CN113408457A - 一种联合高分影像和视频图像的道路信息智能提取方法 - Google Patents

一种联合高分影像和视频图像的道路信息智能提取方法 Download PDF

Info

Publication number
CN113408457A
CN113408457A CN202110728700.2A CN202110728700A CN113408457A CN 113408457 A CN113408457 A CN 113408457A CN 202110728700 A CN202110728700 A CN 202110728700A CN 113408457 A CN113408457 A CN 113408457A
Authority
CN
China
Prior art keywords
road
feature map
layer
nodes
connectivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110728700.2A
Other languages
English (en)
Other versions
CN113408457B (zh
Inventor
唐苒然
朱军
李维炼
谢亚坤
付林
任诗曼
张天奕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202110728700.2A priority Critical patent/CN113408457B/zh
Publication of CN113408457A publication Critical patent/CN113408457A/zh
Application granted granted Critical
Publication of CN113408457B publication Critical patent/CN113408457B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • G06F18/2414Smoothing the distance, e.g. radial basis function networks [RBFN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种联合高分影像和视频图像的道路信息智能提取方法,解决了传统技术中高分辨率遥感影响的精度在被干扰下精度降低、影响道路形态完整性的问题,其包括:步骤A:将高分遥感影像与道路标签数据传入深度神经网络模型;步骤B:深度神经网络模型将得到的影响数据进行多层卷积处理,在各卷积层后加入通道注意力模块;步骤C:在最后一层卷积层加入空间注意力模块,并将数据转入反卷积层等步骤,实现了对于多尺度道路信息和被遮挡道路信息的准确提取、联合视频图像对道路断线进行修复,从而得到准确的道路形态的技术效果。

Description

一种联合高分影像和视频图像的道路信息智能提取方法
技术领域
本发明属于交通运输信息技术领域,具体涉及一种联合高分影像和视频图像的道路信息智能提取方法。
背景技术
道路是交通运输的基础设施,道路信息也是一种重要的基础地理信息。在信息化智能化建设已然成为当今世界发展趋势的大背景下,地理信息技术和遥感技术便很自然地被引入到了道路信息管理之中。就道路信息的获取而言,传统道路数据的采集方式包括实地采集、文字资料获取、移动车载扫描等,但都存在成本较高或效率低的问题。而随着遥感技术的不断发展,遥感影像的空间分辨率也越来越高,这些高分辨率的遥感影像逐渐成为各种目标信息的主要数据来源。从高分辨率遥感影像中提取道路信息可以为地理信息技术提供及更新数据源,具有极其重要的实用价值与科学意义。现如今已经存在大量的半自动和自动的道路提取算法,其中深度神经网络以能够自适应提取特征和超高的提取精度在计算机视觉领域脱颖而出,利用深度学习对高分影像进行道路信息提取已经成为当前的研究热点之一。
遥感影像中的道路信息容易受到高楼建筑物、植被阴影、河流等非道路信息的干扰,且城市主干道与郊区公路尺度差异大,而传统语义分割网络在遥感图像道路提取任务上存在被遮挡目标无法提取、小目标漏分、道路存在断线等情况,这不仅降低了提取精度,而且影响了道路形态完整性。另一方面,高分辨率遥感影像在增强目标地物特性的同时,也增加了地物的细节层次显示,使得“同物异谱”、“同谱异物”现象大量发生,从而给道路信息提取增加难度,仅仅利用高分辨率遥感影像并不能对道路信息实现高精度提取。
发明内容
针对现有技术中术中高分辨率遥感影响的精度在被干扰下精度降低、影响道路形态完整性的问题,本发明提供一种联合高分影像和视频图像的道路信息智能提取方法,其目的在于:实现对于多尺度道路信息和被遮挡道路信息的准确提取、联合视频图像对道路断线进行修复,从而得到准确的道路形态的技术效果。
本发明采用的技术方案如下:
一种联合高分影像和视频图像的道路信息智能提取方法,包括以下步骤:
步骤A:将高分遥感影像与道路标签数据传入深度神经网络模型;
步骤B:深度神经网络模型将得到的影响数据进行多层卷积处理,在各卷积层后加入通道注意力模块;
步骤C:在最后一层卷积层加入空间注意力模块,并将数据转入反卷积层;
步骤D:在卷积层中进行对数据的反卷积,并得到单通道结果图;
步骤E:将在步骤C中得到的单通道结果图进行基于上下文特征的视频图像场景分类,若场景中存在道路,则认为该道路中断为真实情况;
步骤F:若在步骤D中的场景不存在道路,则连接中断道路,并输出道路优化结果。
采用上述方案,引入空间和通道注意力机制对深度神经网络隐藏层信息进行增强,提高模型表达能力,实现对于多尺度道路信息和被遮挡道路信息的准确提取;在此基础上联合视频图像对道路断线进行修复,从而得到准确的道路形态,实现道路提取结果的进一步优化。本专利提取结果可作为数据源应用于道路信息可视化表达、物流管理、车辆监控与导航以及交通管理等领域,也可为交通信息的科学化、智能化建设提供支持。
所述步骤B的具体步骤为:
步骤B1:输入特征图M,将特征图M进行全局平均池化操作,得到特征图M每一通道的权重;
步骤B2:将平均池化后的特征图M通过两个全连接层、ReLU激活函数层及Sigmoid激活函数层得到学习后的通道权重;
步骤B3:将学习到的通道权重乘到输入的特征图上,得到通道注意力增强的特征图
Figure BDA0003139434560000021
步骤B4:将特征图
Figure BDA0003139434560000022
传入下一卷积层
采用上述方案,通过注意力模块,可对不同通道赋予不同权重大小,用于体现相应特征信息的通道,增强有用信息的表达。
所述步骤C的具体步骤为:
步骤C1:输入特征图F,将特征图F通过全局最大池化与全局平均池化网络,进行全局信息压缩;
步骤C2:将两个网格压缩后的特征图进行空间融合,在融合后经过卷积层进行特征学习
步骤C3:将特征学习后的特征恒图通过Sigmoid激活函数层得到学习后的空间权重;
步骤C4:将学习到的空间权重点乘到输入特征图上,得到空间注意力增强的特征图
Figure BDA0003139434560000023
步骤C5:将特征图
Figure BDA0003139434560000024
传入反卷积层。
采用上述方案,在遥感影像中,道路时纵横交错的,且存在遮挡现象,本发明通过采用空间注意力模型将局部特征与全局特征相结合,对特征信息进行筛选,抑制非目标区域的特征,使得网络在特征提取过程中更灌注目标区域特征。
所述步骤E的具体步骤为:
步骤E1:收集场景图像,对数据集场景进行人工数据标注,分为道路与非道路,并建立图像大规模场景分类数据集;
步骤E2:通过现有卷积神经网络结构,建立基于上下特征的视频图像网络结构模型,其中卷积神经网络结构中设置有注意力模块;
步骤E3:对于网络结构模型进行训练,实现视频图像的场景分类,输出道路与非道路。
所述步骤E2的具体步骤为:
步骤E21:通过全局池化的方式将卷积神经网络结构中的特征图顺着空间维度进行特征压缩;
步骤E22:通过两个全连接层建立特征图的通道间的相关性,并输出和输入特征同样数目的权重;
步骤E23:通过Ssgmoid的门获得类别之间归一化的权重;
步骤E24:通过通道权重的重新分配将归一化后的权重加权到每个通道的特征上。
采用上述方案,注意力机制为计算机赋予被灌注区域较大权重,对于不感兴趣的区域权重值较小,提取优势特征,抑制干扰特征,这样可获取图像中的上下文特征,提高网络学习性能。
所述步骤F的具体步骤为:
步骤F1:通过估计道路防线的节点连接性图Q,根据节点间连接在节点连接性图Q上的路径积分对节点间连接性进行定量描述,其中节点连接性图Q为二维向量场,可表示不同节点连接区域内的道路方向信息;
步骤F2:节点m与节点n为两个相连接的道路节点,则m和n之间的连接区域Aream,n,定义为Aream,n={0≤μm,n·μm,p≤ι,0≤|μm,n×μm,p|≤ξ},其中μm,n为从m指向n的向量;μm,p为从m指向p的向量,p为影像中任意像素的图像坐标;。ι为连接区域长度,其大小为μm,n·μm,n;ξ为连接区域的宽度;若像素点p在连接区域Aream,n内,则连接性图Q在p处的取值是从m指向n的单位向量e,若像素点p在连接区域Aream,n外,则连接性图Q在p处的取值是0向量;
步骤F3:提取经过卷积神经网络处理而获取的道路结果中的道路节点,若节点之间连接性大于设定值,则进行连接断线,若连接性小于设定值,则不连接断线。
所述步骤F3的具体步骤为:
步骤F31:用用V=(v1,v2,…,vn)表示提取的道路节点的集合,va,vb表示V中任意一对节点;
步骤F32:取0.5为设定值,并对节点va和vb的连线在连接图Q上的路径积分ψa,b作为节点va和vb连接性的估计值,ψa,b取值越大表示节点va和vb之间的连接性越强,其中ψa,b的计算式为
Figure BDA0003139434560000041
步骤F32:对ψa,b进行判断,若ψa,b的值大于0.5,则直接将两个节点va、vb进行连接;若ψa,b的值小于0.5,则不连接断线,实现道路中的断线连接。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.引入空间和通道注意力机制对深度神经网络隐藏层信息进行增强,提高模型表达能力,实现对于多尺度道路信息和被遮挡道路信息的准确提取;在此基础上联合视频图像对道路断线进行修复,从而得到准确的道路形态,实现道路提取结果的进一步优化。本专利提取结果可作为数据源应用于道路信息可视化表达、物流管理、车辆监控与导航以及交通管理等领域,也可为交通信息的科学化、智能化建设提供支持。
2.通过注意力模块,可对不同通道赋予不同权重大小,用于体现相应特征信息的通道,增强有用信息的表达。
3.在遥感影像中,道路时纵横交错的,且存在遮挡现象,本发明通过采用空间注意力模型将局部特征与全局特征相结合,对特征信息进行筛选,抑制非目标区域的特征,使得网络在特征提取过程中更灌注目标区域特征。
4.注意力机制为计算机赋予被灌注区域较大权重,对于不感兴趣的区域权重值较小,提取优势特征,抑制干扰特征,这样可获取图像中的上下文特征,提高网络学习性能。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明的一种实施方式的总体结构图;
图2是本发明的一种实施方式的总体模型图;
图3是本发明的一种实施方式的通道注意力模型结构图;
图4是本发明的一种实施方式的空间注意力模型结构图;
图5是本发明的一种实施方式的基于上下文特征的视频图像场景分类流程图;
图6是本发明的一种实施方式的估计上下文特征的注意力模型结构图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
实施例一:
下面结合图1、图2对本发明作详细说明。
一种联合高分影像和视频图像的道路信息智能提取方法,包括以下步骤:
步骤A:将高分遥感影像与道路标签数据传入深度神经网络模型;
步骤B:深度神经网络模型将得到的影响数据进行多层卷积处理,在各卷积层后加入通道注意力模块;
步骤C:在最后一层卷积层加入空间注意力模块,并将数据转入反卷积层;
步骤D:在卷积层中进行对数据的反卷积,并得到单通道结果图;
步骤E:将在步骤C中得到的单通道结果图进行基于上下文特征的视频图像场景分类,若场景中存在道路,则认为该道路中断为真实情况。
步骤F:若在步骤D中的场景不存在道路,则连接中断道路,并输出道路优化结果
所述步骤B的具体步骤为:
步骤B1:输入特征图M,将特征图M进行全局平均池化操作,得到特征图M每一通道的权重;
步骤B2:将平均池化后的特征图M通过两个全连接层、ReLU激活函数层及Sigmoid激活函数层得到学习后的通道权重;
步骤B3:将学习到的通道权重乘到输入的特征图上,得到通道注意力增强的特征图
Figure BDA0003139434560000051
步骤B4:将特征图
Figure BDA0003139434560000052
传入下一卷积层
所述步骤C的具体步骤为:
步骤C1:输入特征图F,将特征图F通过全局最大池化与全局平均池化网络,进行全局信息压缩;
步骤C2:将两个网格压缩后的特征图进行空间融合,在融合后经过卷积层进行特征学习
步骤C3:将特征学习后的特征恒图通过Sigmoid激活函数层得到学习后的空间权重;
步骤C4:将学习到的空间权重点乘到输入特征图上,得到空间注意力增强的特征图
Figure BDA0003139434560000053
步骤C5:将特征图
Figure BDA0003139434560000054
传入反卷积层。
所述步骤E的具体步骤为:
步骤E1:收集场景图像,对数据集场景进行人工数据标注,分为道路与非道路,并建立图像大规模场景分类数据集;
步骤E2:通过现有卷积神经网络结构,建立基于上下特征的视频图像网络结构模型,其中卷积神经网络结构中设置有注意力模块。
步骤E3:对于网络结构模型进行训练,实现视频图像的场景分类,输出道路与非道路。
所述步骤D2的具体步骤为:
步骤E21:通过全局池化的方式将卷积神经网络结构中的特征图顺着空间维度进行特征压缩;
步骤E22:通过两个全连接层建立特征图的通道间的相关性,并输出和输入特征同样数目的权重;
步骤E23:他通过Ssgmoid的们获得类别之间归一化的权重;
步骤E24:通过通道权重的重新分配将归一化后的权重加权到每个通道的特征上。
所述步骤F的具体步骤为:
步骤F1:通过估计道路防线的节点连接性图Q,根据节点间连接在节点连接性图Q上的路径积分对节点间连接性进行定量描述,其中节点连接性图Q为二维向量场,可表示不同节点连接区域内的道路方向信息;
步骤F2:节点m与节点n为两个相连接的道路节点,则m和n之间的连接区域Aream,n,定义为Aream,n={0≤μm,n·μm,p≤ι,0≤|μm,n×μm,p|≤ξ},其中μm,n为从m指向n的向量;μm,p为从m指向p的向量,p为影像中任意像素的图像坐标;。ι为连接区域长度,其大小为μm,n·μm,n;ξ为连接区域的宽度;若像素点p在连接区域Aream,n内,则连接性图Q在p处的取值是从m指向n的单位向量e,若像素点p在连接区域Aream,n外,则连接性图Q在p处的取值是0向量。
步骤F3:提取经过卷积神经网络处理而获取的道路结果中的道路节点,若节点之间连接性大于设定值,则进行连接断线,若连接性小于设定值,则不连接断线。
所述步骤F3的具体步骤为:
步骤F31:用用V=(v1,v2,…,vn)表示提取的道路节点的集合,va,vb表示V中任意一对节点;
步骤F32:取0.5为设定值,并对节点va和vb的连线在连接图Q上的路径积分ψa,b作为节点va和vb连接性的估计值,ψa,b取值越大表示节点va和vb之间的连接性越强,其中ψa,b的计算式为
Figure BDA0003139434560000061
步骤F32:对ψa,b进行判断,若ψa,b的值大于0.5,则直接将两个节点va、vb进行连接;若ψa,b的值小于0.5,则不连接断线,实现道路中的断线连接。
在上述实施例一中,其中步骤B的具体步骤为网络输入256*256*3大小的图像(表示图像尺寸为256*256,通道数为3)。首先,图像经过两层卷积层(卷积核尺寸为3*3,步长为1)、批归一化层、ReLU激活函数,特征图大小变为256*256*64;再经过一层通道注意力模块,特征图大小不变;最后经过最大池化层(核尺寸为2*2,步长为2),特征图通道数不变,尺寸变为原来的一半(128*128*64),按以上规则重复下采样操作,并在下采样阶段的最后一层加入空间注意力模块,将局部特征与全局特征相结合。在下采样阶段完成后,通过一层反卷积层(卷积核尺寸为2*2,步长为2),特征图通道数减少为输入的一半,尺寸扩大为输入的两倍(32*32*512),此时将该特征图与下采样阶段包含的通道注意力增强的特征图进行长跳跃连接以减少下采样过程带来的特征信息损失,在每一次连接后,使用卷积核大小为3*3的卷积层融合特征信息;按以上规则重复操作得到256*256*64大小的特征图,最后通过卷积核大小为1*1的卷积层输出道路提取单通道结果图。
其中步骤E的视频图像网络模型建立步骤如下:
网络输入256*256*3大小的图像(表示图像尺寸为256*256,通道数为3)。首先,图像经过两层卷积层(卷积核尺寸为3*3,步长为1)、批归一化层、ReLU激活函数,特征图大小变为256*256*64;再经过一层注意力模块,特征图大小不变;最后经过最大池化层(核尺寸为2*2,步长为2),特征图通道数不变,尺寸变为原来的一半(128*128*64),按以上规则重复下采样操作,直到第八卷积层特征图大小变为14*14*2048;在经过两个全连接层将特征图变为4096个神经元;最后经全连接层进行结果分类,输出结果为道路或者非道路。
以上所述实施例仅表达了本申请的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请技术方案构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (7)

1.一种联合高分影像和视频图像的道路信息智能提取方法,其特征在于,包括以下步骤:
步骤A:将高分遥感影像与道路标签数据传入深度神经网络模型;
步骤B:深度神经网络模型将得到的影响数据进行多层卷积处理,在各卷积层后加入通道注意力模块;
步骤C:在最后一层卷积层加入空间注意力模块,并将数据转入反卷积层;
步骤D:在卷积层中进行对数据的反卷积,并得到单通道结果图;
步骤E:将在步骤C中得到的单通道结果图进行基于上下文特征的视频图像场景分类,若场景中存在道路,则认为该道路中断为真实情况;
步骤F:若在步骤D中的场景不存在道路,则连接中断道路,并输出道路优化结果。
2.根据权利要求1所述的一种联合高分影像和视频图像的道路信息智能提取方法,其特征在于,所述步骤B的具体步骤为:
步骤B1:输入特征图M,将特征图M进行全局平均池化操作,得到特征图M每一通道的权重;
步骤B2:将平均池化后的特征图M通过两个全连接层、ReLU激活函数层及Sigmoid激活函数层得到学习后的通道权重;
步骤B3:将学习到的通道权重乘到输入的特征图上,得到通道注意力增强的特征图
Figure FDA0003139434550000011
步骤B4:将特征图
Figure FDA0003139434550000012
传入下一卷积层。
3.根据权利要求1所述的一种联合高分影响和视频图像的道路信息智能提取方法,其特征在于,所述步骤C的具体步骤为:
步骤C1:输入特征图F,将特征图F通过全局最大池化与全局平均池化网络,进行全局信息压缩;
步骤C2:将两个网格压缩后的特征图进行空间融合,在融合后经过卷积层进行特征学习;
步骤C3:将特征学习后的特征恒图通过Sigmoid激活函数层得到学习后的空间权重;
步骤C4:将学习到的空间权重点乘到输入特征图上,得到空间注意力增强的特征图
Figure FDA0003139434550000013
步骤C5:将特征图
Figure FDA0003139434550000014
传入反卷积层。
4.根据权利要求1所述的一种联合高分影像和视频图像的道路信息智能提取方法,其特征在于,所述步骤E的具体步骤为:
步骤E1:收集场景图像,对数据集场景进行人工数据标注,分为道路与非道路,并建立图像大规模场景分类数据集;
步骤E2:通过现有卷积神经网络结构,建立基于上下特征的视频图像网络结构模型,其中卷积神经网络结构中设置有注意力模块;
步骤E3:对于网络结构模型进行训练,实现视频图像的场景分类,输出道路与非道路。
5.根据权利要求4所述的一种联合高分影像和视频图像的道路信息智能提取方法,其特征在于,所述步骤D2的具体步骤为:
步骤E21:通过全局池化的方式将卷积神经网络结构中的特征图顺着空间维度进行特征压缩;
步骤E22:通过两个全连接层建立特征图的通道间的相关性,并输出和输入特征同样数目的权重;
步骤E23:他通过Ssgmoid的们获得类别之间归一化的权重;
步骤E24:通过通道权重的重新分配将归一化后的权重加权到每个通道的特征上。
6.根据权利要求1所述的一种联合高分影像和视频图像的道路信息智能提取方法,其特征在于,所述步骤F的具体步骤为:
步骤F1:通过估计道路防线的节点连接性图Q,根据节点间连接在节点连接性图Q上的路径积分对节点间连接性进行定量描述,其中节点连接性图Q为二维向量场,可表示不同节点连接区域内的道路方向信息;
步骤F2:节点m与节点n为两个相连接的道路节点,则m和n之间的连接区域Aream,n,定义为Aream,n={0≤μm,n·μm,p≤ι,0≤|μm,n×μm,p|≤ξ},其中μm,n为从m指向n的向量;μm,p为从m指向p的向量,p为影像中任意像素的图像坐标;。ι为连接区域长度,其大小为μm,n·μm,n;ξ为连接区域的宽度;若像素点p在连接区域Aream,n内,则连接性图Q在p处的取值是从m指向n的单位向量e,若像素点p在连接区域Aream,n外,则连接性图Q在p处的取值是0向量;
步骤F3:提取经过卷积神经网络处理而获取的道路结果中的道路节点,若节点之间连接性大于设定值,则进行连接断线,若连接性小于设定值,则不连接断线。
7.根据权利要求6所述的一种联合高分影响和视频图像信息智能提取方法,其特征在于,所述步骤F3的具体步骤为:
步骤F31:用用V=(v1,v2,…,vn)表示提取的道路节点的集合,va,vb表示V中任意一对节点;
步骤F32:取0.5为设定值,并对节点va和vb的连线在连接图Q上的路径积分ψa,b作为节点va和vb连接性的估计值,ψa,b取值越大表示节点va和vb之间的连接性越强,其中ψa,b的计算式为
Figure FDA0003139434550000031
步骤F32:对ψa,b进行判断,若ψa,b的值大于0.5,则直接将两个节点va、vb进行连接;若ψa,b的值小于0.5,则不连接断线,实现道路中的断线连接。
CN202110728700.2A 2021-06-29 2021-06-29 一种联合高分影像和视频图像的道路信息智能提取方法 Active CN113408457B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110728700.2A CN113408457B (zh) 2021-06-29 2021-06-29 一种联合高分影像和视频图像的道路信息智能提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110728700.2A CN113408457B (zh) 2021-06-29 2021-06-29 一种联合高分影像和视频图像的道路信息智能提取方法

Publications (2)

Publication Number Publication Date
CN113408457A true CN113408457A (zh) 2021-09-17
CN113408457B CN113408457B (zh) 2022-10-21

Family

ID=77680400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110728700.2A Active CN113408457B (zh) 2021-06-29 2021-06-29 一种联合高分影像和视频图像的道路信息智能提取方法

Country Status (1)

Country Link
CN (1) CN113408457B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718870A (zh) * 2016-01-15 2016-06-29 武汉光庭科技有限公司 自动驾驶中基于前向摄像头的道路标线提取方法
CN106295562A (zh) * 2016-08-09 2017-01-04 中国科学院遥感与数字地球研究所 一种高分辨率遥感影像道路信息提取方法
CN107463944A (zh) * 2017-07-11 2017-12-12 电子科技大学 一种利用多时相高分辨率sar图像的道路信息提取方法
CN107578446A (zh) * 2017-09-19 2018-01-12 中国人民解放军信息工程大学 一种遥感影像道路提取方法及装置
US20180189578A1 (en) * 2016-12-30 2018-07-05 DeepMap Inc. Lane Network Construction Using High Definition Maps for Autonomous Vehicles
CN109271928A (zh) * 2018-09-14 2019-01-25 武汉大学 一种基于矢量路网融合与高分遥感影像验证的道路网自动更新方法
CN109426773A (zh) * 2017-08-24 2019-03-05 浙江宇视科技有限公司 一种道路识别方法和装置
CN111310771A (zh) * 2020-03-11 2020-06-19 中煤航测遥感集团有限公司 遥感影像的道路图像提取方法、装置、设备及存储介质
CN111738094A (zh) * 2020-05-28 2020-10-02 中国国土勘测规划院 一种遥感影像道路自动提取方法及装置
CN112102324A (zh) * 2020-09-17 2020-12-18 中国科学院海洋研究所 一种基于深度U-Net模型的遥感图像海冰识别方法
CN112418027A (zh) * 2020-11-11 2021-02-26 青岛科技大学 一种改进U-Net网络的遥感影像道路提取方法
CN112541926A (zh) * 2020-12-15 2021-03-23 福州大学 一种基于改进FCN和DenseNet的歧义像素优化分割方法
CN112651978A (zh) * 2020-12-16 2021-04-13 广州医软智能科技有限公司 舌下微循环图像分割方法和装置、电子设备、存储介质
US20210118205A1 (en) * 2019-10-17 2021-04-22 Rutgers, The State University Of New Jersey Systems and Methods for Joint Reconstruction and Segmentation of Organs From Magnetic Resonance Imaging Data
CN112749621A (zh) * 2020-11-25 2021-05-04 厦门理工学院 一种基于深度卷积神经网络的遥感图像云层检测方法
CN112767416A (zh) * 2021-01-19 2021-05-07 中国科学技术大学 一种基于空间和通道双重注意力机制的眼底血管分割方法
CN112926482A (zh) * 2021-03-10 2021-06-08 辽宁工程技术大学 一种基于多尺度残差卷积神经网络的道路提取方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718870A (zh) * 2016-01-15 2016-06-29 武汉光庭科技有限公司 自动驾驶中基于前向摄像头的道路标线提取方法
CN106295562A (zh) * 2016-08-09 2017-01-04 中国科学院遥感与数字地球研究所 一种高分辨率遥感影像道路信息提取方法
US20180189578A1 (en) * 2016-12-30 2018-07-05 DeepMap Inc. Lane Network Construction Using High Definition Maps for Autonomous Vehicles
CN107463944A (zh) * 2017-07-11 2017-12-12 电子科技大学 一种利用多时相高分辨率sar图像的道路信息提取方法
CN109426773A (zh) * 2017-08-24 2019-03-05 浙江宇视科技有限公司 一种道路识别方法和装置
CN107578446A (zh) * 2017-09-19 2018-01-12 中国人民解放军信息工程大学 一种遥感影像道路提取方法及装置
CN109271928A (zh) * 2018-09-14 2019-01-25 武汉大学 一种基于矢量路网融合与高分遥感影像验证的道路网自动更新方法
US20210118205A1 (en) * 2019-10-17 2021-04-22 Rutgers, The State University Of New Jersey Systems and Methods for Joint Reconstruction and Segmentation of Organs From Magnetic Resonance Imaging Data
CN111310771A (zh) * 2020-03-11 2020-06-19 中煤航测遥感集团有限公司 遥感影像的道路图像提取方法、装置、设备及存储介质
CN111738094A (zh) * 2020-05-28 2020-10-02 中国国土勘测规划院 一种遥感影像道路自动提取方法及装置
CN112102324A (zh) * 2020-09-17 2020-12-18 中国科学院海洋研究所 一种基于深度U-Net模型的遥感图像海冰识别方法
CN112418027A (zh) * 2020-11-11 2021-02-26 青岛科技大学 一种改进U-Net网络的遥感影像道路提取方法
CN112749621A (zh) * 2020-11-25 2021-05-04 厦门理工学院 一种基于深度卷积神经网络的遥感图像云层检测方法
CN112541926A (zh) * 2020-12-15 2021-03-23 福州大学 一种基于改进FCN和DenseNet的歧义像素优化分割方法
CN112651978A (zh) * 2020-12-16 2021-04-13 广州医软智能科技有限公司 舌下微循环图像分割方法和装置、电子设备、存储介质
CN112767416A (zh) * 2021-01-19 2021-05-07 中国科学技术大学 一种基于空间和通道双重注意力机制的眼底血管分割方法
CN112926482A (zh) * 2021-03-10 2021-06-08 辽宁工程技术大学 一种基于多尺度残差卷积神经网络的道路提取方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
PRAMOD KUMAR SONI等: "Semiautomatic Road Extraction Framework Based on Shape Features and LS-SVM from High-Resolution Images", 《JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING》 *
YONGFENG REN等: "DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery", 《REMOTE SENSING》 *
吴仁哲等: "针对高分影像的RDU-Net乡村路网提取方法", 《遥感信息》 *
吴哲成: "基于视觉信息的高速路面状态检测技术研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 *
张津等: "基于注意力机制和编码解码网络的遥感影像分类", 《测绘科学技术学报》 *
王斌等: "兼顾连通性的U-Net网络高分辨率遥感影像道路提取", 《遥感学报》 *
马文康: "基于深度神经网络的遥感图像道路提取", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
CN113408457B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
CN112396607B (zh) 一种可变形卷积融合增强的街景图像语义分割方法
CN110070091B (zh) 用于街景理解的基于动态插值重建的语义分割方法及系统
Tian et al. Review of object instance segmentation based on deep learning
CN110414387A (zh) 一种基于道路分割的车道线多任务学习检测方法
CN114627360A (zh) 基于级联检测模型的变电站设备缺陷识别方法
CN110853057B (zh) 基于全局和多尺度全卷积网络的航拍图像分割方法
CN113902915A (zh) 一种基于低光照复杂道路场景下的语义分割方法及系统
CN111611861B (zh) 一种基于多尺度特征关联的图像变化检测方法
CN113609889B (zh) 基于敏感特征聚焦感知的高分辨遥感影像植被提取方法
CN112232328A (zh) 基于卷积神经网络的遥感影像建筑区提取方法、装置
CN112508960A (zh) 一种基于改进注意力机制的低精度图像语义分割方法
CN114187520B (zh) 一种建筑物提取模型的构建及应用方法
CN112819000A (zh) 街景图像语义分割系统及分割方法、电子设备及计算机可读介质
CN113052106A (zh) 一种基于PSPNet网络的飞机起降跑道识别方法
CN114627269A (zh) 一种基于深度学习目标检测的虚拟现实安防监控平台
CN114943902A (zh) 基于多尺度特征感知网络的城市植被无人机遥感分类方法
CN114494699A (zh) 基于语义传播与前背景感知的图像语义分割方法及系统
CN114373073A (zh) 一种用于道路场景语义分割的方法及系统
CN113743300A (zh) 基于语义分割的高分遥感图像云检测方法和装置
CN113408457B (zh) 一种联合高分影像和视频图像的道路信息智能提取方法
Jiao et al. A Novel Data Augmentation Method to Enhance the Training Dataset for Road Extraction from Historical Maps
CN112989919B (zh) 一种从影像中提取目标对象的方法及系统
CN114639084A (zh) 一种基于ssd改进算法的路侧端车辆感知方法
CN114863094A (zh) 基于双支路网络的工业图像感兴趣区域分割算法
CN114332780A (zh) 一种针对小目标的交通人车非目标检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant