CN113386745B - 确定关于对象的预计轨迹的信息的方法和系统 - Google Patents
确定关于对象的预计轨迹的信息的方法和系统 Download PDFInfo
- Publication number
- CN113386745B CN113386745B CN202110208413.9A CN202110208413A CN113386745B CN 113386745 B CN113386745 B CN 113386745B CN 202110208413 A CN202110208413 A CN 202110208413A CN 113386745 B CN113386745 B CN 113386745B
- Authority
- CN
- China
- Prior art keywords
- data
- computer
- intermediate data
- network
- implemented method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000010801 machine learning Methods 0.000 claims abstract description 26
- 230000004927 fusion Effects 0.000 claims description 26
- 230000001133 acceleration Effects 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 3
- 238000002604 ultrasonography Methods 0.000 claims description 3
- 238000013528 artificial neural network Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000003993 interaction Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 5
- 230000015654 memory Effects 0.000 description 5
- 238000005293 physical law Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
- B60W30/12—Lane keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0223—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/22—Command input arrangements
- G05D1/221—Remote-control arrangements
- G05D1/227—Handing over between remote control and on-board control; Handing over between remote control arrangements
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/648—Performing a task within a working area or space, e.g. cleaning
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/65—Following a desired speed profile
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/251—Fusion techniques of input or preprocessed data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/66—Radar-tracking systems; Analogous systems
- G01S13/72—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
- G01S13/723—Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/66—Sonar tracking systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/66—Tracking systems using electromagnetic waves other than radio waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Business, Economics & Management (AREA)
- Game Theory and Decision Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Human Computer Interaction (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20159899.2A EP3872710A1 (en) | 2020-02-27 | 2020-02-27 | Method and system for determining information on an expected trajectory of an object |
EP20159899.2 | 2020-02-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113386745A CN113386745A (zh) | 2021-09-14 |
CN113386745B true CN113386745B (zh) | 2023-12-29 |
Family
ID=69742833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110208413.9A Active CN113386745B (zh) | 2020-02-27 | 2021-02-25 | 确定关于对象的预计轨迹的信息的方法和系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11941509B2 (zh) |
EP (1) | EP3872710A1 (zh) |
CN (1) | CN113386745B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3806065A1 (en) | 2019-10-11 | 2021-04-14 | Aptiv Technologies Limited | Method and system for determining an attribute of an object at a pre-determined time point |
EP3943969A1 (en) | 2020-07-24 | 2022-01-26 | Aptiv Technologies Limited | Methods and systems for predicting a trajectory of an object |
US20220121201A1 (en) * | 2020-10-15 | 2022-04-21 | Argo AI, LLC | System for anticipating future state of an autonomous vehicle |
CN117371184B (zh) * | 2023-09-20 | 2024-04-16 | 广东省水利水电第三工程局有限公司 | 一种大型混凝土的水化反应结构强度变化仿真方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10156850B1 (en) * | 2017-12-08 | 2018-12-18 | Uber Technologies, Inc. | Object motion prediction and vehicle control systems and methods for autonomous vehicles |
CN109937343A (zh) * | 2017-06-22 | 2019-06-25 | 百度时代网络技术(北京)有限公司 | 用于自动驾驶车辆交通预测中的预测轨迹的评估框架 |
CN110834644A (zh) * | 2019-10-30 | 2020-02-25 | 中国第一汽车股份有限公司 | 一种车辆控制方法、装置、待控制车辆及存储介质 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050265633A1 (en) * | 2004-05-25 | 2005-12-01 | Sarnoff Corporation | Low latency pyramid processor for image processing systems |
EP1779295A4 (en) | 2004-07-26 | 2012-07-04 | Automotive Systems Lab | SYSTEM FOR PROTECTING USERS OF THE ROAD IN A DANGER SITUATION |
EP3845427A1 (en) | 2015-02-10 | 2021-07-07 | Mobileye Vision Technologies Ltd. | Sparse map for autonomous vehicle navigation |
US10482331B2 (en) | 2015-11-20 | 2019-11-19 | GM Global Technology Operations LLC | Stixel estimation methods and systems |
US20170293837A1 (en) | 2016-04-06 | 2017-10-12 | Nec Laboratories America, Inc. | Multi-Modal Driving Danger Prediction System for Automobiles |
US11774944B2 (en) * | 2016-05-09 | 2023-10-03 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for the industrial internet of things |
US11327475B2 (en) * | 2016-05-09 | 2022-05-10 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for intelligent collection and analysis of vehicle data |
US10482379B2 (en) * | 2016-07-29 | 2019-11-19 | Google Llc | Systems and methods to perform machine learning with feedback consistency |
US10713500B2 (en) | 2016-09-12 | 2020-07-14 | Kennesaw State University Research And Service Foundation, Inc. | Identification and classification of traffic conflicts using live video images |
GB201616095D0 (en) | 2016-09-21 | 2016-11-02 | Univ Oxford Innovation Ltd | A neural network and method of using a neural network to detect objects in an environment |
US9989964B2 (en) * | 2016-11-03 | 2018-06-05 | Mitsubishi Electric Research Laboratories, Inc. | System and method for controlling vehicle using neural network |
US10701394B1 (en) * | 2016-11-10 | 2020-06-30 | Twitter, Inc. | Real-time video super-resolution with spatio-temporal networks and motion compensation |
KR20180094725A (ko) | 2017-02-16 | 2018-08-24 | 삼성전자주식회사 | 자율 주행을 위한 차량 제어 방법, 차량 제어 장치 및 자율 주행을 위한 학습 방법 |
US11200433B2 (en) | 2017-05-03 | 2021-12-14 | Mobileye Vision Technologies Ltd. | Detection and classification systems and methods for autonomous vehicle navigation |
EP3596661A1 (en) * | 2017-05-19 | 2020-01-22 | Deepmind Technologies Limited | Data efficient imitation of diverse behaviors |
US10395144B2 (en) | 2017-07-24 | 2019-08-27 | GM Global Technology Operations LLC | Deeply integrated fusion architecture for automated driving systems |
EP3438872A1 (en) | 2017-08-04 | 2019-02-06 | Bayerische Motoren Werke Aktiengesellschaft | Method, apparatus and computer program for a vehicle |
US10656657B2 (en) | 2017-08-08 | 2020-05-19 | Uatc, Llc | Object motion prediction and autonomous vehicle control |
US20190065878A1 (en) | 2017-08-22 | 2019-02-28 | GM Global Technology Operations LLC | Fusion of radar and vision sensor systems |
DE102017121052A1 (de) | 2017-09-12 | 2019-03-14 | Valeo Schalter Und Sensoren Gmbh | Verarbeitung einer von einer Umgebungserfassungseinrichtung eines Kraftfahrzeugs erzeugten Punktwolke zu einem Poincaré-invarianten symmetrischen Eingabevektor für ein neurales Netzwerk |
CN108874445A (zh) * | 2017-10-30 | 2018-11-23 | 上海寒武纪信息科技有限公司 | 神经网络处理器及使用处理器执行向量点积指令的方法 |
US11017550B2 (en) * | 2017-11-15 | 2021-05-25 | Uatc, Llc | End-to-end tracking of objects |
US10933869B2 (en) | 2017-11-29 | 2021-03-02 | Uatc, Llc | Autonomous vehicle motion control systems and methods |
EP3495220B1 (en) | 2017-12-11 | 2024-04-03 | Volvo Car Corporation | Path prediction for a vehicle |
US11370423B2 (en) * | 2018-06-15 | 2022-06-28 | Uatc, Llc | Multi-task machine-learned models for object intention determination in autonomous driving |
US11454975B2 (en) * | 2018-06-28 | 2022-09-27 | Uatc, Llc | Providing actionable uncertainties in autonomous vehicles |
KR102175239B1 (ko) | 2018-08-16 | 2020-11-06 | (주)스마트레이더시스템 | 인공 지능을 이용하여 레이더 신호로부터 타겟을 추적하는 방법 및 그 장치 |
EP3806065A1 (en) | 2019-10-11 | 2021-04-14 | Aptiv Technologies Limited | Method and system for determining an attribute of an object at a pre-determined time point |
EP3839805A1 (en) | 2019-12-20 | 2021-06-23 | Aptiv Technologies Limited | Method for determining continuous information on an expected trajectory of an object |
CN111401419A (zh) | 2020-03-05 | 2020-07-10 | 浙江理工大学桐乡研究院有限公司 | 基于改进RetinaNet的员工着装规范检测方法 |
-
2020
- 2020-02-27 EP EP20159899.2A patent/EP3872710A1/en active Pending
-
2021
- 2021-02-17 US US17/178,198 patent/US11941509B2/en active Active
- 2021-02-25 CN CN202110208413.9A patent/CN113386745B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109937343A (zh) * | 2017-06-22 | 2019-06-25 | 百度时代网络技术(北京)有限公司 | 用于自动驾驶车辆交通预测中的预测轨迹的评估框架 |
US10156850B1 (en) * | 2017-12-08 | 2018-12-18 | Uber Technologies, Inc. | Object motion prediction and vehicle control systems and methods for autonomous vehicles |
CN110834644A (zh) * | 2019-10-30 | 2020-02-25 | 中国第一汽车股份有限公司 | 一种车辆控制方法、装置、待控制车辆及存储介质 |
Non-Patent Citations (2)
Title |
---|
Fusion Modeling Method of Car-Following Characteristics;YUFANG LI;《IEEE Access》;全文 * |
Neural Network Aided Potential Field Approach For Pedestrian Prediction;Florian Particke;《IEEE Access》;全文 * |
Also Published As
Publication number | Publication date |
---|---|
EP3872710A1 (en) | 2021-09-01 |
US20210271252A1 (en) | 2021-09-02 |
US11941509B2 (en) | 2024-03-26 |
CN113386745A (zh) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113386745B (zh) | 确定关于对象的预计轨迹的信息的方法和系统 | |
Kuutti et al. | A survey of deep learning applications to autonomous vehicle control | |
Huang et al. | Uncertainty-aware driver trajectory prediction at urban intersections | |
Casas et al. | Implicit latent variable model for scene-consistent motion forecasting | |
Yao et al. | Bitrap: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation | |
Huang et al. | Multi-modal sensor fusion-based deep neural network for end-to-end autonomous driving with scene understanding | |
Tang et al. | Multiple futures prediction | |
Karle et al. | Scenario understanding and motion prediction for autonomous vehicles—review and comparison | |
US11189171B2 (en) | Traffic prediction with reparameterized pushforward policy for autonomous vehicles | |
CN109624990B (zh) | 用于基于关键帧的自主车辆操作的系统及计算机实现方法 | |
Yuan et al. | Deep reinforcement learning based game-theoretic decision-making for autonomous vehicles | |
US11242050B2 (en) | Reinforcement learning with scene decomposition for navigating complex environments | |
CN113807460B (zh) | 智能体动作的确定方法和装置、电子设备和介质 | |
CN109941293A (zh) | 使用深度视频帧预测来训练自主车辆的控制器 | |
Stanley et al. | Neuroevolution of an automobile crash warning system | |
Nayak et al. | Uncertainty estimation of pedestrian future trajectory using Bayesian approximation | |
Kalapos et al. | Sim-to-real reinforcement learning applied to end-to-end vehicle control | |
Acerbo et al. | Safe and computational efficient imitation learning for autonomous vehicle driving | |
CN112418432A (zh) | 分析多个物理对象之间的相互作用 | |
CN112418421A (zh) | 一种基于图注意力自编码模型的路侧端行人轨迹预测算法 | |
Chen et al. | Spatial-temporal graph neural network for interaction-aware vehicle trajectory prediction | |
Karle et al. | Mixnet: Physics constrained deep neural motion prediction for autonomous racing | |
Yavas et al. | A Real-World Reinforcement Learning Framework for Safe and Human-Like Tactical Decision-Making | |
Gao et al. | Modeling spatio-temporal interactions for vehicle trajectory prediction based on graph representation learning | |
US12112622B2 (en) | Systems and methods for heterogeneous multi-agent multi-modal trajectory prediction with evolving interaction graphs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240731 Address after: Luxembourg Patentee after: Anbofu Technology (2) Co.,Ltd. Country or region after: Luxembourg Address before: Babado J San Michael Patentee before: Aptiv Technologies Ltd. Country or region before: Barbados |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241014 Address after: Luxembourg Patentee after: Anbofu Manufacturing Management Services Co.,Ltd. Country or region after: Luxembourg Address before: Luxembourg Patentee before: Anbofu Technology (2) Co.,Ltd. Country or region before: Luxembourg |