CN113403063A - Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof - Google Patents

Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof Download PDF

Info

Publication number
CN113403063A
CN113403063A CN202110671938.6A CN202110671938A CN113403063A CN 113403063 A CN113403063 A CN 113403063A CN 202110671938 A CN202110671938 A CN 202110671938A CN 113403063 A CN113403063 A CN 113403063A
Authority
CN
China
Prior art keywords
coumarin
hydroxy
fluorescent probe
reaction
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110671938.6A
Other languages
Chinese (zh)
Other versions
CN113403063B (en
Inventor
刘萍
凤旭凯
李剑利
厍梦尧
陈娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest University
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN202110671938.6A priority Critical patent/CN113403063B/en
Publication of CN113403063A publication Critical patent/CN113403063A/en
Application granted granted Critical
Publication of CN113403063B publication Critical patent/CN113403063B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/18Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted otherwise than in position 3 or 7
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

The invention discloses a near-infrared fluorescent probe for detecting biological mercaptan and a preparation method thereof, and the near-infrared fluorescent probe is prepared by synthesizing a TEM (transmission electron microscope) by taking isophorone and malononitrile as raw materials through a Knoevenagel condensation reaction; synthesizing 7-hydroxy-3-methyl-coumarin from 2, 4-dihydroxybenzaldehyde and sodium propionate by cyclization and hydrolysis reaction; then 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide are used as raw materials, and the 7-hydroxy-3-aldehyde-coumarin is synthesized through halogenation and hydrolysis reaction; then TEM and 7-hydroxy-3-aldehyde-coumarin are used as raw materials, and an intermediate TX-OH is synthesized through Knoevenagel condensation reaction; and finally, synthesizing the fluorescent probe by taking TX-OH and acryloyl chloride as raw materials. The fluorescent probe has better selectivity for thiol and is not interfered by other amino acids. Can be used for detecting biological mercaptan in a biological sample and has good application prospect.

Description

Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof
Technical Field
The invention belongs to the technical field of analysis and detection, and particularly relates to a near-infrared fluorescent probe for detecting biological thiol and a preparation method of the near-infrared fluorescent probe.
Background
Cysteine (Cys), homocysteine (Hcy), and reduced Glutathione (GSH) are collectively referred to as biological thiols. Being a large number of small molecule sulfhydryl species present in organisms, they play a very important role in balancing redox processes and mitigating damage caused by free radicals and toxins. Studies have shown that fluctuations in biological thiol levels are of great relevance to the development of many human diseases, such as heart disease, dysplasia, skin damage, liver damage, osteoporosis, and alzheimer's disease. Therefore, the detection of Cys/Hcy/GSH in vivo will have a positive and meaningful impact on understanding the development and progression of disease.
Fluorescent probe molecules generally consist of a fluorophore, a linker arm, and a recognition group. Fluorescent probe molecules generally emit at a shorter wavelength and are generally interfered by the background of the biological sample itself, resulting in false positive signals. And the near infrared (650-900 nm) fluorescence emission can effectively reduce the interference factor. Therefore, the development of near-infrared fluorescent probes will greatly promote the accuracy of biological sample detection.
Disclosure of Invention
The invention aims to provide a near-infrared fluorescent probe for detecting biological thiol, and the fluorescent probe molecule has good selectivity and anti-interference capability on detection of the biological thiol.
The invention also aims to provide a preparation method of the near-infrared fluorescent probe for detecting the biological thiol.
The invention adopts the technical scheme that a near-infrared fluorescent probe for detecting biological mercaptan has a structural formula shown as the following formula (I):
Figure BDA0003119061540000021
the invention adopts another technical scheme that a preparation method of a near-infrared fluorescent probe for detecting biological mercaptan is implemented according to the following steps:
step 1, synthesizing an intermediate TEM by taking isophorone and malononitrile as raw materials through a Knoevenagel condensation reaction;
step 2, synthesizing an intermediate 7-hydroxy-3-methyl-coumarin by cyclization and hydrolysis reaction by taking 2, 4-dihydroxybenzaldehyde and sodium propionate as raw materials;
step 3, synthesizing an intermediate 7-hydroxy-3-aldehyde-coumarin by taking the intermediate 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide obtained in the step 2 as raw materials through halogenation and hydrolysis reactions;
step 4, synthesizing an intermediate TX-OH by taking the intermediate TEM obtained in the step 1 and the step 3 and 7-hydroxy-3-aldehyde-coumarin as raw materials through a Knoevenagel condensation reaction;
and 5, synthesizing the fluorescent probe by using the intermediate TX-OH obtained in the step 4 and acryloyl chloride as raw materials.
The present invention is also characterized in that,
in the step 1, the method specifically comprises the following steps:
dissolving isophorone, malononitrile and a catalyst in N, N-dimethylformamide, stirring for 6 hours at 120 ℃ by taking argon as a protective gas, cooling to room temperature after the reaction is finished, injecting the reaction mixed solution into ice water, separating out a brown solid, drying, and separating and purifying by using column chromatography to obtain an intermediate TEM;
the catalyst is a viscous liquid formed by mixing acetic anhydride, glacial acetic acid and piperidine; the molar ratio of isophorone to malononitrile is 1: 1.
in the step 2, the method specifically comprises the following steps:
dissolving 2, 4-dihydroxybenzaldehyde, sodium propionate and a catalyst triethylamine in acetic anhydride, heating and refluxing for 12h, injecting water into a reaction liquid, performing suction filtration to obtain a brick red solid, washing, drying, separating and purifying by column chromatography, dissolving the obtained product in dichloromethane, continuously reacting, adding acetic anhydride and pyridine as catalysts, stirring for 24h at room temperature, extracting by using dichloromethane and water, collecting an organic phase, drying by using anhydrous sodium sulfate, filtering, performing reduced pressure rotary evaporation to remove the organic solvent, and separating and purifying by using column chromatography to obtain an intermediate 7-hydroxy-3-methyl-coumarin; the molar ratio of the 2, 4-dihydroxybenzaldehyde to the sodium propionate is 1: 1.
in step 3, the method specifically comprises the following steps:
using azobisisobutyronitrile as a free radical reaction initiator, dissolving the azodiisobutyronitrile, 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide in carbon tetrachloride, heating and refluxing for 8 hours, decompressing and rotary-steaming to remove an organic solvent, adding sodium acetate to dissolve the sodium acetate in acetic anhydride, heating and refluxing for 12 hours, then adding a hydrochloric acid solution, continuously stirring, cooling to room temperature, carrying out suction filtration, and washing with ice water to obtain a brown solid, namely an intermediate 7-hydroxy-3-aldehyde-coumarin; the molar ratio of 7-hydroxy-3-methyl-coumarin to N-bromosuccinimide is 1: 2.
in step 4, the method specifically comprises the following steps:
dissolving TEM, 7-hydroxy-3-aldehyde-coumarin and a catalyst in absolute ethyl alcohol, reacting for 4 hours at 50 ℃, cooling to room temperature after the reaction is finished, filtering to obtain red solid precipitate, and repeatedly washing with absolute ethyl alcohol to obtain an intermediate TX-OH; TEM and 7-hydroxy-3-aldehyde-coumarin in a molar ratio of 1:1, the catalyst is piperidine.
In step 5, the method specifically comprises the following steps:
dissolving TX-OH, acryloyl chloride and a catalyst in dichloromethane, stirring at room temperature, monitoring the reaction process by TLC (thin layer chromatography) until the reaction process is finished, performing reduced pressure spin-drying on the solvent, and performing column chromatography separation and purification to obtain the fluorescent probe; the molar ratio of TX-OH to acryloyl chloride is 1: 2, the catalyst is triethylamine.
The invention has the advantages that the near-infrared fluorescent probe is constructed by a simple organic synthesis means to realize the simultaneous detection of three kinds of biological mercaptan, and an on-off signal response mechanism is presented by the change of the fluorescence intensity. In the detection process, the fluorescent probe molecule shows good selectivity and anti-interference capability, has a proper pH application range, and provides a certain application potential for further detection under physiological conditions.
Drawings
FIG. 1 is a fluorescence emission spectrum of probe molecules (10. mu. mol/L) in a mixed solution of different organic solvents and water (5:5, V: V);
FIG. 2 shows fluorescence emission spectra of probe molecules (10. mu. mol/L) and Cys responses in different organic solvent and water (5:5, V: V) mixed solutions;
FIG. 3 shows DMSO and H2O fluorescence emission spectra of response of probe molecules (10 mu mol/L) and Cys in the solution with different volume ratios;
FIG. 4 is DMSO: H2A graph of the change in fluorescence of probe molecules (10. mu. mol/L) in O (5:5, V: V) solution in response to Cys at different pH;
FIG. 5 is DMSO: H2Fluorescence emission spectra of probe molecules (10. mu. mol/L) in O (5:5, V: V) solution in selective response to biological thiol;
FIG. 6 is DMSO: H2Histogram of fluorescence intensity of competition response of probe molecules (10. mu. mol/L) in O (5:5, V: V) solution with Cys and other different amino acids;
FIG. 7 is DMSO: H2Histogram of fluorescence intensity of competitive responses of probe molecules (10. mu. mol/L) in O (5:5, V: V) solution with Hcy and other different amino acids;
FIG. 8 is DMSO: H2Histogram of fluorescence intensity of competitive responses of probe molecules (10. mu. mol/L) in O (5:5, V: V) solution with GSH and other different amino acids;
FIG. 9 is DMSO: H2Responding to fluorescence emission spectra of probes in O (5:5, V: V) solution and Cys with different concentrations,
FIG. 10 shows the increase in fluorescence intensity before and after the probe response (F-F)0) A linear fit to Cys concentration;
FIG. 11 is DMSO: H2Responding to ultraviolet absorption spectrums by a probe in an O (5:5, V: V) solution and Cys with different concentrations;
FIG. 12 is DMSO: H2Fluorescence emission spectra of probes in O (5:5, V: V) solution and different concentrations of Hcy response;
FIG. 13 shows the increase in fluorescence intensity before and after the probe response (F-F)0) A linear fit to Hcy concentration;
FIG. 14 is DMSO: H2Responding to ultraviolet absorption spectrums by probes in O (5:5, V: V) solution and Hcy with different concentrations;
FIG. 15 is DMSO: H2In O (5:5, V: V) solutionThe probe responds to fluorescence emission spectra with GSH with different concentrations;
FIG. 16 shows the increase in fluorescence intensity before and after the probe response (F-F)0) A linear fit to GSH concentration;
FIG. 17 is DMSO: H2Probes in O (5:5, V: V) solution respond to ultraviolet absorption spectra with GSH of different concentrations.
Detailed Description
The present invention will be described in detail with reference to the following detailed description and accompanying drawings.
The invention relates to a near-infrared fluorescent probe for detecting biological mercaptan, which has a structural formula shown as the following formula (I):
Figure BDA0003119061540000061
the invention relates to a preparation method of a near-infrared fluorescent probe for detecting biological mercaptan, which is implemented according to the following steps:
step 1, synthesizing an intermediate TEM (transmission electron microscope) shown as a following formula (II) by taking isophorone and malononitrile as raw materials through a Knoevenagel condensation reaction;
Figure BDA0003119061540000062
the method specifically comprises the following steps: dissolving isophorone, malononitrile and a catalyst in N, N-dimethylformamide, stirring for 6 hours at 120 ℃ by taking argon as a protective gas, cooling to room temperature after the reaction is finished, injecting the reaction mixed solution into ice water, separating out a brown solid, drying, and separating and purifying by using column chromatography to obtain an intermediate TEM;
the catalyst is a viscous liquid formed by mixing acetic anhydride, glacial acetic acid and piperidine; the molar ratio of isophorone to malononitrile is 1: 1;
step 2, synthesizing an intermediate 7-hydroxy-3-methyl-coumarin shown in the following formula (III) by using 2, 4-dihydroxybenzaldehyde and sodium propionate as raw materials through cyclization and hydrolysis reaction;
Figure BDA0003119061540000071
the method specifically comprises the following steps: dissolving 2, 4-dihydroxybenzaldehyde, sodium propionate and a catalyst triethylamine in acetic anhydride, heating and refluxing for 12h, injecting water into a reaction liquid, separating out a solid, performing suction filtration to obtain a brick red solid, repeatedly washing ice water, drying, performing column chromatography separation and purification, dissolving the obtained product in dichloromethane, continuously reacting, adding acetic anhydride and pyridine as catalysts, stirring for 24h at room temperature, extracting with dichloromethane and water, collecting an organic phase, drying with anhydrous sodium sulfate, filtering, performing reduced pressure rotary evaporation to remove the organic solvent, and performing column chromatography separation and purification to obtain an intermediate 7-hydroxy-3-methyl-coumarin;
the molar ratio of the 2, 4-dihydroxybenzaldehyde to the sodium propionate is 1: 1;
step 3, taking the intermediates 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide (NBD) obtained in the step 2 as raw materials, and synthesizing the intermediate 7-hydroxy-3-aldehyde-coumarin shown in the following formula (IV) through halogenation and hydrolysis reaction;
Figure BDA0003119061540000072
the method specifically comprises the following steps: taking Azobisisobutyronitrile (AIBN) as a free radical reaction initiator, dissolving the Azobisisobutyronitrile (AIBN), 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide in carbon tetrachloride, heating and refluxing for 8 hours, carrying out reduced pressure rotary evaporation to remove an organic solvent, then adding sodium acetate to dissolve the sodium acetate in acetic anhydride, heating and refluxing for 12 hours, then adding a hydrochloric acid solution, continuously stirring, cooling to room temperature, carrying out suction filtration, and repeatedly washing with ice water to obtain a brown solid, namely an intermediate 7-hydroxy-3-aldehyde-coumarin;
the molar ratio of 7-hydroxy-3-methyl-coumarin to N-bromosuccinimide is 1: 2;
step 4, taking the intermediate TEM obtained in the steps 1 and 3 and the 7-hydroxy-3-aldehyde-coumarin as raw materials, and synthesizing an intermediate TX-OH shown as the following formula (V) through a Knoevenagel condensation reaction;
Figure BDA0003119061540000081
the method specifically comprises the following steps: dissolving TEM, 7-hydroxy-3-aldehyde-coumarin and a catalyst in absolute ethyl alcohol, reacting for 4 hours at 50 ℃, cooling to room temperature after the reaction is finished, filtering to obtain red solid precipitate, and repeatedly washing with absolute ethyl alcohol to obtain an intermediate TX-OH;
TEM and 7-hydroxy-3-aldehyde-coumarin in a molar ratio of 1:1, the catalyst is piperidine;
and 5, synthesizing the fluorescent probe TX by taking the intermediate TX-OH obtained in the step 4 and acryloyl chloride as raw materials, wherein the structural formula is shown as the formula (I).
The method specifically comprises the following steps: dissolving TX-OH, acryloyl chloride and a catalyst in dichloromethane, stirring at room temperature, monitoring the reaction process by TLC (thin layer chromatography) until the reaction process is finished, performing reduced pressure spin-drying on the solvent, and performing column chromatography separation and purification to obtain the fluorescent probe;
the molar ratio of TX-OH to acryloyl chloride is 1: 2, the catalyst is triethylamine.
The principle of the fluorescence probe prepared by the method for detecting the biological mercaptan is as follows:
Figure BDA0003119061540000091
in DMSO, H2In the O (5:5, V: V) mixed solution, the probe solution itself hardly emits a fluorescent signal. When the biological thiol molecules are added into the solution, the fluorescence intensity is obviously improved at 488nm excitation wavelength and 718nm, and an 'on-off' response mechanism of a fluorescence signal is presented. And the color of the solution turned yellow to dark blue under "naked eye" observation.
Examples
The invention relates to a preparation method of a near-infrared fluorescent probe for detecting biological mercaptan, which is implemented according to the following steps:
the synthetic route is as follows:
Figure BDA0003119061540000092
step 1, synthesizing an intermediate TEM (transmission electron microscope) shown as a following formula (II) by taking isophorone and malononitrile as raw materials through a Knoevenagel condensation reaction;
Figure BDA0003119061540000101
the method specifically comprises the following steps: in a 250mL three-necked flask, under argon atmosphere, was added 0.2g of acetic anhydride, 0.4mL of glacial acetic acid, and 1.8mL of piperidine, followed by 16.5mL (110mmol) of isophorone, 6.6g (110mmol) of malononitrile, and the mixture was dissolved in 55mL of N, N-dimethylformamide and stirred at 120 ℃ for 6 hours. After the reaction was completed, the reaction mixture was cooled to room temperature. Pouring the reaction mixed solution into ice water, separating out a brown solid, drying, and separating and purifying by using column chromatography, wherein an eluent is petroleum ether and dichloromethane is 1:1(v: v), so as to obtain a yellow solid;
step 2, synthesizing an intermediate 7-hydroxy-3-methyl-coumarin shown in the following formula (III) by using 2, 4-dihydroxybenzaldehyde and sodium propionate as raw materials through cyclization and hydrolysis reaction;
Figure BDA0003119061540000102
the method specifically comprises the following steps: 6.0g of 2, 4-dihydroxybenzaldehyde and 9.0g of sodium propionate were added to a 100mL round-bottom flask and dissolved in 15mL of propionic anhydride, 6mL of triethylamine was slowly added dropwise to the flask using a dropping funnel, and the mixture was heated under reflux for 12 hours to react, whereby the color of the solution changed from yellow to black. 30mL of water is injected into the reaction solution, and then solid is separated out; and (5) carrying out suction filtration to obtain a brick red solid, repeatedly washing with ice water and drying. Separating and purifying by column chromatography, wherein an eluent is dichloromethane and methanol which are 30:1, and obtaining white solid;
step 3, taking the intermediates 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide (NBD) obtained in the step 2 as raw materials, and synthesizing the intermediate 7-hydroxy-3-aldehyde-coumarin shown in the following formula (IV) through halogenation and hydrolysis reaction;
Figure BDA0003119061540000111
the method specifically comprises the following steps: a50 mL round bottom flask was charged with 0.190g of 7-hydroxy-3-methyl-coumarin dissolved in 20mL of dichloromethane, 2mL of acetic anhydride and 3 drops of pyridine were added, stirred at room temperature for 24h, and the progress of the reaction was monitored by TLC until the reaction was complete. Extraction was performed using dichloromethane and water, and the organic phase was collected and dried using anhydrous sodium sulfate. Filtering, performing reduced pressure rotary evaporation to remove the organic solvent, and separating and purifying by using column chromatography, wherein an eluent is pure dichloromethane, so as to obtain a white solid product, namely 7-acetoxyl-3-aldehyde-coumarin;
step 4, taking the intermediate TEM obtained in the steps 1 and 3 and the 7-hydroxy-3-aldehyde-coumarin as raw materials, and synthesizing an intermediate TX-OH shown as the following formula (V) through a Knoevenagel condensation reaction;
Figure BDA0003119061540000112
the method specifically comprises the following steps: under argon, 0.30g (1.6mmol) of 7-hydroxy-3-aldehyde-coumarin and 0.372g (2.0mmol) of TEM were dissolved in 10mL of absolute ethanol, 100. mu.L of piperidine was then added, and the reaction mixture was reacted overnight at 50 ℃. After the reaction was completed, the reaction mixture was cooled to room temperature. Filtering to obtain red solid precipitate, and repeatedly washing with anhydrous ethanol;
step 5, synthesizing a fluorescent probe TX by taking the intermediate TX-OH obtained in the step 4 and acryloyl chloride as raw materials, wherein the structural formula is shown as the formula (I);
the method specifically comprises the following steps: in N2Under protection, 0.10g (0.28mmol) of TX-OH and 0.045mg (0.50mmol) of acryloyl chloride were dissolved in 5mL of anhydrous dichloromethane, and 100. mu.L of anhydrous triethylamine was added. Stir at rt and monitor the progress to completion by TLC. Removing the organic solvent by a rotary evaporator under reduced pressure, and separating and purifying by column chromatography, wherein an eluent is n-hexane and ethyl acetate which are 3:1 to obtain an orange-yellow solid;
wherein the product is characterized as follows:
1H NMR(400MHz,DMSO-d6)δ8.38(s,1H),7.64(d,J=8.5Hz,1H),7.49(d,J=16.2Hz,1H),7.28(d,J=1.9Hz,1H),7.20-7.00(m,2H),6.73(s,1H),6.53-6.38(m,1H),6.31(dd,J=17.2,10.3Hz,1H),6.14-6.02(m,1H),2.36(s,4H),0.89(s,6H).
13C NMR(400MHz,DMSO-d6)δ170.54,164.15,159.65,155.24,153.93,153.60,140.88,135.00,133.47,130.83,130.37,127.79,124.71,122.89,119.66,117.87,114.13,113.34,110.49,78.31,42.77,38.43,32.22,27.90.
MS:([M+Na]+);Calcd for C25H20N2O4:435.1315;Found:435.1268.
probe test solvent screening
Based on the examples, the fluorescence emission performance of the probe TX (10 μmol/L) in different mixed solutions of organic solvent and water was tested. As shown in fig. 1, by comparing the fluorescence emission intensity in different organic solvents. It was found that when the organic solvent was chosen to be DMSO, the probe itself had a small background fluorescence emission. Further, as shown in fig. 2, the fluorescence emission performance of probe TX (10 μmol/L) after responding to Cys (5.0equiv.) in various organic solvent and water mixed solutions was tested. When the organic solvent was DNSO, a significant increase in fluorescence signal was exhibited.
CysCys (5.0equiv.) responses were tested for probe TX (10. mu. mol/L) in the presence of mixed solvents DMSO and water at different volume ratios, as shown in FIG. 3. It was found that when the probe TX was in DMSO: H2The fluorescent material has better fluorescence emission under a mixed solvent system with the O ratio of 1: 1.
pH range test for probe application
In DMSO, H2The effect of probes on Cys response in O (5:5, V: V) solution at different pH (3-11) ranges was tested, as shown in FIG. 4. The following are found: the fluorescence of the probe per se can obviously increase in a strong alkaline solvent, but the fluorescence intensity value tends to be in a stable state in neutral and alkaline solutions after response. Therefore, the probe is suitable for testing with a pH value ranging from 7 to 9.
Selective testing of probes
In DMSO, H2O (5:5, V: V) solution, the fluorescence emission spectra of each amino acid added to probe TX (10. mu. mol/L) were compared, including: 100 μmol/L, 1) Thr; 2) ser; 3) phe; 4) met; 5) lys; 6) leu; 7) ile; 8) his; 9) arg; 10) ala; 11) val; 12) tyr, and 20. mu. mol/L, 13) Cys; 14) hcy; 15) GSH. As shown in FIG. 5, in addition to the three thiol analytes, no significant increase in fluorescence intensity was observed at 488nm for the other amino acids. The result shows that the probe TX shows a good selective detection effect on the three biological thiols.
Anti-interference capability test of probe
The interfering atmosphere was created by adding 100. mu. mol/L of each amino acid of the above examples to 10. mu. mol/L of probe TX. Thereafter, the change in the fluorescence spectrum was measured after adding 20. mu. mol/LCys, Hcy and GSH as analytes. As shown in FIGS. 6, 7 and 8, the fluorescence responses of the other various amino acids (100. mu. mol/L, bars in the grid) and the fluorescence intensities after addition of Cys, Hcy and GSH (20. mu. mol/L, bars in the black) were compared, respectively. The fluorescence emission intensity of the probe TX shows obvious change at 718nm under the excitation wavelength of 488nm, and the result shows that the recognition of the three biological thiols by the probe TX in the presence of other various amino acids is hardly influenced.
Titration experiment of the Probe
As shown in FIG. 9, the probe TX solution itself had no significant fluorescence emission signal under 488nm wavelength excitation. However, when Cys is present, the solution color is shifted. And, it showed a great increase in the value of fluorescence intensity at 710 nm. In addition, when the analyte reached 20. mu. mol/L, the fluorescence intensity was increased by about 5 times. Meanwhile, from the ultraviolet-visible absorption spectrum 10, there was a tendency similar to the increase of fluorescence at 525 nm. As shown in FIGS. 11-14, the probe showed Cys-like behavior for Hcy and GSH.
Further, as shown in FIGS. 15-17, probes TX respond with Cys with a net increase in fluorescence intensity (F-F)0) Shows better linear correlation with Cys concentration of 0-10 mu mol/L (wherein, F0And F are fluorescence intensity values before and after the probe reacts with Cys, Hcy, and GSH, respectively). Regression equation for probe TX is y-30.17 +79.58x(R20.9810). At the same time, probes TX and Hcy (GSH) respond to net increase in fluorescence intensity (F-F)0) Has better linear correlation with the concentration of Hcy (GSH) between 0 and 4 mu mol/L, and the regression equation is that y is 48.14+205.51x (R)2=0.9772)(y=53.36+192.51x(R2=0.9734))。
The fluorescent probe disclosed by the invention is used for detecting biological thiol by constructing a probe TX based on a dicyan isophorone framework with strong electron pulling capability, and the fluorescence emission wavelength of the fluorescent probe is red-shifted to an NIR region by conjugated connection of a coumarin group. At the excitation wavelength of 488nm, the probe has almost no fluorescence. After the biological thiol reacts with the probe molecules, the fluorescence intensity at 718nm is obviously enhanced. And, the net increase in fluorescence intensity before and after the reaction (F-F)0) And the concentration of the biological thiol shows better linear correlation in a certain range. The probe TX has good selectivity to thiol and is not interfered by other amino acids. Can be used for detecting biological mercaptan in a biological sample and has good application prospect.

Claims (7)

1. A near-infrared fluorescent probe for detecting biological thiol is characterized in that the fluorescent probe has a structural formula shown as the following formula (I):
Figure FDA0003119061530000011
2. the method for preparing the near-infrared fluorescent probe for detecting the biological thiol as claimed in claim 1, which is implemented by the following steps:
step 1, synthesizing an intermediate TEM by taking isophorone and malononitrile as raw materials through a Knoevenagel condensation reaction;
step 2, synthesizing an intermediate 7-hydroxy-3-methyl-coumarin by cyclization and hydrolysis reaction by taking 2, 4-dihydroxybenzaldehyde and sodium propionate as raw materials;
step 3, synthesizing an intermediate 7-hydroxy-3-aldehyde-coumarin by taking the intermediate 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide obtained in the step 2 as raw materials through halogenation and hydrolysis reactions;
step 4, synthesizing an intermediate TX-OH by taking the intermediate TEM obtained in the step 1 and the step 3 and 7-hydroxy-3-aldehyde-coumarin as raw materials through a Knoevenagel condensation reaction;
and 5, synthesizing the fluorescent probe by using the intermediate TX-OH obtained in the step 4 and acryloyl chloride as raw materials.
3. The method for preparing a near-infrared fluorescent probe for detecting biological thiol according to claim 2, wherein the step 1 specifically comprises:
dissolving isophorone, malononitrile and a catalyst in N, N-dimethylformamide, stirring for 6 hours at 120 ℃ by taking argon as a protective gas, cooling to room temperature after the reaction is finished, injecting the reaction mixed solution into ice water, separating out a brown solid, drying, and separating and purifying by using column chromatography to obtain an intermediate TEM;
the catalyst is a viscous liquid formed by mixing acetic anhydride, glacial acetic acid and piperidine; the molar ratio of isophorone to malononitrile is 1: 1.
4. the method for preparing a near-infrared fluorescent probe for detecting biological thiol according to claim 2, wherein the step 2 specifically comprises:
dissolving 2, 4-dihydroxybenzaldehyde, sodium propionate and a catalyst triethylamine in acetic anhydride, heating and refluxing for 12h, injecting water into a reaction liquid, performing suction filtration to obtain a brick red solid, washing, drying, separating and purifying by column chromatography, dissolving the obtained product in dichloromethane, continuously reacting, adding acetic anhydride and pyridine as catalysts, stirring for 24h at room temperature, extracting by using dichloromethane and water, collecting an organic phase, drying by using anhydrous sodium sulfate, filtering, performing reduced pressure rotary evaporation to remove the organic solvent, and separating and purifying by using column chromatography to obtain an intermediate 7-hydroxy-3-methyl-coumarin; the molar ratio of the 2, 4-dihydroxybenzaldehyde to the sodium propionate is 1: 1.
5. the method for preparing a near-infrared fluorescent probe for detecting biological thiol according to claim 2, wherein the step 3 specifically comprises:
using azobisisobutyronitrile as a free radical reaction initiator, dissolving the azodiisobutyronitrile, 7-hydroxy-3-methyl-coumarin and N-bromosuccinimide in carbon tetrachloride, heating and refluxing for 8 hours, decompressing and rotary-steaming to remove an organic solvent, adding sodium acetate to dissolve the sodium acetate in acetic anhydride, heating and refluxing for 12 hours, then adding a hydrochloric acid solution, continuously stirring, cooling to room temperature, carrying out suction filtration, and washing with ice water to obtain a brown solid, namely an intermediate 7-hydroxy-3-aldehyde-coumarin; the molar ratio of 7-hydroxy-3-methyl-coumarin to N-bromosuccinimide is 1: 2.
6. the method for preparing a near-infrared fluorescent probe for detecting biological thiol according to claim 2, wherein in the step 4, the method specifically comprises:
dissolving TEM, 7-hydroxy-3-aldehyde-coumarin and a catalyst in absolute ethyl alcohol, reacting for 4 hours at 50 ℃, cooling to room temperature after the reaction is finished, filtering to obtain red solid precipitate, and repeatedly washing with absolute ethyl alcohol to obtain an intermediate TX-OH; TEM and 7-hydroxy-3-aldehyde-coumarin in a molar ratio of 1:1, the catalyst is piperidine.
7. The method for preparing a near-infrared fluorescent probe for detecting biological thiol according to claim 2, wherein in the step 5, the method specifically comprises:
dissolving TX-OH, acryloyl chloride and a catalyst in dichloromethane, stirring at room temperature, monitoring the reaction process by TLC (thin layer chromatography) until the reaction process is finished, performing reduced pressure spin-drying on the solvent, and performing column chromatography separation and purification to obtain the fluorescent probe; the molar ratio of TX-OH to acryloyl chloride is 1: 2, the catalyst is triethylamine.
CN202110671938.6A 2021-06-17 2021-06-17 Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof Active CN113403063B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110671938.6A CN113403063B (en) 2021-06-17 2021-06-17 Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110671938.6A CN113403063B (en) 2021-06-17 2021-06-17 Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113403063A true CN113403063A (en) 2021-09-17
CN113403063B CN113403063B (en) 2023-02-21

Family

ID=77684715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110671938.6A Active CN113403063B (en) 2021-06-17 2021-06-17 Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113403063B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999218A (en) * 2021-12-03 2022-02-01 德州学院 Flavonol compound, preparation method and application thereof in detection of biological thiol
CN114933555A (en) * 2022-06-24 2022-08-23 西北大学 Near-infrared fluorescent probe for detecting micromolecular mercaptan and preparation method thereof
CN116041301A (en) * 2023-02-27 2023-05-02 新乡医学院 Organic small molecular probe for detecting amino acid and preparation method and application thereof
CN116970116A (en) * 2023-09-22 2023-10-31 南昌大学 Polymer copolymer containing coumarin-Tb complex, and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008435A (en) * 2016-06-02 2016-10-12 华南理工大学 Fluorescence-enhanced fluorescent probe for detection of Au<3+> and preparation method thereof
CN111499604A (en) * 2020-03-30 2020-08-07 山西大学 Lysosome targeted Cys near-infrared fluorescent probe and preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008435A (en) * 2016-06-02 2016-10-12 华南理工大学 Fluorescence-enhanced fluorescent probe for detection of Au<3+> and preparation method thereof
CN111499604A (en) * 2020-03-30 2020-08-07 山西大学 Lysosome targeted Cys near-infrared fluorescent probe and preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUJIAN CHEN, ET AL.: "Hybrid Materials Covalently Incorporated with Isophorone-Based Dyes through Sol-Gel Process for Nonlinear Optical Applications", 《JOURNAL OF PHYSICAL CHEMISTRY B》 *
YINGZHEN DENG,ET AL.: "Near-infrared fluorescent probe with a super large Stokes shift for tracking CO in living systems based on a novel coumarin-dicyanoisophorone hybrid", 《DYES AND PIGMENTS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999218A (en) * 2021-12-03 2022-02-01 德州学院 Flavonol compound, preparation method and application thereof in detection of biological thiol
CN114933555A (en) * 2022-06-24 2022-08-23 西北大学 Near-infrared fluorescent probe for detecting micromolecular mercaptan and preparation method thereof
CN116041301A (en) * 2023-02-27 2023-05-02 新乡医学院 Organic small molecular probe for detecting amino acid and preparation method and application thereof
CN116970116A (en) * 2023-09-22 2023-10-31 南昌大学 Polymer copolymer containing coumarin-Tb complex, and preparation method and application thereof
CN116970116B (en) * 2023-09-22 2024-01-02 南昌大学 Polymer copolymer containing coumarin-Tb complex, and preparation method and application thereof

Also Published As

Publication number Publication date
CN113403063B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
CN113403063B (en) Near-infrared fluorescent probe for detecting biological mercaptan and preparation method thereof
CN111423423B (en) Application of ratiometric fluorescent probe in detecting peroxynitrite anion
CN108219510B (en) Preparation and application of nitroso-peroxide fluorescent probe based on hemicyanine dye
CN110283583B (en) Gamma-glutamyl transpeptidase responsive molecular probe and application thereof
CN108997326B (en) Thiol fluorescent probe and preparation method and application thereof
CN105802606A (en) Preparation method and use of mercapto-containing amino acid fluorescent probe
CN108117544A (en) A kind of reversible sulfur dioxide/sulfurous acid(Hydrogen)The fluorescence probe of salt
CN109232626A (en) A kind of SO based on boron difluoride oxygroup cumarin2Ratiometric fluorescent probe
CN110698401A (en) Novel fluorescent probe for detecting biological thiol and preparation method and application thereof
CN111518083A (en) Preparation and application of open type fluorescent probe for detecting carbon monoxide
CN105985769B (en) A kind of preparation and application of benzenethiol fluorescence probe
CN106995451B (en) A kind of response type cysteine probe and preparation method thereof
CN111892552A (en) Triphenylamine derivative, preparation method thereof and application thereof in double-channel fluorescence detection of hydrogen sulfide
CN116178349A (en) Golgi targeting near infrared fluorescent probe for detecting cysteine, preparation method and application thereof
CN108299450A (en) A kind of fluorescence probe of detection biological thiol
CN107903257A (en) One kind is based on visual organic molecule fluorescence probe of flower cyanines and preparation method thereof
CN110092773A (en) A kind of oxa anthracenes derivative and its preparation method and application
CN110734450A (en) hydrogen sulfide fluorescent probes and preparation method and application thereof
CN114516836A (en) Fluorescent probe material, preparation method thereof and method for detecting sulfide
CN114736199B (en) Methylene blue-based near-infrared fluorescent probe and synthetic method and application thereof
CN113121541B (en) Synthesis and application of fluorescent probe capable of distinguishing gold ions Au3+ and palladium simultaneously
CN111978323B (en) Fluorescent probe for recognizing glutathione
CN105985770A (en) Preparation method and application of hydrogen sulfide fluorescent probe
CN115894427B (en) Near-infrared frequency up-conversion fluorescent probe, preparation method thereof and application thereof in detection of biological mercaptan
CN112707920A (en) High-selectivity and high-sensitivity detection of HClO and SO2Fluorescent probe of

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant