CN113384713A - 酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法 - Google Patents

酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法 Download PDF

Info

Publication number
CN113384713A
CN113384713A CN202110657443.8A CN202110657443A CN113384713A CN 113384713 A CN113384713 A CN 113384713A CN 202110657443 A CN202110657443 A CN 202110657443A CN 113384713 A CN113384713 A CN 113384713A
Authority
CN
China
Prior art keywords
solution
cyclodextrin
hyaluronic acid
imidazole
anticancer drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110657443.8A
Other languages
English (en)
Inventor
刘育
范文涛
陈湧
王丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202110657443.8A priority Critical patent/CN113384713A/zh
Publication of CN113384713A publication Critical patent/CN113384713A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法,其中咪唑环糊精作为主体,透明质酸作为靶向剂,其构筑单元的化学结构式如下:
Figure DDA0003113739540000011
本发明的优点是:该纳米粒子可以在透明质酸酶(HAase)的作用下特异性水解超分子组装体中的透明质酸,从而实现抗癌药物阿霉素(DOX)的可控释放,该体系制备简单,与普通的药物释放相比具有药物缓释的效果,使服药次数减少,降低了药物的毒副作用。此外,这种具有酶响应性、生物相容性和抗癌活性的超分子组装体可以对抗癌药物DOX缓释的策略为在生物医学上进行癌症治疗提供了一种新的思路,具有良好的潜在应用前景。

Description

酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其 制备方法
技术领域
本发明属于超分子靶向药物传递技术领域,特别是酶响应的超分子纳米粒子用于可控释放抗癌药物阿霉素体系。
背景技术
癌症是令世界人民都非常头痛的问题,每年许多科学家都会做大量研究用以解决癌症问题。因此许多抗癌药物也陆陆续续被研究出来用以癌症的治疗。阿霉素(DOX)就是比较常见的抗癌药物,可以治疗多种癌症。现如今,通过超分子化学进行靶向传递抗癌药物已经得到了许多科研学者的关注和研究。在超分子大环中,环糊精由于其价格低廉、无毒、生物相容性和水溶性好等优点,此外,其疏水性空腔可以负载许多具有特定功能结构的客体分子,使得其在酶响应的超分子生物材料领域得到广泛研究。
发明内容
本发明利用生物相容性的咪唑环糊精(Im-CD)和具有靶向性的透明质酸(HA)通过静电相互作用构筑了超分子组装体(Im-CD/HA),Im-CD/HA负载了抗癌药物阿霉素(DOX)形成新的超分子组装体DOX@Im-CD/HA。通过紫外分光光度计、透射电镜(TEM)、动态光散射(DLS)以及细胞实验等对超分子组装体进行了研究,可以看出超分子组装体是具有球形结构的纳米颗粒,在加入透明质酸酶(HAase)3h之后可以使组装体中的透明质酸(HA)被特异性水解,从而使超分子组装体解组装释放出抗癌药物阿霉素(DOX),由于DOX在此过程中释放缓慢,所以可以起到一个缓释的作用,使服药次数减少,降低了药物的毒副作用。此外,该体系制备简单,与普通的药物释放相比更好的效果。总之,这种具有酶响应性、生物相容性和抗癌活性的超分子组装体可以对抗癌药物DOX缓释的策略为在生物医学上进行癌症治疗提供了一种新的思路,具有良好的潜在应用前景。
本发明的技术方案:
酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系,其中咪唑环糊精作为主体,透明质酸作为靶向剂,其构筑单元的化学结构式如下:
Figure BDA0003113739520000021
酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系的制备方法,包括以下步骤:
步骤1、抗癌药物阿霉素(DOX)溶液的制备;
步骤2、咪唑环糊精-透明质酸二元超分子纳米粒子溶液的制备;
步骤3、将步骤2所得二元超分子纳米粒子溶液加入步骤1制得的DOX溶液中搅拌后进行透析;
其中咪唑环糊精是环糊精上的6位羟基被甲基咪唑全取代的大环主体,透明质酸是在网上商城购买所得,通过静电相互作用构筑形成超分子组装体,再通过环糊精空腔对DOX的负载作用构筑成超分子纳米粒子,然后用透射电镜以及紫外可见光谱和荧光发射光谱来证明超分子纳米粒子的形成,然后用多种仪器监测其加入透明质酸酶之后的变化,并对其进行细胞实验测试。
进一步的,其中步骤2中咪唑环糊精的制备方法如下:
1)将三苯基膦(20.2g,77.0mmol)溶于无水DMF(80mL)中,在氮气保护下10-15分钟内缓慢地加入碘(20.2g,77.2mmol)。然后将干燥的β-环糊精(5g,4.4mmol)加入到上述的深棕色溶液中,将其在70℃和氮气氛围下充分搅拌18小时。之后将反应液在减压的条件下蒸出一半的溶液。在冰浴条件下,在搅拌的情况下向其中加入甲醇钠的甲醇溶液,后将溶液的pH调到9-10。在室温下,将混合液搅拌30分钟,随后在剧烈搅拌下将混合液加入到冷甲醇中(400mL),将析出的不溶物过滤并收集,用甲醇洗涤后,并用甲醇对得到的固体进行索氏提取,直至溶剂不变色,最终得到目标产物为白色粉末(7.70g,产率为92%)。
2)在氮气氛围下,将1)中制得的产物(1g,0.52mmol),使之与1-甲基咪唑(6.0ml,90mmol)在氩气氛围保护和80℃条件下加热搅拌48h。反应结束后,将反应瓶溶液转移至200ml丙酮中,会有大量白色沉淀析出。减压抽滤后用丙酮洗涤沉淀,然后将得到的白色沉淀用少量二次水进行重结晶。将以上过程重复三次,得到物质即为目标产物(715.2mg,产率56%)。1HNMR(D2O,400MHz):δ(ppm)=3.30-3.37(t,1H),3.50-3.55(d,1H),3.75-3.83(s,3H),3.95-4.01(t,1H),4.08-4.18(m,1H),4.45-4.54(m,2H),5.01-5.08(s,1H),7.40-7.45(s,1H)7.49-7.54(s,1H)。
进一步的,步骤2中咪唑环糊精-透明质酸二元超分子纳米粒子溶液的制备,步骤如下:
咪唑环糊精-透明质酸二元超分子纳米粒子是以甲基咪唑取代的β-环糊精为主体,以具有靶向性的透明质酸为客体,通过静电相互作用构筑了超分子纳米粒子;将甲基咪唑取代的β-环糊精和靶向性的透明质酸按照0.05mM咪唑环糊精和0.5mM浓度透明质酸的比例溶解于水中,均匀混合后得到二元超分子纳米粒子溶液。
进一步的,步骤3中透析的步骤如下:
将制备好的咪唑环糊精-透明质酸二元超分子纳米粒子溶液加入到阿霉素溶液中后放置在截留量为3500的透析袋中搅拌24h透析,直至透析液的颜色不发生变化为止。
本发明的优点是:
利用具有水溶性以及生物相容性的C6位被甲基咪唑全部修饰的β-环糊精(Im-CD)和具有靶向性的透明质酸(HA)通过静电相互作用进行自组装形成超分子组装体,超分子组装体可以负载抗癌药物阿霉素(DOX),形成新的超分子纳米粒子,该纳米粒子可以在透明质酸酶(HAase)的作用下特异性水解超分子组装体中的透明质酸,从而实现抗癌药物阿霉素(DOX)的可控释放,该体系制备简单,与普通的药物释放相比具有药物缓释的效果,使服药次数减少,降低了药物的毒副作用。此外,这种具有酶响应性、生物相容性和抗癌活性的超分子组装体可以对抗癌药物DOX缓释的策略为在生物医学上进行癌症治疗提供了一种新的思路,具有良好的潜在应用前景。
附图说明
图1为咪唑环糊精合成方法示意图。
图2为咪唑环糊精氢谱谱图。
图3为客体透明质酸的临界聚集浓度测试谱图。
图4为固定主体浓度改变客体浓度以及固定客体浓度改变主体浓度的临界聚集浓度测试谱图。
图5为固定阿霉素浓度改变透明质酸浓度的临界聚集浓度测试谱图。
图6为单独大环主体及组装体的紫外透过率测试谱图。
图7为DOX的药物标准曲线测试谱图。
图8为DOX药物负载的荧光发射及负载率的测试谱图。
图9为超分子组装体的动态光散射(DLS)测试谱图。
图10为客体的透射电镜(TEM)测试谱图。
图11为超分子组装体的透射电镜(TEM)测试谱图。
图12为超分子组装体在PBS缓冲溶液中的稳定性测试谱图。
图13为超分子组装体的酶响应在荧光发射及紫外可见光谱仪器上的测试谱图。
图14为超分子组装体的细胞实验测试谱图。
具体实施方式
实施例:
酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系,其中咪唑环糊精作为主体,透明质酸作为靶向剂,其构筑单元的化学结构式如下:
Figure BDA0003113739520000051
本发明提供的酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系制备方法,包括以下步骤:
步骤1、抗癌药物阿霉素(DOX)溶液的制备;
步骤2、咪唑环糊精-透明质酸二元超分子纳米粒子溶液的制备;
步骤3、将步骤2所得二元超分子纳米粒子溶液加入步骤1制得的DOX溶液中搅拌后进行透析;
参见附图1,以上制备方法中,步骤2中咪唑环糊精的制备方法如下:
1)将三苯基膦(20.2g,77.0mmol)溶于无水DMF(80mL)中,在氮气保护下10-15分钟内缓慢地加入碘(20.2g,77.2mmol)。然后将干燥的β-环糊精(5g,4.4mmol)加入到上述的深棕色溶液中,将其在70℃和氮气氛围下充分搅拌18小时。之后将反应液在减压的条件下蒸出一半的溶液。在冰浴条件下,在搅拌的情况下向其中加入甲醇钠的甲醇溶液,后将溶液的pH调到9-10。在室温下,将混合液搅拌30分钟,随后在剧烈搅拌下将混合液加入到冷甲醇中(400mL),将析出的不溶物过滤并收集,用甲醇洗涤后,并用甲醇对得到的固体进行索氏提取,直至溶剂不变色,最终得到目标产物为白色粉末(7.70g,产率为92%)。
2)在氮气氛围下,将1)中制得的产物(1g,0.52mmol),使之与1-甲基咪唑(6.0ml,90mmol)在氩气氛围保护和80℃条件下加热搅拌48h。反应结束后,将反应瓶溶液转移至200ml丙酮中,会有大量白色沉淀析出。减压抽滤后用丙酮洗涤沉淀,然后将得到的白色沉淀用少量二次水进行重结晶。将以上过程重复三次,得到物质即为目标产物(715.2mg,产率56%)。1HNMR(D2O,400MHz):δ(ppm)=3.30-3.37(t,1H),3.50-3.55(d,1H),3.75-3.83(s,3H),3.95-4.01(t,1H),4.08-4.18(m,1H),4.45-4.54(m,2H),5.01-5.08(s,1H),7.40-7.45(s,1H)7.49-7.54(s,1H)。
图2为咪唑环糊精氢谱谱图。图中表明:合成的咪唑环糊精的结构正确。
图3为客体透明质酸的临界聚集浓度测试谱图。图中表明:在1mM浓度范围内,透明质酸不能自聚集形成纳米粒子。
图4为固定主体浓度改变客体浓度以及固定客体浓度改变主体浓度的临界聚集浓度测试谱图。图中表明:在加入主体后有明显的透过率,可以证明两者形成了组装体。
本发明制备方法的步骤2中,咪唑环糊精-透明质酸二元超分子纳米粒子溶液的制备,步骤如下:
咪唑环糊精-透明质酸二元超分子纳米粒子是以甲基咪唑取代的β-环糊精为主体,以具有靶向性的透明质酸为客体,通过静电相互作用构筑了超分子纳米粒子。将甲基咪唑取代的β-环糊精和靶向性的透明质酸按照0.05mM咪唑环糊精和0.5mM浓度透明质酸的比例溶解于水中,均匀混合后得到二元超分子纳米粒子溶液。
本发明步骤3中透析的步骤如下:
将制备好的咪唑环糊精-透明质酸二元超分子纳米粒子溶液加入到阿霉素溶液中后放置在截留量为3500的透析袋中搅拌24h透析,直至透析液的颜色不发生变化为止。
图5为固定阿霉素浓度改变透明质酸浓度的临界聚集浓度测试谱图。图中表明:阿霉素与透明质酸在此浓度范围内无法形成纳米粒子。
图6为单独大环主体及组装体的紫外透过率测试谱图。图中表明:在只有加入咪唑环糊精后才能形成超分子组装体。
图7为DOX的药物标准曲线测试谱图。图中表明:阿霉素的药物标准曲线是线性关系。
图8为DOX药物负载的荧光发射及负载率的测试谱图。图中表明:阿霉素的确是被负载进了超分子组装体中。
图9为超分子组装体的动态光散射(DLS)测试谱图。图中表明:超分子组装体的粒径尺寸是100nm左右。
图10为客体的透射电镜(TEM)测试谱图。图中表明:客体的形貌结构为线型结构。
图11为超分子组装体的透射电镜(TEM)测试谱图。图中表明:超分子组装体形成了球型纳米粒子结构。
图12为超分子组装体在PBS缓冲溶液中的稳定性测试谱图。图中表明:超分子组装体在PBS缓冲溶液中6h范围内能保持良好的稳定性。
图13为超分子组装体的酶响应在荧光发射及紫外可见光谱仪器上的测试谱图。图中表明:加入透明质酸酶3h后组装体解组装释放出抗癌药物阿霉素(DOX)。
图14为超分子组装体的细胞实验测试谱图。图中表明:在加入透明质酸酶3h后组装体具有杀伤A549癌细胞的能力。

Claims (5)

1.酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系,其特征在于:该体系是以咪唑环糊精作为主体,透明质酸作为靶向剂,其中构筑单元咪唑环糊精的化学结构式如下:
Figure FDA0003113739510000011
2.一种权利要求1所述的酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系的制备方法,包括以下步骤:
步骤1、抗癌药物阿霉素DOX溶液的制备;
步骤2、咪唑环糊精-透明质酸二元超分子纳米粒子溶液的制备;
步骤3、将步骤2所得二元超分子纳米粒子溶液加入步骤1制得的DOX溶液中搅拌后进行透析。
3.一种如权利要求2所述酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系的制备方法,其特征在于:步骤2中咪唑环糊精的制备方法如下:
1)将20.2g、77.0mmol的三苯基膦溶于80mL无水DMF中,在氮气保护下10-15分钟内缓慢地加入20.2g、77.2mmol的碘;然后将5g、4.4mmol的干燥的β-环糊精加入到上述的深棕色溶液中,将其在70℃和氮气氛围下充分搅拌18小时;之后将反应液在减压的条件下蒸出一半的溶液;在冰浴条件下,在搅拌的情况下向其中加入甲醇钠的甲醇溶液,后将溶液的pH调到9-10;在室温下,将混合液搅拌30分钟,随后在剧烈搅拌下将混合液加入到400mL冷甲醇中,将析出的不溶物过滤并收集,用甲醇洗涤后,并用甲醇对得到的固体进行索氏提取,直至溶剂不变色,最终得到目标产物为白色粉末7.70g,产率为92%;
2)在氮气氛围下,将1)中制得的产物1g、0.52mmol,使之与6.0ml、90mmol的1-甲基咪唑在氩气氛围保护和80℃条件下加热搅拌48h;反应结束后,将反应瓶溶液转移至200ml丙酮中,会有大量白色沉淀析出;减压抽滤后用丙酮洗涤沉淀,然后将得到的白色沉淀用少量二次水进行重结晶;将以上过程重复三次,得到物质即为目标产物715.2mg,产率56%;核磁表征产物结构为:1H NMR(D2O,400MHz):δ(ppm)=3.30-3.37(t,1H),3.50-3.55(d,1H),3.75-3.83(s,3H),3.95-4.01(t,1H),4.08-4.18(m,1H),4.45-4.54(m,2H),5.01-5.08(s,1H),7.40-7.45(s,1H)7.49-7.54(s,1H)。
4.一种如权利要求2所述酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系的制备方法,其特征在于:步骤2中咪唑环糊精-透明质酸二元超分子纳米粒子溶液的制备,步骤如下:
咪唑环糊精-透明质酸二元超分子纳米粒子是以甲基咪唑取代的β-环糊精为主体,以具有靶向性的透明质酸为客体,通过静电相互作用构筑了超分子纳米粒子;将甲基咪唑取代的β-环糊精和靶向性的透明质酸按照0.05mM咪唑环糊精和0.5mM浓度透明质酸的比例溶解于水中,均匀混合后得到二元超分子纳米粒子溶液。
5.一种如权利要求2所述酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系的制备方法,其特征在于:步骤3中透析的步骤如下:
将制备好的咪唑环糊精-透明质酸二元超分子纳米粒子溶液加入到阿霉素溶液中后放置在截留量为3500的透析袋中搅拌24h透析,直至透析液的颜色不发生变化为止。
CN202110657443.8A 2021-06-12 2021-06-12 酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法 Pending CN113384713A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110657443.8A CN113384713A (zh) 2021-06-12 2021-06-12 酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110657443.8A CN113384713A (zh) 2021-06-12 2021-06-12 酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法

Publications (1)

Publication Number Publication Date
CN113384713A true CN113384713A (zh) 2021-09-14

Family

ID=77620947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110657443.8A Pending CN113384713A (zh) 2021-06-12 2021-06-12 酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法

Country Status (1)

Country Link
CN (1) CN113384713A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949249A (zh) * 2022-05-17 2022-08-30 东莞市大朗医院 一种抗癌药物复合物及其制备方法和应用
CN115124723A (zh) * 2022-07-10 2022-09-30 西南大学 基于阿霉素-环糊精多重作用力形成的纳米笼及其制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815332A (zh) * 2015-05-15 2015-08-05 南开大学 一种pH响应的二元超分子纳米粒子及其制备方法和应用
CN105169403A (zh) * 2015-07-17 2015-12-23 南开大学 一种二元超两亲性纳米粒子溶液及其制备方法和应用
CN108187059A (zh) * 2018-03-29 2018-06-22 中南大学 一种刺激响应型两亲性环糊精聚合物载体、制备及其在制备缓控释药物中的应用
CN112011098A (zh) * 2020-09-04 2020-12-01 南开大学 一种磺化环糊精-溴苯基甲基吡啶盐-氨基黏土构筑的超分子发光凝胶体系及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104815332A (zh) * 2015-05-15 2015-08-05 南开大学 一种pH响应的二元超分子纳米粒子及其制备方法和应用
CN105169403A (zh) * 2015-07-17 2015-12-23 南开大学 一种二元超两亲性纳米粒子溶液及其制备方法和应用
CN108187059A (zh) * 2018-03-29 2018-06-22 中南大学 一种刺激响应型两亲性环糊精聚合物载体、制备及其在制备缓控释药物中的应用
CN112011098A (zh) * 2020-09-04 2020-12-01 南开大学 一种磺化环糊精-溴苯基甲基吡啶盐-氨基黏土构筑的超分子发光凝胶体系及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DR. PING HU ET AL.: "Construction, Enzyme Response, and Substrate Capacity of a Hyaluronan–Cyclodextrin Supramolecular Assembly", 《CHEMISTRY AN ASIAN JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949249A (zh) * 2022-05-17 2022-08-30 东莞市大朗医院 一种抗癌药物复合物及其制备方法和应用
CN115124723A (zh) * 2022-07-10 2022-09-30 西南大学 基于阿霉素-环糊精多重作用力形成的纳米笼及其制备

Similar Documents

Publication Publication Date Title
Cao et al. Hyaluronic acid-modified multiwalled carbon nanotubes for targeted delivery of doxorubicin into cancer cells
Huang et al. A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response
CN113384713A (zh) 酶响应的超分子纳米粒子可控释放抗癌药物阿霉素体系及其制备方法
Zhang et al. Preparation and characterization of selenium nanoparticles decorated by Spirulina platensis polysaccharide
Kesavan et al. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery
CN108264578B (zh) 多糖接枝叶酸共聚物及其纳米粒制备方法
Long et al. Simultaneous surface functionalization and drug loading: A novel method for fabrication of cellulose nanocrystals-based pH responsive drug delivery system
Guo et al. Characterization and cytotoxicity of PLGA nanoparticles loaded with formononetin cyclodextrin complex
Shang et al. Dual antisense oligonucleotide targeting miR-21/miR-155 synergize photodynamic therapy to treat triple-negative breast cancer and inhibit metastasis
Wang et al. Lycium barbarum polysaccharides grafted with doxorubicin: An efficient pH-responsive anticancer drug delivery system
Gao et al. Sensitive complex micelles based on host-guest recognition from chitosan-graft-β-cyclodextrin for drug release
Wang et al. Construction of doxorubicin-conjugated lentinan nanoparticles for enhancing the cytotoxocity effects against breast cancer cells
Shi et al. Entirely oligosaccharide-based supramolecular amphiphiles constructed via host–guest interactions as efficient drug delivery platforms
Dai et al. H 2 O 2-responsive polymeric micelles with a benzil moiety for efficient DOX delivery and AIE imaging
CN107537039B (zh) 靶向木质素基纳米载药粒子
CN111686258A (zh) 一种t7多肽修饰靶向纳米系统及其制备方法和应用
Wu et al. Amorphous silibinin nanoparticles loaded into porous starch to enhance remarkably its solubility and bioavailability in vivo
Moradi et al. Simulation and computational study of graphene oxide nano-carriers, absorption, and release of the anticancer drug of camptothecin
Fan et al. Ultrasonic extraction, structural modification and gastric mucosal cells protective activity of a polysaccharide from Dendrobium denneanum
Yuan et al. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol
Zhou et al. Water-soluble hypocrellin A nanoparticles as a photodynamic therapy delivery system
Guan et al. Aggregation-induced emission (AIE) nanoparticles based on γ-cyclodextrin and their applications in biomedicine
Li et al. Maltosyl-β-cyclodextrin mediated SupramolecularHost-Guest inclusion complex used for enhancing baicalin antioxidant activity and bioavailability
CN114652699B (zh) 一种尺寸转变型纳米递药载体及其制备方法和应用
Yin et al. Construction of cyclodextrin-based organic frameworks with adjustable size: Enhanced the physicochemical stability and controlled release characteristics of apigenin

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210914

WD01 Invention patent application deemed withdrawn after publication