CN113403559A - Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part - Google Patents

Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part Download PDF

Info

Publication number
CN113403559A
CN113403559A CN202110663101.7A CN202110663101A CN113403559A CN 113403559 A CN113403559 A CN 113403559A CN 202110663101 A CN202110663101 A CN 202110663101A CN 113403559 A CN113403559 A CN 113403559A
Authority
CN
China
Prior art keywords
heat treatment
rene
inconel718
temperature alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110663101.7A
Other languages
Chinese (zh)
Other versions
CN113403559B (en
Inventor
王艳
陈基东
林思宇
胡彦彬
田秦冠
刘召虎
杨雪坤
张晓华
赵刚
李欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aecc Chengdu Engine Co ltd
Original Assignee
Aecc Chengdu Engine Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aecc Chengdu Engine Co ltd filed Critical Aecc Chengdu Engine Co ltd
Priority to CN202110663101.7A priority Critical patent/CN113403559B/en
Publication of CN113403559A publication Critical patent/CN113403559A/en
Application granted granted Critical
Publication of CN113403559B publication Critical patent/CN113403559B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Abstract

The invention provides a heat treatment strengthening method for an Inconel718 and Rene' 41 dissimilar superalloy welded structural member, and belongs to the technical field of heat treatment of nickel-based superalloys. The invention solves the technical problem that no effective heat treatment method exists at present for enabling a welding line and a base metal to simultaneously meet the requirement of service performance aiming at the dissimilar nickel-based high-temperature alloy. The heat treatment method comprises the steps of firstly carrying out solution heat treatment on the Inconel718 high-temperature alloy, carrying out solution heat treatment and aging heat treatment on the Rene '41 high-temperature alloy, then welding the solid-solution Inconel718 and the aging Rene' 41, and finally carrying out aging heat treatment. The invention adopts corresponding heat treatment methods before and after the welding of the dissimilar high-temperature alloy, so that each base metal meets the requirement of aging strengthening performance, and meanwhile, the welding line also meets the corresponding requirement of mechanical performance, thereby having practical significance for the use of the welded structural member of the dissimilar high-temperature alloy of the aero-engine.

Description

Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part
Technical Field
The invention relates to the technical field of heat treatment of nickel-based high-temperature alloys, in particular to a heat treatment strengthening method for an Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part.
Background
The nickel-based high-temperature alloy has excellent performance at medium and high temperature, the Inconel718 has good fatigue resistance, radiation resistance, oxidation resistance and corrosion resistance, good processing performance, welding performance and long-term structure stability, and becomes the most widely applied nickel-based high-temperature alloy in the history of aeroengines, the Rene' 41 has high tensile and lasting creep strength and good oxidation resistance at 650-900 ℃, and the material has good plasticity after deformation. Inconel718 and Rene '41 are common materials for parts such as aeroengine turbines, casings, blades and the like, the similar designations of the Inconel718 are GH4169 and UNS N07718, the similar designations of the Rene' 41 are GH141 and UNS N07041, and both high-temperature alloys are solid solution aging strengthening nickel-based high-temperature alloys. The solid solution strengthening and age hardening high temperature alloy weldment is generally welded in a solid solution or annealing state, has better weldability, plasticity and compactness, and high joint strength, and the age hardening alloy has the risks of welding crack and low performance if the age hardening alloy is welded in an aging state.
Related researches on the deformation strengthening heat treatment of Inconel718 and Rene' 41 nickel-based high-temperature alloys are carried out at home and abroad, but the researches are based on single material performance researches. In addition, due to structural design reasons, different high-temperature alloy parts are required to be welded to be used as structural parts, while Incone718 and Rene '41 are used as common materials for nickel-based high-temperature alloys, so that research on welding technology and process of Inconel718 and Rene' 41 different high-temperature alloys has been carried out at present, but most of the content is based on research on welding parameters and weld performance of two high-temperature alloys, and no relevant report is provided on how to achieve the aging state performance of each base metal by adopting an aging heat treatment method after welding of base metals in a solid solution state or an annealing state of the different high-temperature alloys.
Disclosure of Invention
The invention solves the technical problem that no effective heat treatment method exists at present for enabling a welding line and a base metal to simultaneously meet the requirement of service performance aiming at the dissimilar nickel-based high-temperature alloy.
Aiming at the problems, the invention provides a heat treatment strengthening method of an Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part, which comprises the following steps:
(1) carrying out solution heat treatment on the Inconel718 high-temperature alloy;
(2) carrying out solution heat treatment and aging heat treatment on the Rene' 41 high-temperature alloy;
(3) and welding the solid solution state Inconel718 and the aged state Rene' 41 by argon arc welding, and then carrying out aging heat treatment on the welded structural part. The welding structure comprises a base material and a welding joint.
Further, the temperature of the solution heat treatment in the step 1 is 941-1010 ℃ for 1h, and the air cooling is carried out to the room temperature.
Further, the temperature of the solution heat treatment in the step 2 is 1079 ℃, the temperature is 1h, and the air cooling is carried out to the room temperature.
Further, the temperature of the aging heat treatment in the step 2 is 760 ℃, 15-17 h, and the air cooling is carried out to the room temperature.
Further, the aging heat treatment system in the step 3 is 718-760 ℃, the temperature is kept for 8h, the furnace is cooled to 621-649 ℃ at 48-64 ℃/h, the temperature is kept for 8h, and the furnace is cooled to the room temperature.
Wherein, the welding adopts argon arc welding.
Among them, the Inconel718 alloy can be replaced by GH4169 or UNS N07718.
Wherein GH141 or UNS N07041 can be used alternatively for Rene' 41 alloy.
The beneficial effects produced by the invention are as follows:
compared with the existing single alloy heat treatment strengthening method and the existing dissimilar superalloy welding process, the heat treatment method enables the properties of the Inconel718 and Rene' 41 welded structural parts to finally meet the mechanical property requirements of the base metal and welding seam standards;
the method is simple to operate, convenient to execute and wide in application prospect, and can provide a technical method for application of dissimilar high-temperature alloy welding components in design and manufacture of aero-engines.
Detailed Description
In the actual production process, the high-temperature alloy is adopted to manufacture parts in the design structure, the high-temperature alloy has better mechanical property and high-temperature resistance after solid solution aging strengthening is mainly considered, and the performance of the material after the aging strengthening is achieved meets the use requirement of the parts. The heat treatment method provided by the invention is characterized in that before and after the Inconel718 and Rene' 41 dissimilar high-temperature alloys are welded, the corresponding heat treatment method is adopted to enable each base metal to meet the requirement of respective aging strengthening performance, and meanwhile, the welding line also meets the corresponding mechanical property requirement, so that the heat treatment method has practical significance for the use of the aircraft engine dissimilar high-temperature alloy welded structural member.
The welding process is not particularly limited, and argon arc welding is preferably adopted.
As a preferred embodiment, the welding misalignment is not more than 0.3mm, the assembly gap is not more than 0.5mm, the width and the rest height of the welding seam are not more than 75% of the size of the welding seam, and cracks, slag inclusions, craters, burning-through and the like are not required to exist on the welding seam.
As a preferred embodiment, before welding, the surface to be welded is cleaned (polished or acid-washed or wiped by alcohol acetone), assembly positioning welding is carried out by adopting a manual argon arc welding machine, welding is carried out by adopting an automatic argon arc welding machine, after welding, the quality of the welding line is detected by adopting a fluorescence and x-ray method, and heat treatment is carried out after the welding line is qualified.
In a preferred embodiment, the invention is cooled to room temperature after welding and then subjected to an aging treatment.
Since the dissimilar alloys of the present invention are not limited to only Inconel718 and Rene' 41, the specific heat treatment schedule in the solution or aging treatment can be routinely adjusted for different alloys.
Example 1
Carrying out solution heat treatment on the Inconel718 high-temperature alloy, carrying out heat preservation for 1 hour after thorough heat exchange at 980 ℃, and carrying out air cooling to room temperature; carrying out solid solution and aging heat treatment on the Rene' 41 high-temperature alloy, carrying out heat preservation for 1h after heat penetration at 1079 ℃, carrying out air cooling to room temperature, carrying out heat preservation for 16 h after heat penetration at 760 ℃, and carrying out air cooling to room temperature; and welding the solid solution state Inconel718 and the aging state Rene' 41 by adopting an argon arc welding butt joint, then carrying out aging treatment, completely heating at 760 ℃, keeping the temperature for 8 hours, cooling the furnace to 633 ℃, keeping the temperature for 8 hours, and cooling the furnace to room temperature.
Example 2
Carrying out solution heat treatment on the Inconel718 high-temperature alloy, carrying out heat penetration at 960 ℃, then carrying out heat preservation for 1 hour, and carrying out air cooling to room temperature; carrying out solid solution and aging heat treatment on the Rene' 41 high-temperature alloy, carrying out heat preservation for 1h after heat penetration at 1079 ℃, carrying out air cooling to room temperature, carrying out heat preservation for 16 h after heat penetration at 760 ℃, and carrying out air cooling to room temperature; and welding the solid solution state Inconel718 and the aging state Rene '41 by adopting an argon arc welding butt joint, then carrying out aging treatment, carrying out heat preservation for 8 hours after the solid solution state Inconel718 and the aging state Rene' 41 are thoroughly heated at 730 ℃, carrying out furnace cooling to 633 ℃, carrying out heat preservation for 8 hours, and carrying out air cooling to room temperature.
Example 3
Carrying out solution heat treatment on the Inconel718 high-temperature alloy, carrying out heat thorough heating at 945 ℃, then carrying out heat preservation for 1 hour, and carrying out air cooling to room temperature; carrying out solid solution and aging heat treatment on the Rene' 41 high-temperature alloy, carrying out heat preservation for 1h after heat penetration at 1079 ℃, carrying out air cooling to room temperature, carrying out heat preservation for 16 h after heat penetration at 760 ℃, and carrying out air cooling to room temperature; and welding the solid solution state Inconel718 and the aging state Rene' 41 by adopting an argon arc welding butt joint, then carrying out aging treatment, completely heating at 720 ℃, keeping the temperature for 8 hours, cooling the furnace to 633 ℃, keeping the temperature for 8 hours, and cooling the furnace to room temperature.
Comparative example 1
Carrying out solid solution and aging heat treatment on the Inconel718 high-temperature alloy, carrying out heat preservation for 1 hour after the heat is thoroughly conducted at 980 ℃, carrying out air cooling to room temperature, carrying out heat preservation for 8 hours after the heat is thoroughly conducted at 730 ℃, carrying out furnace cooling to 633 ℃, carrying out heat preservation for 8 hours, and carrying out air cooling to room temperature; carrying out solid solution and aging heat treatment on the Rene' 41 high-temperature alloy, carrying out heat preservation for 1h after heat penetration at 1079 ℃, carrying out air cooling to room temperature, carrying out heat preservation for 16 h after heat penetration at 760 ℃, and carrying out air cooling to room temperature; and performing argon arc welding butt joint welding on the aged Inconel718 and the aged Rene' 41.
Comparative example 2
Carrying out solution heat treatment on the Inconel718 high-temperature alloy, carrying out heat preservation for 1 hour after thorough heat exchange at 980 ℃, and carrying out air cooling to room temperature; carrying out solution heat treatment on the Rene' 41 high-temperature alloy, carrying out heat preservation for 1h after thorough heat at 1079 ℃, and carrying out air cooling to room temperature; and (3) welding a butt joint of the solid solution Inconel718 and the solid solution Rene' 41 by adopting argon arc welding, then performing aging treatment on the base material and the joint, carrying out heat preservation for 16 hours after the base material and the joint are thoroughly heated at 760 ℃, and carrying out air cooling to room temperature.
Examples of Performance test
The room temperature tensile test method adopts ASTM E8/E8M, the hardness test method adopts ASTM E10, the high temperature tensile test method adopts ASTM E21, and the high temperature endurance test method adopts ASTM E292.
Table 1 shows properties of Inconel718 base materials obtained by different heat treatment methods, and it can be seen from table 1 that the properties of the Inconel718 base materials obtained in examples 1 to 3 after solid solution treatment before welding and after aging treatment after welding meet the acceptance requirements, and the Inconel718 base materials obtained in comparative example 2 do not meet the acceptance requirements in terms of room-temperature tensile yield strength.
Table 2 shows the properties of Rene '41 parent metal obtained by different heat treatment methods, and it can be seen from Table 2 that the performance of Rene' 41 in examples 1-3 after double aging meets the acceptance requirements.
When different materials are combined and welded, the tensile strength of the butt joint is calculated according to the base material with lower strength, and the tensile strength of the welded II-type butt joint is not lower than 90% of the lower limit of the strength limit specified by the technical conditions of the base material, namely the tensile strength of the Inconel718 and Rene' 41 dissimilar high-temperature alloy after welding is required to be not less than 1054.8MPa (1172MPa multiplied by 90%). Table 3 shows that the tensile strength of the joints obtained by different heat treatment methods in examples 1-3 meets the standard requirements, and after the welding of examples 1-3, the metallographic structure of the weld fusion zone does not contain dense oxides and inclusions, the X-ray detection and the fluorescence detection of the II-grade weld are qualified, and the tensile strength of the welded joints after the aging of the two high-temperature alloys in comparative example 1 does not meet the acceptance requirements.
TABLE 1 Inconel718 parent Material Properties
Figure BDA0003115922600000041
TABLE 2 Rene' 41 parent Metal Properties
Figure BDA0003115922600000042
Figure BDA0003115922600000051
TABLE 3 tensile Strength of the joints
Figure BDA0003115922600000052
The foregoing is a more detailed description of the invention in connection with specific/preferred embodiments and is not intended to limit the practice of the invention to those descriptions. Several alternatives or modifications to the described embodiments may be made without departing from the inventive concept and such alternatives or modifications should be considered as falling within the scope of the present invention.

Claims (8)

  1. The heat treatment strengthening method of the Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part is characterized by comprising the following steps of:
    (1) carrying out solution heat treatment on the Inconel718 high-temperature alloy;
    (2) carrying out solution heat treatment and aging heat treatment on the Rene' 41 high-temperature alloy;
    (3) and welding the solid solution Inconel718 and the aged Rene' 41, and performing aging heat treatment on the welded structural part.
  2. 2. The method for heat-treating and strengthening the Inconel718 and Rene' 41 dissimilar superalloy welded structure according to claim 1, wherein: and (3) performing solution heat treatment in the step (1) at the temperature of 941-1010 ℃, preserving heat for 1h, and cooling in air to room temperature.
  3. 3. The method for heat treatment strengthening of the Inconel718 and Rene' 41 dissimilar superalloy welded structure according to claim 1 or 2, wherein: and 2, performing solid solution heat treatment at 1079 ℃, preserving the heat for 1 hour, and cooling the air to room temperature.
  4. 4. The heat treatment strengthening method for the Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural member according to any one of claims 1 to 3, wherein the heat treatment strengthening method comprises the following steps: and 2, performing aging heat treatment at 760 ℃, preserving the heat for 15-17 h, and air-cooling to room temperature.
  5. 5. The heat treatment strengthening method for the Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural member according to any one of claims 1 to 4, wherein the heat treatment strengthening method comprises the following steps: and step 3, the aging heat treatment system is 718-760 ℃, the temperature is kept for 8h, the furnace is cooled to 621-649 ℃ at the speed of 48-64 ℃/h, the temperature is kept for 8h, and the air cooling is carried out.
  6. 6. The heat treatment strengthening method for the Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural member according to any one of claims 1 to 5, wherein the heat treatment strengthening method comprises the following steps: the welding adopts argon arc welding.
  7. 7. The heat treatment strengthening method for the Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural member according to any one of claims 1 to 6, wherein the heat treatment strengthening method comprises the following steps: the Inconel718 alloy may alternatively employ GH4169 or UNS N07718.
  8. 8. The heat treatment strengthening method for the Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural member according to any one of claims 1 to 7, characterized by comprising the following steps of: the Rene' 41 alloy can alternatively adopt GH141 or UNS N07041.
CN202110663101.7A 2021-06-15 2021-06-15 Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part Active CN113403559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110663101.7A CN113403559B (en) 2021-06-15 2021-06-15 Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110663101.7A CN113403559B (en) 2021-06-15 2021-06-15 Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part

Publications (2)

Publication Number Publication Date
CN113403559A true CN113403559A (en) 2021-09-17
CN113403559B CN113403559B (en) 2022-04-29

Family

ID=77684016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110663101.7A Active CN113403559B (en) 2021-06-15 2021-06-15 Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part

Country Status (1)

Country Link
CN (1) CN113403559B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654070A (en) * 2022-03-24 2022-06-24 河北工业大学 Method for connecting dissimilar gamma' -phase reinforced high-temperature alloy
CN114749660A (en) * 2022-04-20 2022-07-15 西安工业大学 Method for improving high-temperature strength of Inconel718 laser deposition layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054672A (en) * 1998-09-15 2000-04-25 Chromalloy Gas Turbine Corporation Laser welding superalloy articles
US20080210347A1 (en) * 2007-03-01 2008-09-04 Siemens Power Generation, Inc. Superalloy Component Welding at Ambient Temperature
CN105925925A (en) * 2016-07-15 2016-09-07 中国科学院上海应用物理研究所 Post-welded heat treatment method of fused salt corrosion-resistant nickel-based high temperature alloy welded structure part
US20180326533A1 (en) * 2017-05-11 2018-11-15 United Technologies Corporation Heat treatment and stress relief for solid-state welded nickel alloys
CN110158002A (en) * 2018-02-13 2019-08-23 中国航发商用航空发动机有限责任公司 Before the weldering of inertia friction welding rotor assembly and post weld heat treatment method
CN112475554A (en) * 2020-11-13 2021-03-12 东方电气集团东方锅炉股份有限公司 Welding process of dissimilar aging strengthening alloy pipe for 700-DEG C grade boiler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054672A (en) * 1998-09-15 2000-04-25 Chromalloy Gas Turbine Corporation Laser welding superalloy articles
US20080210347A1 (en) * 2007-03-01 2008-09-04 Siemens Power Generation, Inc. Superalloy Component Welding at Ambient Temperature
CN105925925A (en) * 2016-07-15 2016-09-07 中国科学院上海应用物理研究所 Post-welded heat treatment method of fused salt corrosion-resistant nickel-based high temperature alloy welded structure part
US20180326533A1 (en) * 2017-05-11 2018-11-15 United Technologies Corporation Heat treatment and stress relief for solid-state welded nickel alloys
CN110158002A (en) * 2018-02-13 2019-08-23 中国航发商用航空发动机有限责任公司 Before the weldering of inertia friction welding rotor assembly and post weld heat treatment method
CN112475554A (en) * 2020-11-13 2021-03-12 东方电气集团东方锅炉股份有限公司 Welding process of dissimilar aging strengthening alloy pipe for 700-DEG C grade boiler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘建平等: "焊后热处理对高温合金异种材料焊接组织的影响", 《沈阳工业大学学报》 *
刘谨等: "异种高温合金板材电子束焊接及热处理后残余应力特征", 《材料热处理学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654070A (en) * 2022-03-24 2022-06-24 河北工业大学 Method for connecting dissimilar gamma' -phase reinforced high-temperature alloy
CN114654070B (en) * 2022-03-24 2023-07-14 河北工业大学 Connection method of dissimilar gamma' -phase reinforced superalloy
CN114749660A (en) * 2022-04-20 2022-07-15 西安工业大学 Method for improving high-temperature strength of Inconel718 laser deposition layer

Also Published As

Publication number Publication date
CN113403559B (en) 2022-04-29

Similar Documents

Publication Publication Date Title
CN113403559B (en) Heat treatment strengthening method for Inconel718 and Rene' 41 dissimilar high-temperature alloy welded structural part
CN111702278B (en) Ti2Medium-temperature Ti-based brazing filler metal for brazing same or different AlNb-based alloys as well as preparation method and brazing process thereof
US20050211751A1 (en) Method of brazing and article made therefrom
CN106914673B (en) A kind of nickel-base material soldered fitting ingredient and mechanical property homogenization method
SE532665C2 (en) Methods to extend the life of welded alloy steel joints by eliminating and reducing the heat affected zone
CN111215787B (en) Nickel-based foil brazing filler metal for high-temperature alloy connection and preparation method and application thereof
CN110666328B (en) Diffusion welding method for cast high-temperature alloy and martensitic stainless steel
CN114669738B (en) Repairing material for repairing gas turbine blade and repairing method thereof
CN106011541A (en) Ni-Cr-Mo (nickel-chromium-molybdenum) high-temperature alloy material and preparation method thereof
CN106048310A (en) Ni-Cr-Mo-W high temperature alloy material, and preparation method and application thereof
EP2853339B1 (en) Welding material for welding of superalloys
CN112975101B (en) Method for diffusion welding of steel by molybdenum-rhenium alloy
CN114703472A (en) Method for repairing nickel-based superalloy based on isothermal solidification principle
CN102581467B (en) Connection method for dissimilar metal constant strength joint of titanium-aluminum base alloy and titanium alloy
CN111763812B (en) Heat treatment method for improving impact toughness of titanium alloy linear friction welding joint
CN114769771B (en) Nickel-based superalloy brazing processing technology capable of reducing weld microcrack defects
CN114799395A (en) Vacuum brazing method for dissimilar nickel-based high-temperature alloy for improving strength stability of joint
CN112872652B (en) Ni-based superalloy welding wire with high Al, ti and Ta contents and preparation method and application thereof
CN112453671B (en) Welding method of IN738 nickel-based high-temperature alloy
US8663404B2 (en) Heat treatment method and components treated according to the method
CN88100515A (en) Improve the selected chromium-molybdenum modified form steel alloy hot properties and the method for weldability
CN112935622A (en) NiCu-7 nickel-based welding wire and preparation method and application thereof
CN113736984B (en) Ni3Post-treatment method for welded Al-based single crystal alloy
CN104745943A (en) Heat-resistance metal by melting and submerged arc deposition preparation method thereof
CN115156758B (en) Welding wire for GH4202 alloy dissimilar welding and welding method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant