CN113408081A - 一种基于数据驱动的钻速随钻深层精细化优化方法 - Google Patents

一种基于数据驱动的钻速随钻深层精细化优化方法 Download PDF

Info

Publication number
CN113408081A
CN113408081A CN202110932972.4A CN202110932972A CN113408081A CN 113408081 A CN113408081 A CN 113408081A CN 202110932972 A CN202110932972 A CN 202110932972A CN 113408081 A CN113408081 A CN 113408081A
Authority
CN
China
Prior art keywords
drilling
data
rate
speed
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110932972.4A
Other languages
English (en)
Other versions
CN113408081B (zh
Inventor
董广建
陈颖杰
付建红
杨迎新
袁和义
王强
韩强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110932972.4A priority Critical patent/CN113408081B/zh
Publication of CN113408081A publication Critical patent/CN113408081A/zh
Application granted granted Critical
Publication of CN113408081B publication Critical patent/CN113408081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/12Timing analysis or timing optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Earth Drilling (AREA)

Abstract

本发明公开了一种基于数据驱动的钻速随钻深层精细化优化方法,包括根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集,根据峰值区间平均值法、预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,通过控制钻速随钻优化处理过程极限时间及钻速提速幅值来终止优化过程,本发明公开的基于数据驱动的钻速随钻优化方法,据峰值区间平均值法、预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,比传统的依靠钻井工程师经验进行转速优化更具科学性,能够在不同段内进行转速优化,通过大量的实际数据进行科学的随钻转速优化,使得转速的最优值无限接近理想值,对实时优化钻井施工、提高钻井效率具有指导作用。

Description

一种基于数据驱动的钻速随钻深层精细化优化方法
技术领域
本发明涉及钻速随钻优化领域,特别是一种基于数据驱动的钻速随钻深层精细化优化方法。
背景技术
在钻进过程中,由于地层的不确定性导致设计的钻井参数时常不能达到预期钻速,需要根据地层性质变化实时优化钻井参数。目前,现场通常使用比能法进行参数实时优化,该方法主要是基于机械比能理论,根据机械比能曲线的变化情况,实时调整井参数,实现钻速优化。然而,在实践中比能法存在以下两个问题:(1)使用比能法实时优化钻井参数主要根据机比能曲线的变化定性的调整参数,无法定量、准确的提出最优参数组合,不能最大限度优化钻速;(2)基于机械比能理论实现钻井参数实时优化的方法没有考虑钻井成本,无法实现钻井综合成本的实时优化。传统的基于已钻完井资料进行井参数优化的方法虽然能够解决比能法进行参数实时优化时存在的问题,但在使用正钻井资料进行实时优化时会出现以下问题:
(1)由于传统的钻井参数优化方法中钻速模型是根据停钻后进行现场试验的数据回归建立的,因此,在使用正钻井资料进行参数实时优化时,钻速模型的实时建立十分困难;
(2)传统的钻速模型建立是在钻后数据评价基础上,根据钻后测量数据建立模型,这种方法导致工期延长,无法实现钻头的实时评价,钻井成本增大,因此,需要解决随钻情况下钻速动态优化问题。
因此,需要建立低成本,高效益的钻井随钻转速优化方法,本发明公开了一种基于数据驱动的钻速随钻优化方法,该方法包括根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集,根据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,通过控制钻速随钻优化处理过程极限时间及钻速提速幅值来终止优化过程,本发明公开的一种基于数据驱动的钻速随钻优化方法,据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,比传统的依靠钻井工程师经验进行转速优化更具科学性,能够在不同段内进行转速优化,通过大量的实际数据进行科学的随钻转速优化,使得转速的最优值无限接近理想值,对实时优化钻井施工、提高钻井效率具有指导作用。
发明内容
为实现以上技术效果,采用如下技术方案:
本发明的目的在于克服现有技术的缺点,提供一种基于数据驱动的钻速随钻深层精细化优化方法,该方法包括根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集,根据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,通过控制钻速随钻优化处理过程极限时间及钻速提速幅值来终止优化过程,本发明公开的一种基于数据驱动的钻速随钻优化方法,据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,比传统的依靠钻井工程师经验进行转速优化更具科学性,能够在不同段内进行转速优化,通过大量的实际数据进行科学的随钻转速优化,使得转速的最优值无限接近理想值,对实时优化钻井施工、提高钻井效率具有指导作用。
为实现以上技术效果,采用如下技术方案:
一种基于数据驱动的钻速随钻深层精细化优化方法,包括以下步骤:
步骤S1:确定钻速随钻优化处理过程极限时间
Figure 93870DEST_PATH_IMAGE001
、钻速提速幅值
Figure 565433DEST_PATH_IMAGE002
步骤S2:确定随钻数据单元操作时间段或单元操作进尺,根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集;
步骤S3:根据峰值区间平均值法对步骤S2建立的数据集进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
所述步骤S2的随钻单元数据集包含的参数有钻速和钻井参数两类。
所述钻井参数包括钻压、转速、扭矩、排量、钻头类型、轴向(纵向)振动加速度、横向振动加速度、周向(扭转)振动加速度、钻井液密度、井底环空压力。
所述步骤S3峰值区间平均值法具体实现步骤如下:
步骤S31:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 730835DEST_PATH_IMAGE003
和钻井参数数据集
Figure 93684DEST_PATH_IMAGE004
,表达式形式如下:
Figure 926511DEST_PATH_IMAGE005
Figure 834555DEST_PATH_IMAGE006
其中,
Figure 690515DEST_PATH_IMAGE007
Figure 591475DEST_PATH_IMAGE008
Figure 544388DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 872601DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 215858DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S32:遍寻整个单元钻速数据集
Figure 402732DEST_PATH_IMAGE003
步骤S33:预设钻速峰值阶段值CT,取值70%~95%;
步骤S34:锁定步骤S32钻速数据集
Figure 944572DEST_PATH_IMAGE003
前CT的钻速,形成优选的钻速峰值区间数据集
Figure 709265DEST_PATH_IMAGE012
步骤S35:锁定步骤S34中数据集
Figure 539818DEST_PATH_IMAGE012
对应的钻井参数,形成优化的钻井参数数据集
Figure 782581DEST_PATH_IMAGE013
步骤S36:锁定步骤S35中的钻井参数数据集
Figure 195239DEST_PATH_IMAGE013
取平均值,形成钻井参数平均值数据集
Figure 865254DEST_PATH_IMAGE014
,将数据集
Figure 979841DEST_PATH_IMAGE014
作为最优钻井参数数据集,具体表达式如下:
Figure 229557DEST_PATH_IMAGE015
其中,
Figure 480409DEST_PATH_IMAGE016
代表某一组最优的钻井参数数据集的第i个钻井参数平均值数据,
Figure 337638DEST_PATH_IMAGE007
;i为数据集中数据点定位控制参数;n为最优钻井参数数据集个数,无量纲;
步骤S37:将步骤S36中的最优钻井参数数据集
Figure 939521DEST_PATH_IMAGE014
反馈给钻井工程师控制系统;
步骤S38:如果优化的钻井参数能达到预期提速幅值
Figure 727348DEST_PATH_IMAGE002
,则优化过程结束,并继续下一段钻速优化,如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 98287DEST_PATH_IMAGE001
,优化过程结束。
所述步骤S3优化的钻井参数不能达到预期提速幅值时,则采用预设目标钻速优化法对步骤S2建立的数据及进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
所述预设目标钻速优化法具体实现步骤如下:
步骤S41:预先设定钻速最优化区间
Figure 110105DEST_PATH_IMAGE017
,作为目标优化钻速;
步骤S42:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 215595DEST_PATH_IMAGE003
和钻井参数数据集
Figure 338272DEST_PATH_IMAGE004
,表达式形式如下:
Figure 766979DEST_PATH_IMAGE005
Figure 215278DEST_PATH_IMAGE006
其中,
Figure 791753DEST_PATH_IMAGE007
Figure 921383DEST_PATH_IMAGE008
Figure 14717DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 368338DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 432108DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S43:遍寻整个单元钻速数据集
Figure 162167DEST_PATH_IMAGE003
步骤S44:如果遍寻钻速结果
Figure 565467DEST_PATH_IMAGE018
,则将遍寻钻速结果
Figure 840721DEST_PATH_IMAGE019
作为最优钻速,将对应的钻井参数
Figure 391788DEST_PATH_IMAGE011
作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S45:如果
Figure 659959DEST_PATH_IMAGE020
,则将遍寻钻速结果
Figure 714502DEST_PATH_IMAGE019
作为最优钻速,将对应的钻井参数
Figure 878767DEST_PATH_IMAGE011
作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S46:如果
Figure 402284DEST_PATH_IMAGE021
,则遍寻钻速结果
Figure 474145DEST_PATH_IMAGE019
不能作为最优钻速,继续遍寻钻速数据集
Figure 648774DEST_PATH_IMAGE003
步骤S47:如果优化的钻井参数
Figure 515099DEST_PATH_IMAGE011
能达到预期提速幅值
Figure 978442DEST_PATH_IMAGE002
,则继续下一段钻速优化;
步骤S48:重新预设步骤S41钻速最优化区间
Figure 339147DEST_PATH_IMAGE017
步骤S49:重复步骤S42~步骤S47;
步骤S410:如果优化的钻井参数
Figure 633862DEST_PATH_IMAGE011
能达到预期提速幅值
Figure 936667DEST_PATH_IMAGE002
,则优化过程结束,并继续下一段钻速优化;
步骤S411:如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 621727DEST_PATH_IMAGE001
,优化过程结束。
所述步骤S3优化的钻井参数不能达到预期提速幅值时,则采用散点精细化钻速优化法对步骤S2建立的数据及进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化.
所述散点精细化钻速优化法具体实现步骤如下:
步骤S51:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 35390DEST_PATH_IMAGE003
和钻井参数数据集
Figure 690273DEST_PATH_IMAGE004
,表达式形式如下:
Figure 429559DEST_PATH_IMAGE005
Figure 398652DEST_PATH_IMAGE006
其中,
Figure 553690DEST_PATH_IMAGE007
Figure 557418DEST_PATH_IMAGE008
Figure 218337DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 674727DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 633455DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S52:初始化设定3个目标钻速数据
Figure 226111DEST_PATH_IMAGE022
步骤S53:将3个目标钻速数据
Figure 41620DEST_PATH_IMAGE022
划分为最优、中等、最差等级,3个目标钻速数据
Figure 1617DEST_PATH_IMAGE023
步骤S54:
Figure 764036DEST_PATH_IMAGE024
Figure 476777DEST_PATH_IMAGE025
的平均值作为中点值
Figure 463188DEST_PATH_IMAGE026
步骤S55:将中点值
Figure 894169DEST_PATH_IMAGE026
与最差钻速
Figure 742171DEST_PATH_IMAGE027
之间的连线作为中心线,并沿着中心线优化处理;
步骤S56:将其他钻速值
Figure 778260DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 669993DEST_PATH_IMAGE027
反射对比;
步骤S57:将其他钻速值
Figure 853849DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 754809DEST_PATH_IMAGE027
反方向扩展对比,直到大于
Figure 379826DEST_PATH_IMAGE024
步骤S58:将其他钻速值
Figure 455841DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 861415DEST_PATH_IMAGE027
Figure 566066DEST_PATH_IMAGE026
中点值对比,直到大于
Figure 311168DEST_PATH_IMAGE024
步骤S59:如果
Figure 810282DEST_PATH_IMAGE027
>步骤S54、步骤S55、步骤S56的钻速值,则寻找步骤S54、步骤S55、步骤S56钻速值中的最优值;
步骤S510:将步骤S57中的最优钻速值对应的钻井参数作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S511:如果优化的钻井参数能达到预期提速幅值
Figure 453884DEST_PATH_IMAGE002
, 则优化过程结束,并继续下一段钻速优化,如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 696647DEST_PATH_IMAGE001
或者将步骤S54、步骤S55、步骤S56的钻速值汇聚成平均值
Figure 296256DEST_PATH_IMAGE028
,优化过程结束;
其中,
Figure 966271DEST_PATH_IMAGE029
Figure 346437DEST_PATH_IMAGE030
Figure 878044DEST_PATH_IMAGE031
为初始化设定的3个目标钻速数据,
Figure 597738DEST_PATH_IMAGE024
为目标钻速中最优转速,
Figure 438655DEST_PATH_IMAGE025
为目标钻速中中等转速,
Figure 306117DEST_PATH_IMAGE027
为目标钻速中最差转速,
Figure 890682DEST_PATH_IMAGE026
Figure 12353DEST_PATH_IMAGE024
Figure 227434DEST_PATH_IMAGE025
的平均值,记为中点值,
Figure 51033DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据。
本发明的有益效果:
本发明公开了一种基于数据驱动的钻速随钻深层精细化优化方法,该方法包括根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集,根据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,通过控制钻速随钻优化处理过程极限时间及钻速提速幅值来终止优化过程,本发明公开的一种基于数据驱动的钻速随钻优化方法,据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,比传统的依靠钻井工程师经验进行转速优化更具科学性,能够在不同段内进行转速优化,通过大量的实际数据进行科学的随钻转速优化,使得转速的最优值无限接近理想值,对实时优化钻井施工、提高钻井效率具有指导作用。
具体实施方式
下面对本发明做进一步的描述,本发明的保护范围不局限于以下所述:
实施例1:
一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述钻速随钻优化方法包括以下步骤:
步骤S1:确定钻速随钻优化处理过程极限时间
Figure 704868DEST_PATH_IMAGE001
、钻速提速幅值
Figure 930313DEST_PATH_IMAGE002
步骤S2:确定随钻数据单元操作时间段或单元操作进尺,根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集;
步骤S3:根据峰值区间平均值法对步骤S2建立的数据集进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
步骤S2的随钻单元数据集包含的参数有钻速和钻井参数两类,钻井参数包括钻压、转速、扭矩、排量、钻头类型、轴向(纵向)振动加速度、横向振动加速度、周向(扭转)振动加速度、钻井液密度、井底环空压力。
、峰值区间平均值法
步骤S3峰值区间平均值法具体实现步骤如下:
步骤S31:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 316295DEST_PATH_IMAGE003
和钻井参数数据集
Figure 640573DEST_PATH_IMAGE004
,表达式形式如下:
Figure 832520DEST_PATH_IMAGE005
Figure 912471DEST_PATH_IMAGE006
其中,
Figure 734934DEST_PATH_IMAGE007
Figure 533125DEST_PATH_IMAGE008
Figure 279496DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 213954DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 4055DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S32:遍寻整个单元钻速数据集
Figure 492805DEST_PATH_IMAGE003
步骤S33:预设钻速峰值阶段值CT,取值70%~95%;
步骤S34:锁定步骤S32钻速数据集
Figure 760976DEST_PATH_IMAGE003
前CT的钻速,形成优选的钻速峰值区间数据集
Figure 566252DEST_PATH_IMAGE012
步骤S35:锁定步骤S34中数据集
Figure 792834DEST_PATH_IMAGE012
对应的钻井参数,形成优化的钻井参数数据集
Figure 300038DEST_PATH_IMAGE013
步骤S36:锁定步骤S35中的钻井参数数据集
Figure 371900DEST_PATH_IMAGE013
取平均值,形成钻井参数平均值数据集
Figure 749791DEST_PATH_IMAGE014
,将数据集
Figure 366849DEST_PATH_IMAGE014
作为最优钻井参数数据集,具体表达式如下:
Figure 892508DEST_PATH_IMAGE015
其中,
Figure 502481DEST_PATH_IMAGE016
代表某一组最优的钻井参数数据集的第i个钻井参数平均值数据,
Figure 734879DEST_PATH_IMAGE007
;i为数据集中数据点定位控制参数;n为最优钻井参数数据集个数,无量纲;
步骤S37:将步骤S36中的最优钻井参数数据集
Figure 772105DEST_PATH_IMAGE014
反馈给钻井工程师控制系统;
步骤S38:如果优化的钻井参数能达到预期提速幅值
Figure 532863DEST_PATH_IMAGE002
,则优化过程结束,并继续下一段钻速优化,如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 946527DEST_PATH_IMAGE001
,优化过程结束。
、预设目标钻速优化法
步骤S3优化的钻井参数不能达到预期提速幅值时,则采用预设目标钻速优化法对步骤S2建立的数据及进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
预设目标钻速优化法具体实现步骤如下:
步骤S41:预先设定钻速最优化区间
Figure 33432DEST_PATH_IMAGE017
,作为目标优化钻速;
步骤S42:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 507138DEST_PATH_IMAGE003
和钻井参数数据集
Figure 741811DEST_PATH_IMAGE004
,表达式形式如下:
Figure 444319DEST_PATH_IMAGE005
Figure 651309DEST_PATH_IMAGE006
其中,
Figure 30338DEST_PATH_IMAGE007
Figure 486727DEST_PATH_IMAGE008
Figure 507772DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 116739DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 135511DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S43:遍寻整个单元钻速数据集
Figure 79196DEST_PATH_IMAGE003
步骤S44:如果遍寻钻速结果
Figure 638354DEST_PATH_IMAGE018
,则将遍寻钻速结果
Figure 351095DEST_PATH_IMAGE019
作为最优钻速,将对应的钻井参数
Figure 540768DEST_PATH_IMAGE011
作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S45:如果
Figure 722481DEST_PATH_IMAGE020
,则将遍寻钻速结果
Figure 85330DEST_PATH_IMAGE019
作为最优钻速,将对应的钻井参数
Figure 652577DEST_PATH_IMAGE011
作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S46:如果
Figure 13151DEST_PATH_IMAGE021
,则遍寻钻速结果
Figure 931429DEST_PATH_IMAGE019
不能作为最优钻速,继续遍寻钻速数据集
Figure 580191DEST_PATH_IMAGE003
步骤S47:如果优化的钻井参数
Figure 267525DEST_PATH_IMAGE011
能达到预期提速幅值
Figure 799000DEST_PATH_IMAGE002
,则继续下一段钻速优化;
步骤S48:重新预设步骤S41钻速最优化区间
Figure 938994DEST_PATH_IMAGE017
步骤S49:重复步骤S42~步骤S47;
步骤S410:如果优化的钻井参数
Figure 909225DEST_PATH_IMAGE011
能达到预期提速幅值
Figure 201797DEST_PATH_IMAGE002
,则优化过程结束,并继续下一段钻速优化;
步骤S411:如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 904173DEST_PATH_IMAGE001
,优化过程结束。
、散点精细化钻速优化法
步骤S3优化的钻井参数不能达到预期提速幅值时,则采用散点精细化钻速优化法对步骤S2建立的数据及进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
散点精细化钻速优化法具体实现步骤如下:
步骤S51:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 531464DEST_PATH_IMAGE003
和钻井参数数据集
Figure 508647DEST_PATH_IMAGE004
,表达式形式如下:
Figure 436152DEST_PATH_IMAGE005
Figure 309430DEST_PATH_IMAGE006
其中,
Figure 174749DEST_PATH_IMAGE007
Figure 221202DEST_PATH_IMAGE008
Figure 737634DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 578551DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 383696DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S52:初始化设定3个目标钻速数据
Figure 718994DEST_PATH_IMAGE022
步骤S53:将3个目标钻速数据
Figure 355512DEST_PATH_IMAGE022
划分为最优、中等、最差等级,3个目标钻速数据
Figure 367330DEST_PATH_IMAGE023
步骤S54:
Figure 394192DEST_PATH_IMAGE024
Figure 48027DEST_PATH_IMAGE025
的平均值作为中点值
Figure 21275DEST_PATH_IMAGE026
步骤S55:将中点值
Figure 203994DEST_PATH_IMAGE026
与最差钻速
Figure 983732DEST_PATH_IMAGE027
之间的连线作为中心线,并沿着中心线优化处理;
步骤S56:将其他钻速值
Figure 910099DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 255630DEST_PATH_IMAGE027
反射对比;
步骤S57:将其他钻速值
Figure 625563DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 627017DEST_PATH_IMAGE027
反方向扩展对比,直到大于
Figure 91496DEST_PATH_IMAGE024
步骤S58:将其他钻速值
Figure 557112DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 347214DEST_PATH_IMAGE027
Figure 570385DEST_PATH_IMAGE026
中点值对比,直到大于
Figure 854867DEST_PATH_IMAGE024
步骤S59:如果
Figure 174990DEST_PATH_IMAGE027
>步骤S54、步骤S55、步骤S56的钻速值,则寻找步骤S54、步骤S55、步骤S56钻速值中的最优值;
步骤S510:将步骤S57中的最优钻速值对应的钻井参数作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S511:如果优化的钻井参数能达到预期提速幅值
Figure 870413DEST_PATH_IMAGE002
, 则优化过程结束,并继续下一段钻速优化,如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 846459DEST_PATH_IMAGE001
或者将步骤S54、步骤S55、步骤S56的钻速值汇聚成平均值
Figure 918321DEST_PATH_IMAGE028
,优化过程结束;
其中,
Figure 843682DEST_PATH_IMAGE029
Figure 975587DEST_PATH_IMAGE030
Figure 173350DEST_PATH_IMAGE031
为初始化设定的3个目标钻速数据,
Figure 48902DEST_PATH_IMAGE024
为目标钻速中最优转速,
Figure 343617DEST_PATH_IMAGE025
为目标钻速中中等转速,
Figure 128646DEST_PATH_IMAGE027
为目标钻速中最差转速,
Figure 79284DEST_PATH_IMAGE026
Figure 492948DEST_PATH_IMAGE024
Figure 642170DEST_PATH_IMAGE025
的平均值,记为中点值,
Figure 850297DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据。
本发明公开了一种基于数据驱动的钻速随钻优化方法,该方法包括根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集,根据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,通过控制钻速随钻优化处理过程极限时间及钻速提速幅值来终止优化过程,本发明公开的一种基于数据驱动的钻速随钻优化方法,据峰值区间平均值法或者预设目标钻速优化法或者散点精细化钻速优化法进行钻速随钻优化,比传统的依靠钻井工程师经验进行转速优化更具科学性,能够在不同段内进行转速优化,通过大量的实际数据进行科学的随钻转速优化,使得转速的最优值无限接近理想值,对实时优化钻井施工、提高钻井效率具有指导作用。
至此,本领域技术人员认识到,虽然本文已详尽展示和描述了本发明的实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导符合本发明原理的许多其他变形或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变形或修改。

Claims (8)

1.一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述钻速随钻优化方法包括以下步骤:
步骤S1:确定钻速随钻优化处理过程极限时间
Figure 591213DEST_PATH_IMAGE001
、钻速提速幅值
Figure 711616DEST_PATH_IMAGE002
步骤S2:确定随钻数据单元操作时间段或单元操作进尺,根据单元操作时间段或单元操作进尺建立对应的随钻单元数据集;
步骤S3:根据峰值区间平均值法对步骤S2建立的数据集进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
2.如权利要求1所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述步骤S2的随钻单元数据集包含的参数有钻速和钻井参数两类。
3.如权利要求2所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述钻井参数包括钻压、转速、扭矩、排量、钻头类型、轴向振动加速度、横向振动加速度、周向振动加速度、钻井液密度、井底环空压力。
4.如权利要求1所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述步骤S3峰值区间平均值法具体实现步骤如下:
步骤S31:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 756933DEST_PATH_IMAGE003
和钻井参数数据集
Figure 230770DEST_PATH_IMAGE004
,表达式形式如下:
Figure 310722DEST_PATH_IMAGE005
Figure 336447DEST_PATH_IMAGE006
其中,
Figure 869059DEST_PATH_IMAGE007
Figure 395855DEST_PATH_IMAGE008
Figure 533576DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 792519DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 625477DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S32:遍寻整个单元钻速数据集
Figure 628068DEST_PATH_IMAGE003
步骤S33:预设钻速峰值阶段值CT,取值70%~95%;
步骤S34:锁定步骤S32钻速数据集
Figure 354715DEST_PATH_IMAGE003
前CT的钻速,形成优选的钻速峰值区间数据集
Figure 50139DEST_PATH_IMAGE012
步骤S35:锁定步骤S34中数据集
Figure 619660DEST_PATH_IMAGE012
对应的钻井参数,形成优化的钻井参数数据集
Figure 160363DEST_PATH_IMAGE013
步骤S36:锁定步骤S35中的钻井参数数据集
Figure 7096DEST_PATH_IMAGE013
取平均值,形成钻井参数平均值数据集
Figure 607842DEST_PATH_IMAGE014
,将数据集
Figure 412463DEST_PATH_IMAGE014
作为最优钻井参数数据集,具体表达式如下:
Figure 756856DEST_PATH_IMAGE015
其中,
Figure 458096DEST_PATH_IMAGE016
代表某一组最优的钻井参数数据集的第i个钻井参数平均值数据,
Figure 495322DEST_PATH_IMAGE007
;i为数据集中数据点定位控制参数;n为最优钻井参数数据集个数,无量纲;
步骤S37:将步骤S36中的最优钻井参数数据集
Figure 773857DEST_PATH_IMAGE014
反馈给钻井工程师控制系统;
步骤S38:如果优化的钻井参数能达到预期提速幅值
Figure 921941DEST_PATH_IMAGE002
,则优化过程结束,并继续下一段钻速优化,如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 477688DEST_PATH_IMAGE001
,优化过程结束。
5.如权利要求1所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述步骤S3优化的钻井参数不能达到预期提速幅值时,则采用预设目标钻速优化法对步骤S2建立的数据及进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
6.如权利要求5所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述预设目标钻速优化法具体实现步骤如下:
步骤S41:预先设定钻速最优化区间
Figure 685815DEST_PATH_IMAGE017
,作为目标优化钻速;
步骤S42:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 202378DEST_PATH_IMAGE003
和钻井参数数据集
Figure 888574DEST_PATH_IMAGE004
,表达式形式如下:
Figure 564406DEST_PATH_IMAGE005
Figure 943435DEST_PATH_IMAGE006
其中,
Figure 196562DEST_PATH_IMAGE007
Figure 686449DEST_PATH_IMAGE008
Figure 951208DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 501138DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 992294DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S43:遍寻整个单元钻速数据集
Figure 285872DEST_PATH_IMAGE003
步骤S44:如果遍寻钻速结果
Figure 670717DEST_PATH_IMAGE018
,则将遍寻钻速结果
Figure 125969DEST_PATH_IMAGE019
作为最优钻速,将对应的钻井参数
Figure 619267DEST_PATH_IMAGE011
作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S45:如果
Figure 388640DEST_PATH_IMAGE020
,则将遍寻钻速结果
Figure 955887DEST_PATH_IMAGE019
作为最优钻速,将对应的钻井参数
Figure 395090DEST_PATH_IMAGE011
作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S46:如果
Figure 47788DEST_PATH_IMAGE021
,则遍寻钻速结果
Figure 620852DEST_PATH_IMAGE019
不能作为最优钻速,继续遍寻钻速数据集
Figure 777027DEST_PATH_IMAGE003
步骤S47:如果优化的钻井参数
Figure 901978DEST_PATH_IMAGE011
能达到预期提速幅值
Figure 776393DEST_PATH_IMAGE002
,则继续下一段钻速优化;
步骤S48:重新预设步骤S41钻速最优化区间
Figure 153148DEST_PATH_IMAGE017
步骤S49:重复步骤S42~步骤S47;
步骤S410:如果优化的钻井参数
Figure 429408DEST_PATH_IMAGE011
能达到预期提速幅值
Figure 473063DEST_PATH_IMAGE002
,则优化过程结束,并继续下一段钻速优化;
步骤S411:如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 834774DEST_PATH_IMAGE001
,优化过程结束。
7.如权利要求1所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述步骤S3优化的钻井参数不能达到预期提速幅值时,则采用散点精细化钻速优化法对步骤S2建立的数据及进行钻速优化,获得优化的钻井参数,将钻井参数反馈给钻井工程师控制系统,如果优化的钻井参数能达到预期提速幅值,则终止优化过程,并继续下一段钻速优化。
8.如权利要求7所述的一种基于数据驱动的钻速随钻深层精细化优化方法,其特征在于,所述散点精细化钻速优化法具体实现步骤如下:
步骤S51:根据随钻数据单元操作时间段或单元操作进尺确定随钻单元数据集中的钻速数据集
Figure 749641DEST_PATH_IMAGE003
和钻井参数数据集
Figure 880408DEST_PATH_IMAGE004
,表达式形式如下:
Figure 347161DEST_PATH_IMAGE005
Figure 196168DEST_PATH_IMAGE006
其中,
Figure 649147DEST_PATH_IMAGE007
Figure 899999DEST_PATH_IMAGE008
Figure 288386DEST_PATH_IMAGE009
;i,k,t为为数据集中数据点定位控制参数;n为随钻单元数据集个数,无量纲;m为钻井参数个数,无量纲;l为随钻单元数据集中数据个数,无量纲;
Figure 624690DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,
Figure 881359DEST_PATH_IMAGE011
代表某一组随钻钻井参数集的第i个钻井参数数据;
步骤S52:初始化设定3个目标钻速数据
Figure 986718DEST_PATH_IMAGE022
步骤S53:将3个目标钻速数据
Figure 795274DEST_PATH_IMAGE022
划分为最优、中等、最差等级,3个目标钻速数据
Figure 353294DEST_PATH_IMAGE023
步骤S54:
Figure 413654DEST_PATH_IMAGE024
Figure 373520DEST_PATH_IMAGE025
的平均值作为中点值
Figure 103710DEST_PATH_IMAGE026
步骤S55:将中点值
Figure 414605DEST_PATH_IMAGE026
与最差钻速
Figure 13077DEST_PATH_IMAGE027
之间的连线作为中心线,并沿着中心线优化处理;
步骤S56:将其他钻速值
Figure 827449DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 243387DEST_PATH_IMAGE027
反射对比;
步骤S57:将其他钻速值
Figure 979262DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 443741DEST_PATH_IMAGE027
反方向扩展对比,直到大于
Figure 925669DEST_PATH_IMAGE024
步骤S58:将其他钻速值
Figure 450192DEST_PATH_IMAGE010
沿着中点线运行,沿着中心向最差钻速
Figure 407783DEST_PATH_IMAGE027
Figure 410374DEST_PATH_IMAGE026
中点值对比,直到大于
Figure 261656DEST_PATH_IMAGE024
步骤S59:如果
Figure 957079DEST_PATH_IMAGE027
>步骤S54、步骤S55、步骤S56的钻速值,则寻找步骤S54、步骤S55、步骤S56钻速值中的最优值;
步骤S510:将步骤S57中的最优钻速值对应的钻井参数作为最优钻井参数,并反馈给钻井工程师控制系统;
步骤S511:如果优化的钻井参数能达到预期提速幅值
Figure 136388DEST_PATH_IMAGE002
, 则优化过程结束,并继续下一段钻速优化,如果优化运行时间超过预设随钻优化处理过程极限时间
Figure 942670DEST_PATH_IMAGE001
或者将步骤S54、步骤S55、步骤S56的钻速值汇聚成平均值
Figure 661840DEST_PATH_IMAGE028
,优化过程结束;
其中,
Figure 262585DEST_PATH_IMAGE029
Figure 194769DEST_PATH_IMAGE030
Figure 539163DEST_PATH_IMAGE031
为初始化设定的3个目标钻速数据,r/min;
Figure 365036DEST_PATH_IMAGE024
为目标钻速中最优转速,r/min;
Figure 136683DEST_PATH_IMAGE025
为目标钻速中中等转速,r/min;
Figure 556163DEST_PATH_IMAGE027
为目标钻速中最差转速,r/min;
Figure 704248DEST_PATH_IMAGE026
Figure 135360DEST_PATH_IMAGE024
Figure 343488DEST_PATH_IMAGE025
的平均值,记为中点值,r/min;
Figure 984685DEST_PATH_IMAGE010
代表某一组随钻钻速数据集的第i个钻速数据,r/min。
CN202110932972.4A 2021-08-14 2021-08-14 一种基于数据驱动的钻速随钻深层精细化优化方法 Active CN113408081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110932972.4A CN113408081B (zh) 2021-08-14 2021-08-14 一种基于数据驱动的钻速随钻深层精细化优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110932972.4A CN113408081B (zh) 2021-08-14 2021-08-14 一种基于数据驱动的钻速随钻深层精细化优化方法

Publications (2)

Publication Number Publication Date
CN113408081A true CN113408081A (zh) 2021-09-17
CN113408081B CN113408081B (zh) 2022-09-02

Family

ID=77688529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110932972.4A Active CN113408081B (zh) 2021-08-14 2021-08-14 一种基于数据驱动的钻速随钻深层精细化优化方法

Country Status (1)

Country Link
CN (1) CN113408081B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090285A1 (en) * 2003-03-31 2004-10-21 Baker Hughes Incorporated Real-time drilling optimization based on mwd dynamic measurements
US20110203845A1 (en) * 2010-02-23 2011-08-25 Halliburton Energy Services, Inc. System and method for optimizing drilling speed
CN104866636A (zh) * 2014-02-24 2015-08-26 中国石油化工集团公司 一种随钻测井数据实时处理方法
CN109281649A (zh) * 2018-08-13 2019-01-29 中国石油天然气集团有限公司 钻井优化方法及装置
CN111434886A (zh) * 2019-01-15 2020-07-21 中国石油化工股份有限公司 用于钻井过程的机械钻速计算方法及装置
CN112074647A (zh) * 2018-03-13 2020-12-11 人工智能钻井股份有限公司 用于自动井规划、钻井和引导系统的钻井参数优化
CN112727433A (zh) * 2020-12-24 2021-04-30 四川宏华电气有限责任公司 一种钻井参数优化方法
CN112901137A (zh) * 2021-03-08 2021-06-04 西南石油大学 基于深度神经网络Sequential模型的深井钻井机械钻速预测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090285A1 (en) * 2003-03-31 2004-10-21 Baker Hughes Incorporated Real-time drilling optimization based on mwd dynamic measurements
US20110203845A1 (en) * 2010-02-23 2011-08-25 Halliburton Energy Services, Inc. System and method for optimizing drilling speed
CN104866636A (zh) * 2014-02-24 2015-08-26 中国石油化工集团公司 一种随钻测井数据实时处理方法
CN112074647A (zh) * 2018-03-13 2020-12-11 人工智能钻井股份有限公司 用于自动井规划、钻井和引导系统的钻井参数优化
CN109281649A (zh) * 2018-08-13 2019-01-29 中国石油天然气集团有限公司 钻井优化方法及装置
CN111434886A (zh) * 2019-01-15 2020-07-21 中国石油化工股份有限公司 用于钻井过程的机械钻速计算方法及装置
CN112727433A (zh) * 2020-12-24 2021-04-30 四川宏华电气有限责任公司 一种钻井参数优化方法
CN112901137A (zh) * 2021-03-08 2021-06-04 西南石油大学 基于深度神经网络Sequential模型的深井钻井机械钻速预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
金业权等: "综合考虑成本和钻速的PDC钻头钻进参数优化设计", 《石油钻探技术》 *
黄林栋等: "外围油田小井眼开发井钻进参数优选技术", 《大庆石油地质与开发》 *

Also Published As

Publication number Publication date
CN113408081B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US11118440B2 (en) Method, system and computer-readable medium for automatically controlling a drilling operation
CN111046593A (zh) 一种基于钻进时间最短的三维水平井轨道优化设计方法
CN114370264B (zh) 机械钻速确定、钻井参数优化方法、装置及电子设备
CN111364966B (zh) 一种石油钻井恒压差自动送钻控制方法
CN113408081B (zh) 一种基于数据驱动的钻速随钻深层精细化优化方法
CN107201877A (zh) 一种旋转导向钻井的闭环控制方法及系统
CN103541657A (zh) 一种油气井硬地层侧钻钻具和施工方法
CN111091293A (zh) 一种油藏开发动态预警方法
CN117763466A (zh) 一种基于聚类算法的地层可钻性评价方法及系统
CN115142791A (zh) 旋转导向系统自动曲率控制方法和系统、计算机设备
CN106257463B (zh) 一种钻头性能评价方法及系统
CN113868951A (zh) 一种智能化判断钻井短起最佳时机的方法
CN115875009B (zh) 硬岩钻进用超前钻机控制方法
CN104453748A (zh) 通过射流流场变化探测射孔孔眼位置并清洗孔眼的方法
CN115795840A (zh) 一种基于有效应力法的地层压力监测方法
CN116341370A (zh) 一种tbm掘进岩体质量快速确定方法
CN115983327A (zh) 盾构掘进支护压力动态预测与智能决策控制系统
CN112727433A (zh) 一种钻井参数优化方法
CN112431585A (zh) 一种基于深度信念网络的自动送钻方法
CN111827964A (zh) 一种基于综合录井参数的随钻钻头工况判断方法
CN111335812B (zh) 一种钻井工具面角自校正闭环控制方法
CN113530439B (zh) 一种自动调整工具面定向控制系统和方法
CN107288550A (zh) 适用于硬质岩土层的打桩成孔钻头
CN111364927B (zh) 天然气井解堵方法及系统
CN116446843A (zh) 一种基于机器学习的井底钻井参数监控及优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant