CN113393432B - 一种智能泡沫浮选检测系统 - Google Patents
一种智能泡沫浮选检测系统 Download PDFInfo
- Publication number
- CN113393432B CN113393432B CN202110644831.2A CN202110644831A CN113393432B CN 113393432 B CN113393432 B CN 113393432B CN 202110644831 A CN202110644831 A CN 202110644831A CN 113393432 B CN113393432 B CN 113393432B
- Authority
- CN
- China
- Prior art keywords
- flotation
- detection
- liquid level
- video stream
- video
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 71
- 238000009291 froth flotation Methods 0.000 title claims abstract description 10
- 238000005188 flotation Methods 0.000 claims abstract description 63
- 239000007788 liquid Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000006260 foam Substances 0.000 claims abstract description 21
- 230000002159 abnormal effect Effects 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims description 22
- 238000012544 monitoring process Methods 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 7
- 238000013136 deep learning model Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000002372 labelling Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000004806 packaging method and process Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 15
- 238000011161 development Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000011160 research Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 101100441251 Arabidopsis thaliana CSP2 gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/02—Froth-flotation processes
- B03D1/028—Control and monitoring of flotation processes; computer models therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/40—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20076—Probabilistic image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110644831.2A CN113393432B (zh) | 2021-06-09 | 2021-06-09 | 一种智能泡沫浮选检测系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110644831.2A CN113393432B (zh) | 2021-06-09 | 2021-06-09 | 一种智能泡沫浮选检测系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113393432A CN113393432A (zh) | 2021-09-14 |
CN113393432B true CN113393432B (zh) | 2024-05-03 |
Family
ID=77620118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110644831.2A Active CN113393432B (zh) | 2021-06-09 | 2021-06-09 | 一种智能泡沫浮选检测系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113393432B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117274995B (zh) * | 2023-11-22 | 2024-02-13 | 北京科技大学 | 基于点云数据的二维泡沫图像标签自动生成方法和装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5542004A (en) * | 1991-11-25 | 1996-07-30 | Miller Brewing Company | Foam analyzing method and apparatus |
WO2004080600A1 (en) * | 2003-03-13 | 2004-09-23 | Technological Resources Pty Limited | Measuring froth stability |
CN109772593A (zh) * | 2019-01-25 | 2019-05-21 | 东北大学 | 一种基于浮选泡沫动态特征的矿浆液位预测方法 |
-
2021
- 2021-06-09 CN CN202110644831.2A patent/CN113393432B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5542004A (en) * | 1991-11-25 | 1996-07-30 | Miller Brewing Company | Foam analyzing method and apparatus |
WO2004080600A1 (en) * | 2003-03-13 | 2004-09-23 | Technological Resources Pty Limited | Measuring froth stability |
CN109772593A (zh) * | 2019-01-25 | 2019-05-21 | 东北大学 | 一种基于浮选泡沫动态特征的矿浆液位预测方法 |
Non-Patent Citations (2)
Title |
---|
"基于深度学习的遥感图像目标检测方法研究";高照;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》(第第4期期);23-36页 * |
Y. Fu etc."Using Convolutional Neural Networks to Develop State-of-the-Art Flotation Froth Image Sensors".《IFAC-PapersOnLine》.2018,第第51卷卷(第第21期期),152-157页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113393432A (zh) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109460753B (zh) | 一种检测水上漂浮物的方法 | |
CN108509954A (zh) | 一种实时交通场景的多车牌动态识别方法 | |
CN106408015A (zh) | 基于卷积神经网络的岔路口识别及深度估计方法 | |
CN110889339B (zh) | 基于头肩检测的危险区域分级预警方法与系统 | |
CN113283395B (zh) | 一种运煤皮带转接处堵塞异物的视频检测方法 | |
CN113642474A (zh) | 一种基于yolov5的危险区域人员监控方法 | |
CN114627052A (zh) | 一种基于深度学习的红外图像漏气漏液检测方法及系统 | |
CN112819068A (zh) | 一种基于深度学习的船舶作业违章行为实时侦测方法 | |
US12131519B2 (en) | Method and system for pollutant identifying and early warning based on cluster analysis | |
CN113393432B (zh) | 一种智能泡沫浮选检测系统 | |
CN111062383A (zh) | 一种基于图像的船舶检测深度神经网络算法 | |
CN114359245A (zh) | 一种工业场景下产品表面缺陷检测方法 | |
CN113435278A (zh) | 一种基于yolo的行吊安全检测方法及系统 | |
CN110737785A (zh) | 一种图片标注的方法及装置 | |
CN111507398A (zh) | 基于目标检测的变电站金属仪器锈蚀识别方法 | |
CN118135426B (zh) | 一种基于卫星影像与sam的港口水域交通状况识别方法 | |
CN115359392A (zh) | 一种基于改进YOLOv5模型的路边施工行为检测方法 | |
CN115457297A (zh) | 航油油库漏油检测方法、装置及航油安全运维系统 | |
CN110909674A (zh) | 一种交通标志识别方法、装置、设备和存储介质 | |
CN112561885B (zh) | 基于YOLOv4-tiny的插板阀开度检测方法 | |
CN113311507A (zh) | 一种台风路径的识别方法及装置 | |
CN112967335A (zh) | 气泡尺寸监测方法及装置 | |
CN117066149A (zh) | 一种智能化实时茶叶杂物分拣系统 | |
CN115631402A (zh) | 一种适用于智慧养殖的ai算法服务平台构建方法 | |
CN114332051A (zh) | 一种基于图像推理的输配电线路设备资产普查方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240321 Address after: One of the 5th floors of Building 9J, No. 39 Haijing South Second Road, Xiamen Area, China (Fujian) Pilot Free Trade Zone, Xiamen City, Fujian Province, 350000 Applicant after: Zijin Zhikong (Xiamen) Technology Co.,Ltd. Country or region after: China Address before: 364216 No.1 Zijin Avenue, Shanghang County, Longyan City, Fujian Province Applicant before: ZIJIN MINING GROUP Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |