiency of fluorescent quantitative PCR required that the amplification efficiency of the selected primers was between 90% and 110%.
4. Fluorescence real time quantitation
qRT-PCR was performed using an Applied Biosystems StepOne (Thermo Fisher Scientific, USA), each reaction containing forward and reverse primersEach 4pM, 10-fold diluted template cDNA2ul, 10ul PowerUpTMSYBRTMGreen MasterMix (Thermo Fisher, USA), plus ddH2O to 20ul reaction system. Each reaction was performed in triplicate. The reaction was performed on a 7500Fast Real-Time PCR System (Applied Biosystems, USA). The qRT-PCR reaction conditions were: the melt curve analysis was performed at 95 ℃ for 3 minutes, followed by 40 cycles of 95 ℃ for 15 seconds, 60 ℃ for 15 seconds, 72 ℃ for 30 seconds, at the end of each experiment, using default parameters at 55-95 ℃ for a period of 60 seconds in 0.3 ℃ increments, all analyses being set to three replicates.
5. Data processing
(1) The geNorm software calculates the value of gene expression stability M by using a Pairwise comparison method (Pairwise comparison approach). The judgment criterion is that when the M value is less than 1.5, the stability is higher the lower the M value is, and conversely, the stability is worse. The software can also calculate the average paired variation V value of the normalization factor after introducing 1 new reference gene, and determine the number of the required optimal reference genes according to the Vn/Vn +1 value. When the pair variation value Vn/Vn +1 is less than 0.15, the most suitable genes of the reference gene combination are the top n of the high stability ranking. On the other hand, if Vn/Vn +1>0.15, the number of optimum reference gene combinations is n + 1.
(2) The NormFinder software adopts a model-based method to obtain an expression stability value of an internal reference gene, then screens out the most appropriate internal reference gene according to the stability value, and the internal reference gene with the minimum expression stability value is the most appropriate internal reference gene according to the judgment standard.
(3) The BestKeeper calculates the Standard Deviation (SD) and the Coefficient of Variation (CV) of the Ct value by adopting repeated pairing correlation analysis, correlation analysis and regression analysis, and finally determines the reference gene with better stability by comparing the values.
6. Results
(1) RNA extraction quality and primer specificity detection
OD260/OD280 and OD260/OD230 of each sample meet the requirements, and detection of an agarose gel electrophoresis image shows that 28S and 18S bands are clear, the degradation phenomenon does not occur, and the requirements are met (figure 2). The melting curves of the 9 pairs of primers in the fluorescence real-time quantification are only provided with an obvious single peak, and the electrophoresis detection is also only provided with a single strip diagram, which shows that the primers can specifically amplify the corresponding products of the reference genes, no primer dimer exists, the repeatability of the amplification curve of each sample to be detected is good, the template can specifically amplify, and the real-time fluorescence quantification result is accurate and reliable.
(2) Ct value analysis of reference Gene
The Ct value is inversely proportional to the expression level of the gene, the larger the Ct value is, the lower the expression level of the gene is, and conversely, the smaller the Ct value is, the higher the expression level of the gene is represented. The mean value of Ct values of 9 reference genes was 16.59-29.79, with higher DnaJ and ACT expression levels and lower beta-TUB expression levels (FIG. 3).
(3) Software analysis
Analysis by using the GeNorm software: the geNorm software measures the stability of the gene according to the average variation M value, the default cut-off value of the software is 1.5, the gene higher than 1.5 is not suitable for being used as an internal reference, and the lower the M value is, the more stable the gene is. In addition, the geNorm software also determines the appropriate number of the reference genes according to the pairing difference value Vn/Vn +1 of the candidate reference genes, and when the Vn/Vn +1 is less than 1.5, the number of the n reference genes is adopted. According to the software, it is calculated that V2/V3 is 0.147 < 1.5, so two reference genes (FIG. 4), DnaJ and ACT (FIG. 5) should be selected in different development stages of male flowers.
Analysis by NormFinder software: the NormFinder software is evaluated by calculating the stability value of the candidate reference gene, and the gene with the minimum stability value is the most stable gene when the stability value is higher and the stability is worse.
The value of DnaJ was 0.072, the most stable gene, and the value of CDC2 was 0.930, the most unstable gene (Table 2).
TABLE 2 analysis results of the NormFinder software
Ranking 1 2 3 4 5
Gene DnaJ ACT H2A α-TUB2 α-TUB1
Stable value 0.072 0.194 0.387 0.445 0.453
Ranking 6 7 8 9
Gene TIP41 β-TUB GAPDH CDC2
Stable value 0.628 0.662 0.902 0.930
Bestkoeper software analysis: the BesterKeeper software judges the expression stability of genes based on the Standard Deviation (SD) and the Coefficient of Variation (CV) of the Ct value of an internal reference gene, and directly analyzes the Ct value of gene expression. The smaller the SD value, the more stable the expression, the program default threshold value is 1, when SD value is greater than 1, the gene expression is considered unstable. The results of the analysis showed that α -TUB1, TIP41, H2A and β -TUB all had SD values greater than 1, the remaining genes had SD values less than 1, DnaJ was the most stable expression and β -TUB was the most unstable expression (Table 3).
TABLE 3 BestKeeper software analysis results
Ranking 1 2 3 4 5
Gene DnaJ ACT α-TUB2 CDC2 GAPDH
SD 0.44 0.56 0.58 0.61 0.65
CV 2.18 2.59 2.74 2.84 3.13
Ranking 6 7 8 9
Gene α-TUB1 TIP41 H2A β-TUB
SD 1.10 1.27 1.82 2,32
CV 5.07 6.26 8.19 11.44
(4) Verification of stability of reference gene
The results of analysis by combining BestKeeper, geNorm and Normfinder 3 software show that DnaJ and ACT are suitable reference genes for the development of male flowers of Salix dustpan (Table 4).
TABLE 4 composite ranking
Ranking 1 2 3 4 5
BestKeeper DnaJ ACT α-TUB2 CDC2 GAPDH
NormFinder DnaJ/ACT α-TUB2 α-TUB1 H2A
geNorm DnaJ ACT H2A α-TUB2 α-TUB1
Comprehensive ranking DnaJ ACT α-TUB2 H2A α-TUB1
Ranking
6 7 8 9
BestKeeper α-TUB1 TIP41 H2A β-TUB
NormFinder β-TUB TIP41 GAPDH CDC2
geNorm TIP41 β-TUB GAPDH CDC2
Comprehensive ranking GAPDH TIP41 β-TUB CDC2
SmCAT (SEQ ID NO.14) is selected to verify the stability of the screened internal reference genes DnaJ and ACT, and CDC2 genes with unstable expression are used for comparison, so that the situation that SmCAT has similar variation trend when the screened internal reference genes are used as internal references is found, but the expression conditions of SmCAT genes are different when CDC2 genes are used as internal references, and the screened internal reference genes are accurate and reliable (figure 6).
Unless specifically stated otherwise, the numerical values set forth in these examples do not limit the scope of the invention. In all examples shown and described herein, unless otherwise specified, any particular value should be construed as merely illustrative, and not as a limitation, and thus other examples of example embodiments may have different values.
Sequence listing
<110> Nanjing university of forestry
<120> reference gene suitable for fluorescence quantification of male flowers of salix dustpan, and primer and application thereof
<130> 2021
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1062
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 1
atggatggaa acaaagacga tgcgttgaaa tgcttgaaaa tcggcaaaga agccctcgaa 60
tccggcgatc gaagccgtgc tttaaaattc ttcaccaaag ctcgtcgcct ggatcctgca 120
atcgccatcg acgatctctt atctgcggcg gaaaaggatg agcctaataa aacggcggat 180
gaaaacatta ataatgggtc cactacagcc acgtcctcca acgaatccaa agttcgccac 240
aggggttcat catcatcatc atatacagag gagcaaattt cgattgtgag agaaatcagg 300
aagaagaaga attactatga gattttggga ttggaaaagt ctagcactgt agaagatgtt 360
cgaaaagcat atcgaaaact atcactgaaa gtccatcctg ataagaacaa gtctcctgga 420
gctgaggatg catttaaagc tgtttcgaaa gcgtttcagt gccttagcaa tgaagagagc 480
aggagcaaat atgatgttag cggaactgaa gagcctctct acgagagacg cacttccagt 540
catcgtcgtc attataatta taacgatgat ttagatcctg acgagatatt caggcaattc 600
ttctttggag gtggaatgag gcctgccacc acccagtttc ggagctttaa ttttggagct 660
ggaatgggtg gccctagaat ggatcataat ggatctggct ttaatttccg tgcattgatt 720
caactgctcc cggttcttct tattttcctt ttcaacttcc taccgtcatc tgagcctatt 780
tatgcccttt ccaggtccta tccttatgaa tacaggttta ctacgcagag aggggttaat 840
ttttatgtga agagcaccaa atttgagcag gattatcgac cggataccca tgagagggct 900
gcgctggaag ccaaggtgga taaggactac gtctctgccc ttgtgcagaa ttgtaggttt 960
gagttgcaga ggaagcagtg gggttttgta agggagactc ctcactgtga aatgctgcag 1020
cagtttcaag atggggaatt ggtgcttgat ggaaactttt aa 1062
<210> 2
<211> 1134
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 2
atggccgatg ctgaggatat tcaacccctt gtctgtgaca atggaactgg aatggtgaag 60
gctgggtttg ctggtgatga tgcacctagg gcagtgtttc ccagtattgt gggtagacca 120
agacacaccg gtgtcatggt tggaatgggg caaaaggatg cctatgttgg tgatgaagca 180
caatctaaaa gaggtatctt gacattgaaa taccctattg agcacggtat tgtcagcaac 240
tgggatgata tggagaagat ttggcatcac actttctaca atgagcttcg tgttgctcct 300
gaggagcacc ctgtcctcct gactgaggcc cccctcaacc ctaaggctaa cagagagaag 360
atgacacaaa ttatgtttga gaccttcaat gttcctgcaa tgtatgttgc catccaggct 420
gtcctttccc tgtatgccag tggtcgtaca actggtatcg tgttggattc tggtgatggt 480
gtgagtcaca ctgtgccaat ctatgaaggt tatgctcttc cacacgccat ccttcgattg 540
gatcttgctg gtcgtgacct cactgatgct ttgatgaaaa ttctgactga gagaggttac 600
atgttcacca ccactgctga gcgggaaatt gtccgtgata tgaaggagaa gctagcgtat 660
gttgcccttg actacgagca ggagctcgag actgccaaga gcagctcctc tgttgagaag 720
aactacgagc ttcctgatgg tcaggtcatc accattggag ccgagaggtt ccgttgccca 780
gaagtcctct tccagccatc tctcatcgga atggaagctg ctggtatcca tgagactaca 840
tacaactcaa tcatgaagtg tgatgtggat atcagaaagg atctgtacgg taacattgtg 900
ctcagtggtg gttccactat gttccctggt attgctgacc gaatgagcaa ggagataacc 960
gcccttgccc caagcagcat gaagatcaag gtggttgcac caccagagag aaagtacagt 1020
gtctggattg gaggatctat ccttgcttcc ctcagcacct tccagcagat gtggatttcc 1080
aagggtgagt atgatgagtc tggcccatcc attgtccaca ggaagtgctt ctaa 1134
<210> 3
<211> 20
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 3
gagcctattt atgccctttc 20
<210> 4
<211> 21
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 4
gacgtagtcc ttatccacct t 21
<210> 5
<211> 20
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 5
ccaaggaggc tgctggtaat 20
<210> 6
<211> 20
<212> DNA
<213> Artificial sequence (artificial sequence)
<400> 6
ccaaggccac catgtctgtc 20
<210> 7
<211> 1350
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 7
atgagggaga taataagcat acatattgga caggcaggga ttcaggtcgg gaattcttgt 60
tgggaacttt actgtcttga acatggaatg cagcctgatg gaacaatgcc tagtgacacc 120
tcagtcggaa tggaacatga ttctttcaat accttcttca gcgaaactgg ttcaggcaag 180
catgtgccaa gagctatatt tgttgatctt gaaccctctg tcattgatga agtcagaact 240
gggacttaca ggcaactttt tcatcctgag caacttattt ctggcaagga agatgctgct 300
aataactttg ccaggggaca ttatacagtg ggaagggaaa ttgtcgagct atgccttgat 360
cgtgtgagga aattggcaga caattgcact ggtttgcaag gttttttggt gtttaatgct 420
gttggcggtg gcactggttc tggtctgggc tccctacttt tggaacgctt gtctgtggat 480
tatggaaaga agtcgaaact tggctttacc atttatcctt ctcctcaggt ttccacggct 540
gttgtggaac cttacaacag tgtgctctcc acccactctc tccttgaaca cacagatgtt 600
gctgtgcttt tggacaatga agctatctat gacatctgca ggagatcttt agacattgaa 660
agaccaacat actccaactt gaaccgtttg atatcccaga ttatctcatc tttgaccact 720
tccttgaggt ttgatggggc cattaatgtg gacatcacag agtttcaaac taatcttgtt 780
ccatatcccc gaatccattt catgctttca tcttatgccc cagtgatctc agccgcaaag 840
gcttaccacg agcagctctc agttcctgag atcacaagtg ctgtgtttga gccctcgagt 900
atgatggcca aatgtgatcc aaggcatgga aaatacatgg cttgctgtct catgtatcgt 960
ggagatgttg taccaaagga tgttaattct tctgttgcca ccattaagac aaagaggaca 1020
gttcaatttg tagactggtg cccaactggt ttcaagtgcg gtatcaacta ccagccacca 1080
acagtggtac ctggaggtga tcttgctaaa gtgcagcgtg cagtttgcat gataagcaac 1140
aacacagcag tagctgaggt cttctccaga attgatcaca agtttgatct catgtattcc 1200
aagcgagcat ttgtccactg gtatgtgggc gaaggcatgg aggaaggtga attctcagaa 1260
gctcgtgaag atcttgctgc tcttgagaaa gactacgagg aagtcggagc agaaggtggc 1320
gaggaggaag gcgaggagga agattactga 1350
<210> 8
<211> 402
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 8
atggctggta gaggcaagac cctaggatct ggagcccaaa agaaggctac ttcaaggagt 60
agcaaggctg gtttgcaatt tcctgtgggt cgtatcgcta ggttcctgaa ggccggcaag 120
tatgctgagc gtgttggcgc cggcgctcct gtttaccttg ctgctgttct tgaatatctt 180
gctgccgagg ttctagaatt ggctggaaat gcagcaagag acaacaagaa gacccgtatc 240
gtgccacgcc acatccaact agcagttagg aatgatgagg agcttagcaa gcttcttggt 300
gatgttacaa ttgctaatgg aggtgtcatg cccaacattc acaaccttct ccttccaaag 360
aaggctggct cctctaaggc ccctgctgat gatgacagtt aa 402
<210> 9
<211> 1356
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 9
atgagagagt gcatttcgat ccacattggt caggctggta ttcaggtcgg aaatgcctgc 60
tgggaactct actgcctcga gcacggtatt cagcctgatg gccagatgcc aagtgacaag 120
actgtcggtg gtggagatga tgccttcaac acctttttca gtgaaactgg tgccgggaag 180
cacgtcccac gtgccgtctt tgtagatctt gagcccactg tcattgatga agtcagaacc 240
gggacctacc gccagctttt ccaccctgaa cagctcatca gtggcaaaga agatgctgcc 300
aacaattttg cccgtggaca ctataccatt ggcaaggaaa ttgttgacct gtgcttagac 360
cgtatcagaa agcttgctga caactgcact ggactgcaag gtttccttgt attcaatgct 420
gttggcggtg gcactggatc tggtcttgga tcccttctct tggagcgttt gtcagttgac 480
tatggaaaga aatccaagtt gggattcact gtctatccat ctcctcaggt ctctacatct 540
gttgtcgagc cctacaacag tgtcctctca actcactccc tgttggaaca cactgatgtg 600
gctgtgcttc ttgacaatga agccatctac gatatctgca agcgctctct tgacattgag 660
cgacccacct ataccaacct caatagactt atctctcagg tcatttcctc cctgaccgct 720
tctctgaggt ttgatggtgc tttgaatgtg gatgtcactg aattccagac caacttggtc 780
ccctacccta gaatccactt catgctttcc tcctatgcac cagtcatctc tgctgagaaa 840
gcctaccatg aacaactctc tgttgctgag atcaccaaca gtgccttcga acctgcatct 900
atgatggcaa agtgtgatcc tcgccatggc aagtacatgg cctgctgcct gatgtaccgt 960
ggtgatgttg tgcctaagga cgtcaacgct gcagttgcca ccatcaagac caagcgtaca 1020
attcagtttg tcgactggtg ccccaccgga ttcaagtgtg gtatcaacta ccagccaccc 1080
acagttgttc ctggtggtga tcttgccaag gtccagaggg ctgtgtgcat gatctccaac 1140
tccaccagtg ttgctgaggt gttctctcgc attgaccaca aatttgacct catgtactcc 1200
aagcgcgctt tcgttcactg gtatgttggt gagggcatgg aggagggtga gttctccgag 1260
gcgcgtgagg atcttgctgc actcgagaag gattatgaag aggtaggcgc ggaatcagcc 1320
gagggtgagg atgaagacgg tgaggagtac atgtga 1356
<210> 10
<211> 885
<212> DNA
<213> dustpan willow (Salix suchowensis)
<400> 10
atggatcagt atgagaaagt ggaaaaaatt ggtgaaggaa cctacggagt ggtctacaaa 60
gctcgtgatc gtgtcaccaa tgagaccatt gctttgaaga agatccgttt ggagcaggaa 120
gacgagggcg tacccagcac tgctatccga gaaatctctc tcttgaaaga gatgcagcat 180
ggtaacattg tcagactgca ggatgtggtg cacagtgaga agcgccttta cttggttttt 240
gagtatctag acttggattt gaagaagcac atggattctt cacctgaatt tgctaatgat 300
ccacgcctgg ttaaaacatt tctttatcaa attctccgtg gcattgcata ctgccattct 360
catagagttc tgcatcgaga tttgaaacct cagaatttgc tcattgatcg ccgtaccaac 420
gcgctgaagc ttgcagattt tggactggct agagcatttg gtatacctgt taggacattt 480
acacatgagg ttgttaccct gtggtataga gcccctgaaa ttctgcttgg atctcgccat 540
tactcgactc cagttgatgt atggtcagtg ggatgtatat ttgctgagat ggtgaaccag 600
aagccactgt tcccagggga ttccgagata gatgaactat tcaaaatttt cagaatcttg 660
ggtactccaa atgaggacac atggcccgga gttacttctt tgcctgactt caagagtgca 720
ttccctaagt ggccttctaa ggatttggca actgtagttc caactcttga taaagctggc 780
gtggatcttc tcgctaaaat gctttgcttg gatcccacta aaagaattac tgccaggagt 840
gctttggagc atgaatactt caaggatatt ggttttgtac cttaa 885
<210> 11
<211> 1362
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 11
atggctaccc acgcagctct tgcctcttca agaatccctg ccaatacaag acttccctca 60
aagatcaacc actctttccc cactcaatgc tccttaaaga ggctagaagt ggctgagttt 120
tctgggcttc gagccagttc atgtgtaacc tatgccaaga acgctggtga gggatccttc 180
tttgatgtgg tggcttccca acttgctcca aaggttgcag tttcaactcc tgtcagggca 240
gaaactgtgg ccaaattaaa ggttgctatc aacggatttg gacgcattgg caggaacttc 300
ctgcgatgct ggcatggtcg caaagactct ccccttgatg taattgttgt caatgacagt 360
ggtggtgtca agaacgcttc ccacttgttg aaatatgatt caatgcttgg aactttcaaa 420
gcagaggtga aaattgtgga caacgagacc atcagtgttg atggcaagcc cattaaggtt 480
gtttccagca gagaccctct caagcttcct tgggctgagc tcggaataga cattgttatt 540
gagggaaccg gagtttttgt ggatggtcct ggtgctggga aacatattca agctggtgcc 600
aagaaagtta tcatcactgc tccagccaaa ggtgccgata ttccaaccta tgttgttggt 660
gttaacgaaa aggactacgg ccatgaggtt gccgacatta taagtaatgc ttcctgcacc 720
acaaattgtc tggctccctt tgtgaaaatc ctggatgaag aattcggcat tgtcaaggga 780
acaatgacaa caactcactc ctacactgga gatcagaggc tcttggatgc ttcacaccga 840
gacttgagga gagccagggc tgcagcattg aacatagtcc caacaagcac tggtgcagcc 900
aaggctgtat ctcttgtgct gccccagctc aagggcaagc tcaatggcat cgcactccgt 960
gtcccgacac ccaatgtttc agttgttgac cttgttgtga atgttgcgaa gaagggcatt 1020
acagcagaag atgtcaatgg agccttcaga aaggccgctg gggggccatt gaagggtgta 1080
ttggacgtgt gtgatgttcc tcttgtgtct gttgacttcc gatgctctga tgtttcctca 1140
accattgact cttcattgac catggtcatg ggagatgata tggtcaaggt tgtcgcctgg 1200
tatgacaatg aatggggata cagccaaagg gtcgtcgatt tagcacatct tgtagcggaa 1260
agtggccagg agtggctgca gcaggaagtg gagacccatt ggaggatttc tgcaagacaa 1320
acccagctga tgaggaatgc aaagtttatg aagcttagat ga 1362
<210> 12
<211> 870
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 12
atggacgtgg aagtagatga caaagaccta aaagccgccg gcgccgaggt tttaaccgac 60
gaccgtcatg gactccgcat ccatggctgg gaaatcgtat cttgcaacgg ctccattctc 120
aactcctcct ctctgatcac atgggaagaa aagttaaaaa cttctcattt accagagatg 180
gtttttggag aaagttgttt agtacttaaa catgcgacca gtggtaccaa aattcatttc 240
aacgcgtttg atgccctaac tggctggaaa caagaggctt tacctccggt cgaagtccct 300
gctgctgcgc aatggaaatt tagaagcaaa ccattccagc aggtgatatt ggattatgat 360
tatacattca cgacgcctta ttgtggtagt gaaacaatgg aatttgacac agagaagaaa 420
aacagcgagg aatttctgga ggctagctgc agcccctgtt gggaagactg tgaagagcaa 480
attgatgtgg ttgcacttgc atcaaaagag cctattcttt tctatgatga ggtagtcttg 540
tatgaagatg aactggctga taatggggtg tcgcttttaa ctgttaaagt gagagtcatg 600
ccgagttgct ggtttcttct tttgcgattc tggcttagag ttgatggagt gctaatgaga 660
ttaagggaca ctcgtatgca ttgtattttt agtgacagcg caaatcctat tgttcttcga 720
gaaagctgct ggagagaagc cacctttgaa gctctggctg ctaaaggata tcctgctgac 780
tctgcttcat atagtgatcc aagcatcatc agccaaaggc ttcccatcat catgcacaag 840
actcaaaagc ttagggtcgg tccactgtaa 870
<210> 13
<211> 1341
<212> DNA
<213> dustpan willow (Salix suchowensis)
<400> 13
atgagagaaa tccttcacat ccaagcaggc caatgcggca accaaatagg agcaaagttt 60
tgggaagtag tatgtgcaga acacgggatt gactccaccg gtcggtacaa tggtgactcg 120
gctctccaac tcgagcgagt taatgtttac tataatgaag ccagctgtgg aagatttgtc 180
cctcgtgctg ttctagtgga tcttgaaccg ggtactatgg acagtcttag atccggcccg 240
tacgggcaga tttttagacc ggataatttt gtgtttggcc aatctggtgc tggtaataac 300
tgggctaaag gacattatac ggagggcgcg gagctgattg attctgttct tgatgttgtt 360
aggaaggagg ctgagaactg tgactgcctg caaggatttc aggtatgcca ctcactgggg 420
ggtggtacag ggtctggaat gggaacactt ttgatctcga aaataagaga ggaatacccg 480
gaccggatga tgctaacatt ctctgttttc ccatctccaa aggtctcaga cactgtggtc 540
gagccttaca atgcaactct ctctgttcac cagcttgttg aaaatgctga tgagtgtatg 600
gttcttgata atgaggctct ttatgatatc tgcttccgta ctctcaagct cgcaactccc 660
agctttgggg atctgaacca cctgatttca gccaccatga gtggtgttac atgctgcctt 720
cgtttccctg gtcagctcaa ttcagacctt cgcaaacttg ctgtgaacct catcccattc 780
ccccgtcttc actttttcat ggttggcttt gcacctctca cttcccgtgg ctcgcagcag 840
taccgttccc taactgtacc tgaactcacc caacaaatgt gggattccaa gaatatgatg 900
tgtgctgctg atccccgcca tggcagatat ctcacagcct ctgccatgtt tcgtgggaaa 960
atgagcacaa aggaagttga tgagcagatg atcaacgttc aaaacaagaa ctcatcctac 1020
tttgtcgaat ggatccccaa caatgtcaag tctactgtct gtgacattcc tcctacaggc 1080
ttgacaatgg cttccacttt cattggcaac tccacatcaa tccaagagat gttccgaaga 1140
gttagcgagc agttcactgc catgttccgc aggaaggctt tcttgcattg gtacacggga 1200
gagggaatgg atgagatgga atttacagag gctgagagca acatgaacga tttggtctca 1260
gagtaccaac aataccagga cgcaactgcc gacgaggaag gcgagtatga agatgaggaa 1320
gaataccagg atgaggccta a 1341
<210> 14
<211> 1479
<212> DNA
<213> dustpan willow (Salix suchovensis)
<400> 14
atggatccct acaagcaccg tccgtcaagc gctttcagca ctccatactg gactacaaat 60
tctggagctc cggtttggaa caacaactcg tctctgaccg ttggatctag aggtccaatc 120
ctcctcgagg attaccatct ggtggagaag attgccaatt ttgacaggga gaggattcca 180
gagcgtgtcg tccatgctag gggagccagt gcaaagggtt tctttgaggt tacccatgat 240
atctctggtc tcacatgtgc tgattttctc cgggcccctg gagttcagac acctgtcatt 300
gtccgcttct ccacagttat ccatgagcgt ggcagccctg aaaccctgag ggatccacgt 360
ggatttgcag tgaagtttta caccagagag ggtaactttg atcttgtggg aaacaatttc 420
cctgtcttct tcatccgtga tgggatgaaa ttcccagaca tggtgcatgc ccttaagccc 480
aaccccaagt ctcatattca ggagaactgg aggattcttg acttcttctc ccaccatcct 540
gaaagtttgc acatgttctc cttcctattt gatgatgtgg gtgtgccaca agattataga 600
catatggaag gctctggtgt taacacctac acgttgatca acaaggctgg aaaagcccat 660
tatgtgaaat ttcattggaa acctacttgt ggtgtgaaat gtttgttgga ggacgaggca 720
attaaagtag gaggcacaaa tcacagccat gctactcagg atctatacga ctccattgcg 780
gctggcaact atcctgagtg gaaacttttc attcagacaa ttgatcctga ccatgaagcc 840
aggtttgatt ttgacccact tgatgtaacg aagacctggc ctgaggatat cttgcccctg 900
cagccagttg gtcgcttggt cttgaataag aacatcgaca acttctttgc tgaaaatgag 960
cagcttgctt tctgccctgc tattgtggtt cctggtatct actattcaga tgacaagcta 1020
ctccagactc gaatcttctc ctattctgat acccagaggc accgtcttgg accaaactat 1080
ctgcagctcc ctgctaatgc tcccaagtgt gctcatcata acaatcacca tgaaggtttc 1140
atgaatttca tgcataggga cgaggaggtc aactatttcc catcaaggta cgatcctgtt 1200
cgccatgctg agagtttccc cattcctcct gctgtctgca gtggaaagcg tgagaagtgc 1260
atcattgaga aggagaacaa cttcaagcaa cctggagaga gataccgatc ctgggcacca 1320
gacaggcaag aacgatttat ttgccgatgg gttgatgcct tatctgaccc acgcgccaca 1380
tatgagattc gcagcatctg gatctcatac tggtctcagg ctgataaatc tttgggtcag 1440
aagctagcat ctcgtctcag cgtgagacca agcatttga 1479

Claims (4)

  1. The application of the combination of the DnaJ gene and the ACT gene as reference genes in the fluorescent quantitation of the male flowers of the salix dustpan in the differentiation period, the resting period, the initial flowering period and the full flowering period is characterized in that the sequence of the DnaJ gene is shown as SEQ ID NO.1, and the sequence of the ACT gene is shown as SEQ ID NO. 2.
  2. 2. The use of claim 1 wherein the primer sequences of the DnaJ gene are as follows:
    DnaJ Forward primer 5'-GAGCCTATTTATGCCCTTTC-3'
    DnaJ reverse primer 5'-GACGTAGTCCTTATCCACCTT-3'.
  3. 3. Use according to claim 1, wherein the primer sequences of the ACT gene are as follows:
    ACT Forward primer 5'-CCAAGGAGGCTGCTGGTAAT-3'
    ACT reverse primer 5'-CCAAGGCCACCATGTCTGTC-3'.
  4. 4. The application of the primer combination for detecting the DnaJ gene and the ACT gene in the fluorescence quantification of the male flowers of the salix dustpan in the differentiation period, the dormancy period, the initial flowering period and the full flowering period is characterized in that the primer combination consists of the following primers:
    DnaJ Forward primer 5'-GAGCCTATTTATGCCCTTTC-3'
    DnaJ reverse primer 5'-GACGTAGTCCTTATCCACCTT-3'
    ACT Forward primer 5'-CCAAGGAGGCTGCTGGTAAT-3'
    ACT reverse primer 5'-CCAAGGCCACCATGTCTGTC-3'.
CN202110760926.0A 2021-07-06 2021-07-06 Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof Active CN113416794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110760926.0A CN113416794B (en) 2021-07-06 2021-07-06 Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110760926.0A CN113416794B (en) 2021-07-06 2021-07-06 Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof

Publications (2)

Publication Number Publication Date
CN113416794A CN113416794A (en) 2021-09-21
CN113416794B true CN113416794B (en) 2022-05-27

Family

ID=77720269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110760926.0A Active CN113416794B (en) 2021-07-06 2021-07-06 Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof

Country Status (1)

Country Link
CN (1) CN113416794B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877465B (en) * 2021-03-16 2023-10-10 南京林业大学 Fluorescent quantitative reference genes of different tissues of cryptomeria fortunei, special primers and application thereof
CN112795631B (en) * 2021-03-16 2022-09-20 南京林业大学 Fluorescent quantitative reference gene under abiotic stress of cryptomeria fortunei, and special primer and application thereof

Also Published As

Publication number Publication date
CN113416794A (en) 2021-09-21

Similar Documents

Publication Publication Date Title
CN101177685B (en) Screening method for genes of brewing yeast
CN113322346B (en) Reference gene suitable for fluorescent quantitation of female salix dustpan flowers, primer and application thereof
CN112980997B (en) Primer and probe for invasive mucormycosis pathogenic bacteria, implementation method and detection system thereof
CN108603198A (en) Manipulate the composition and method of development of plants
CN111100945A (en) Reference gene of toona sinensis, primer and application thereof
CN112522290B (en) Sea island cotton fiber quality related calcineurin B-like interaction protein kinase gene
CN104404061A (en) Yellow green leaf mutant gene YGL6 of rice, protein encoded by yellow green leaf mutant gene YGL6 and application of yellow green leaf mutant gene YGL6
CN113416794B (en) Reference gene suitable for fluorescent quantitation of male flowers of salix dustpan, and primer and application thereof
CN106048071A (en) Trichoderma fungus species identification primer based on mitochondria NAD5 gene sequence and application thereof
CN103215289B (en) Gene sequence a for causing watermelon bisexual flower development and obtaining method thereof
CN113481316A (en) Corn drought resistance marker DRESH8 and application thereof
CN108085409B (en) Screening method of fir reference gene in different tissues and application of screening gene as reference gene
CN116949204A (en) SNP locus for detecting salt tolerance of watermelons, molecular marker based on locus and application
CN115109864A (en) SSR molecular marker E201 for identifying Chinese pumpkin &#39;Zhongchuanu No. 1&#39; hybrid, and primer, kit and method thereof
KR102564133B1 (en) Genetic marker for selection of watermelon without lateral branch, tendril and ligule trait and use thereof
CN112458099B (en) Reference gene of chive and screening method and application thereof
JP2009060911A (en) Method for identifying barley variety and barley having excellemt brewing property
CN113981108A (en) Molecular marker for genetic sex identification of megalobrama amblycephala and application of molecular marker
Schulze et al. Critical review of identification techniques for Armillaria spp. and Heterobasidion annosum root and butt rot diseases
CN105018479A (en) Molecular marker tightly linked to fiber strength of ramie, obtaining method and application thereof
CN106636449A (en) Molecular marker, primer and probe for identifying lentaria patouillardii edible mushrooms
CN113736796B (en) Drought-resistant gene, SNP (single nucleotide polymorphism) of shinyleaf yellowhorn and application of drought-resistant gene and SNP
CN109385433A (en) Sesame leaf roll cleistocarp gene SiCL1 and its mutated gene Sicl1
CN106636424A (en) In-situ hybridization probe and method for identifying barley chromosome set by adopting same
Muraguchi et al. Identification and characterisation of structural maintenance of chromosome 1 (smc1) mutants of Coprinopsis cinerea

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant