CN113380266B - 一种微型双麦克风语音增强方法及微型双麦克风 - Google Patents

一种微型双麦克风语音增强方法及微型双麦克风 Download PDF

Info

Publication number
CN113380266B
CN113380266B CN202110587857.8A CN202110587857A CN113380266B CN 113380266 B CN113380266 B CN 113380266B CN 202110587857 A CN202110587857 A CN 202110587857A CN 113380266 B CN113380266 B CN 113380266B
Authority
CN
China
Prior art keywords
microphone
noise
signal
frame
voice signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110587857.8A
Other languages
English (en)
Other versions
CN113380266A (zh
Inventor
钟华森
刘云飞
周瑜
王笑楠
冯杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Third Research Institute Of China Electronics Technology Group Corp
Original Assignee
Third Research Institute Of China Electronics Technology Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Third Research Institute Of China Electronics Technology Group Corp filed Critical Third Research Institute Of China Electronics Technology Group Corp
Priority to CN202110587857.8A priority Critical patent/CN113380266B/zh
Publication of CN113380266A publication Critical patent/CN113380266A/zh
Application granted granted Critical
Publication of CN113380266B publication Critical patent/CN113380266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor

Abstract

本发明公开了一种微型双麦克风语音增强方法及微型双麦克风,本发明利用双麦克风阵列形式,通过相干系数设计滤波器,实现对带噪语音的语音增强,相对于单麦克风语音增强技术,本发明实施例的麦克风语音增强技术具有空域滤波的作用,可以抑制非平稳噪声,而相对于传统的麦克风阵列语音增强技术,本发明实施例的麦克风语音增强技术具有更小的阵列尺寸与更低的功耗。

Description

一种微型双麦克风语音增强方法及微型双麦克风
技术领域
本发明涉及传声器技术领域,特别是涉及一种微型双麦克风语音增强方法及微型双麦克风。
背景技术
在拾音过程中,不可避免的会引入各种各样的噪声,包括自然界存在的各类噪声、干扰语音以及拾音设备内部的噪声等。噪声的引入会严重影响拾音结果,需要采用各种手段予以去除。去除语音噪声的技术称为语音增强技术,其中,单麦克风语音增强技术有多种,如谱减法、维纳滤波、最小均方误差法等。但是现有对双麦克风进行语音增强的研究则较少,因此如何降低双麦克风的噪声干扰成为现在亟待需要解决的问题。
发明内容
本发明提供了一种微型双麦克风语音增强方法及微型双麦克风,以解决现有不能很好地降低双麦克风的噪声干扰的问题。
第一方面,本发明提供了一种微型双麦克风语音增强方法,其特征在于,包括:利用阵列布置的双麦克风采集带噪语音信号,所述阵列布置的双麦克风包括第一麦克风和第二麦克风;对所采集的带噪语音信号进行处理,将所述带噪语音信号转换为单帧频域带噪语音信号;对转换后的单帧频域带噪语音信号进行相干系数计算和空域滤波器设计,使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向,利用所述空域滤波器对所述单帧频域带噪语音信号进行空域滤波,对空域滤波后的信号进行快速傅里叶逆变换IFFT,得到单帧时域增强语音信号,并对所述单帧时域增强语音信号进行拼接得到整段带噪语音的语音增强信号;其中,所述双麦克风的语音增强方向为所述第二麦克风到所述第一麦克风的端射方向。
可选地,所述阵列布置的双麦克风中第一麦克风的中心点与第二麦克风的中心点之间的间距为1.5-3厘米。
可选地,所述对所采集的带噪语音信号进行处理,将所述带噪语音信号转换为单帧频域带噪语音信号,包括:对所采集的带噪语音信号进行分帧与加窗处理,并通过快速傅里叶变换将单帧的带噪语音信号转换为单帧频域带噪语音信号。
可选地,所述对所采集的带噪语音信号进行分帧与加窗处理,包括:设定所述第一麦克风采集的带噪语音信号为x1,所述第二麦克风采集的带噪语音信号为x2,对所述第一麦克风采集的带噪语音信号x1以及所述第二麦克风采集的带噪语音信号x2进行分帧加窗,得到对应的单帧时域带噪语音信号x1win(l),x2win(l),其中,L为单帧时域带噪语音信号长度,l=1,2,…,L。
可选地,所述通过快速傅里叶变换将单帧的带噪语音信号转换为单帧频域带噪语音信号,包括:对单帧时域带噪语音信号x1win(l),x2win(l)进行如下处理,
Figure BDA0003088352010000021
Figure BDA0003088352010000022
将计算得到的x1fwin(k),x2fwin(k)利用FFT转换到频域,得到单帧频域带噪语音信号,X1win(k)=fft(x1fwin(k)),X2win(k)=fft(x2fwin(k));
其中,ceil为向上取整,x1fwin(k),x2fwin(k)分别为所述第一麦克风和所述第二麦克风的待变换的单帧时域带噪语音信号,X1win(k)为所述第一麦克风的单帧频域带噪语音信号,X2win(k)为所述第二麦克风的单帧频域带噪语音信号,fft为快速傅里叶变换算子。
可选地,所述对转换后的单帧频域带噪语音信号进行相干系数计算和空域滤波器设计,使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向,包括:根据
Figure BDA0003088352010000031
计算转换后的单帧频域带噪语音信号所对应的相干系数,其中,
Figure BDA0003088352010000032
Figure BDA0003088352010000033
Figure BDA0003088352010000034
E为数学期望;
根据相干系数Γ(ω)的实部与虚部的幅值大小与单帧频域带噪语音信号方位和信噪比的对应关系,设计所述空域滤波器,以使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向。
可选地,设计所述空域滤波器的步骤包括:设Γ(ω)的实部为real(Γ(ω)),虚部为img(Γ(ω)),第一空域滤波器设计为,G1(ω)=1-|real(Γ(ω))|P(ω),其中,G1(ω)为第一空域滤波器的增益函数,P(ω)满足
Figure BDA0003088352010000035
其中,αlow和αhigh为正整数,且αlow>αhigh>1;
第二空域滤波器设计为,
Figure BDA0003088352010000036
其中,G2(ω)为第二滤波器的增益函数,μ为接近于0的正数,Q(ω)满足:
Figure BDA0003088352010000037
式中βlow和βhigh为负数,且βlow>βhigh>-1;
将G1(ω)和G2(ω)相乘得到最终空域滤波器增益函数Gfinal(ω)=G1(ω)×G2(ω);
可选地,所述方法还包括:基于所述空域滤波器增益函数Gfinal(ω),将所述第一麦克风的单帧频域带噪语音信号X1win(k)与Gfinal(ω)相乘,得到单帧频域增强语音信号:Xenhwin(k)=X1win(k)×Gfinal(ω);
并对单帧频域增强语音信号进行快速傅里叶逆变换,得到对应的单帧时域增强语音信号xenhwin(k)=ifft(Xenhwin(k));
其中,Xenhwin(k)为单帧频域增强语音信号,xenhwin(k)为单帧时域增强语音信号,ifft为傅里叶逆变换算子。
可选地,所述对所述单帧时域增强语音信号进行拼接得到整段带噪语音的语音增强信号,包括:
将所有单帧时域增强语音按分帧和加窗参数进行拼接,得到整段带噪语音的增强结果。
第二方面,本发明提供了一种微型双麦克风,所述微型双麦克风为采用上述任一种所述方法进行制备的。
本发明有益效果如下:
本发明是利用双麦克风阵列形式,通过相干系数设计滤波器,实现对带噪语音的语音增强,相对于单麦克风语音增强技术,本发明具有空域滤波的作用,可以抑制非平稳噪声,相对于其它传统的的麦克风阵列语音增强技术,本发明具有更小的尺寸和更低的功耗。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
图1是本发明第一实施例提供的一种微型双麦克风语音增强方法的流程示意图;
图2是本发明第一实施例提供的阵列布置的双麦克风的结构示意图;
图3是本发明第一实施例提供的另一种微型双麦克风语音增强方法的流程示意图。
具体实施方式
以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
本发明第一实施例提供了一种微型双麦克风语音增强方法,参见图1,该方法包括:
S101、利用阵列布置的双麦克风采集带噪语音信号,所述阵列布置的双麦克风包括第一麦克风和第二麦克风;
其中,如图2所示,本发明实施例中,所述阵列布置的双麦克风中第一麦克风的中心点与第二麦克风的中心点之间的间距为1.5-3厘米。
具体实施时,本发明实施例是利用阵列布置的双麦克风上的质点振速传声器采集所述带噪语音信号。通过利用质点振速传声器进行声信号采集,本发明实施例可以充分利用传声器本身的噪声抑制特性,以进一步提高语音增强效果。
S102、对所采集的带噪语音信号进行处理,将所述带噪语音信号转换为单帧频域带噪语音信号;
即,本发明实施例是对所采集的带噪语音信号进行分帧与加窗处理,并通过快速傅里叶变换将单帧的带噪语音信号转换为单帧频域带噪语音信号;
具体来说,本发明实施例是设定所述第一麦克风采集的带噪语音信号为x1,所述第二麦克风采集的带噪语音信号为x2,对所述第一麦克风采集的带噪语音信号x1以及所述第二麦克风采集的带噪语音信号x2进行分帧加窗,得到对应的单帧时域带噪语音信号x1win(l),x2win(l),其中,L为单帧时域带噪语音信号长度,l=1,2,…,L。
对单帧时域带噪语音信号x1win(l),x2win(l)进行如下处理,
Figure BDA0003088352010000051
Figure BDA0003088352010000052
将计算得到的x1fwin(k),x2fwin(k)利用FFT转换到频域,得到单帧频域带噪语音信号,X1win(k)=fft(x1fwin(k)),X2win(k)=fft(x2fwin(k));
其中,ceil为向上取整,x1fwin(k),x2fwin(k)分别为所述第一麦克风和所述第二麦克风的待变换的单帧时域带噪语音信号,X1win(k)为所述第一麦克风的单帧频域带噪语音信号,X2win(k)为所述第二麦克风的单帧频域带噪语音信号,fft为快速傅里叶变换算子。
S103、对转换后的单帧频域带噪语音信号进行相干系数计算和空域滤波器设计,使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向,利用所述空域滤波器对所述单帧频域带噪语音信号进行空域滤波,对空域滤波后的信号进行快速傅里叶逆变换IFFT,得到单帧时域增强语音信号;
具体实施时,本发明实施例是根据
Figure BDA0003088352010000061
计算转换后的单帧频域带噪语音信号所对应的相干系数,其中,
Figure BDA0003088352010000062
Figure BDA0003088352010000063
Figure BDA0003088352010000064
E为数学期望;
根据相干系数Γ(ω)的实部与虚部的幅值大小与单帧频域带噪语音信号方位和信噪比的对应关系,设计所述空域滤波器,以使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向。
其中,本发明实施例是通过以下步骤来设置空域滤波器的:设Γ(ω)的实部为real(Γ(ω)),虚部为img(Γ(ω)),第一空域滤波器设计为,G1(ω)=1-|real(Γ(ω))|P(ω),其中,G1(ω)为第一空域滤波器的增益函数,P(ω)满足
Figure BDA0003088352010000065
其中,αlow和αhigh为正整数,且αlow>αhigh>1;
第二空域滤波器设计为,
Figure BDA0003088352010000066
其中,G2(ω)为第二滤波器的增益函数,μ为接近于0的正数,Q(ω)满足:
Figure BDA0003088352010000067
式中βlow和βhigh为负数,且βlow>βhigh>-1;
将G1(ω)和G2(ω)相乘得到最终空域滤波器增益函数Gfinal(ω)=G1(ω)×G2(ω)。
然后,基于所述空域滤波器增益函数Gfinal(ω),将所述第一麦克风的单帧频域带噪语音信号X1win(k)与Gfinal(ω)相乘,得到单帧频域增强语音信号:Xenhwin(k)=X1win(k)×Gfinal(ω);
并对单帧频域增强语音信号进行快速傅里叶逆变换,得到对应的单帧时域增强语音信号xenhwin(k)=ifft(Xenhwin(k));
其中,Xenhwin(k)为单帧频域增强语音信号,xenhwin(k)为单帧时域增强语音信号,ifft为傅里叶逆变换算子。
S104、对所述单帧时域增强语音信号进行拼接得到整段带噪语音的语音增强信号。
具体实施时,本发明实施例是将所有单帧时域增强语音按分帧和加窗参数进行拼接,得到整段带噪语音的增强结果。
需要说明的是,所述双麦克风的语音增强方向为所述第二麦克风到所述第一麦克风的端射方向。
总体来说,本发明实施例是利用双麦克风阵列形式,通过相干系数设计滤波器,实现对带噪语音的语音增强。相对于单麦克风语音增强技术,本发明具有空域滤波的作用,可以抑制非平稳噪声,并且相对于传统的麦克风阵列语音增强技术,本发明具有更小的阵列尺寸与更低的功耗。
为了更好地对本发明进行详细的说明,下面结合图3以一个具体的例子来对本发明所述方法进行说明:
如图3所示,本发明提供了一种基于质点振速传声器的微型双麦克风语音增强方法,本发明利用两只间距小、敏感方向一致的质点振速传声器作为原始声信号采集单元,根据两只传声器信号的相干系数设计空域滤波器,实现对目标语音的增强。具体本发明实施例所述的方法包括:
S301、阵列布置与带噪语音信号采集;
如图2所示,本发明实施例是将两只质点振速传声器并排放置,间距为2cm,定义其中一只质点振速传声器为前麦,即上述的第一麦克风,另外一只质点振速传声器为后麦,即上述的第二麦克风,语音增强方向为后麦到前麦的端射方向。两只质点振速传声器的敏感方向均与增强方向一致。
阵列布设完毕后,利用两只质点振速传声器进行带噪语音信号采集,前麦和后麦采集到的带噪语音信号分别记为x1,x2
S302、带噪语音分帧与加窗处理;
分帧和加窗是语音信号处理中的基本预处理过程,其目的是保证所处理的语音信号为近似平稳信号。对模块1中的x1,x2进行分帧加窗,得到对应的单帧时域带噪语音信号x1win(l),x2win(l)(l=1,2,…,L,L为单帧时域带噪语音信号长度)。分帧加窗参数选择如下:帧长为20ms,帧移为10ms,窗函数为汉宁窗。
S303、单帧信号快速傅里叶变换;
本步骤具体是将单帧时域带噪语音信号转换到频域。由于FFT要求信号长度为2的整数次幂,而对于采样率不同的信号,根据模块2的帧长参数选择,单帧时域带噪语音信号的长度不一定满足该条件。为此,对单帧时域带噪语音信号x1win(l),x2win(l)进行如下处理,
Figure BDA0003088352010000081
Figure BDA0003088352010000082
其中,ceil表示向上取整,x1fwin(k),x2fwin(k)分别为前麦和后麦的待变换的单帧时域带噪语音信号。
得到x1fwin(k),x2fwin(k)后,就可以利用FFT将其转换到频域,得到单帧频域带噪语音信号,
X1win(k)=fft(x1fwin(k)) (3)
X2win(k)=fft(x2fwin(k)) (4)
其中,X1win(k),X2win(k)分别为前麦和后麦的单帧频域带噪语音信号,fft为快速傅里叶变换算子。
S304、相干系数计算与滤波器设计;
具体来说,本发明实施例是将上述步骤得到的单帧频域带噪语音信号X1win(k),X2win(k),计算其对应的相干系数,具体计算公式为,
Figure BDA0003088352010000091
其中,
Figure BDA0003088352010000092
Figure BDA0003088352010000093
Figure BDA0003088352010000094
Figure BDA0003088352010000095
其中,E表示数学期望。
相干系数Γ(ω)为复数,包含实部与虚部,实部与虚部的幅值大小与信号方位和信噪比具有对应关系,可据此设计空域滤波器。将Γ(ω)的实部和虚部分别记为real(Γ(ω))和img(Γ(ω)),滤波器1设计为,
G1(ω)=1-|real(Γ(ω))|P(ω) (10)
其中,G1(ω)为滤波器1的增益函数,P(ω)满足如下条件,
Figure BDA0003088352010000096
式中αlow和αhigh为正整数,满足αlow>αhigh>1。
滤波器2设计为,
Figure BDA0003088352010000097
其中,G2(ω)为滤波器2的增益函数,μ为接近于0的正数,Q(ω)满足如下条件,
Figure BDA0003088352010000101
式中βlow和βhigh为负数,满足βlow>βhigh>-1。
最后,将G1(ω)和G2(ω)相乘得到最终滤波器增益函数,
Gfinal(ω)=G1(ω)×G2(ω) (14)
S305、进行空域滤波与快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT);
得到最终滤波器增益函数Gfinal(ω)后,将前麦单帧频域带噪语音信号X1win(k)与Gfinal(ω)相乘,可得到单帧频域增强语音信号,
Xenhwin(k)=X1win(k)×Gfinal(ω) (15)
其中,Xenhwin(k)为单帧频域增强语音信号。
得到Xenhwin(k)后,对其进行IFFT,可以得到对应的单帧时域增强语音信号,
xenhwin(k)=ifft(Xenhwin(k)) (16)
其中,xenhwin(k)为单帧时域增强语音信号,ifft为IFFT算子。
S306、单帧时域增强语音拼接。
即,在得到所有单帧时域增强语音后,将其按分帧和加窗参数进行拼接,得到整段带噪语音的增强结果。
总体来说,本发明实施例是利用双麦克风阵列形式,通过相干系数设计滤波器,实现对带噪语音的语音增强。相对于单麦克风语音增强技术,本发明实施例的麦克风具有空域滤波的作用,可以抑制非平稳噪声;而相对于传统的麦克风阵列语音增强技术,本发明实施例的麦克风具有更小的阵列尺寸与更低的功耗。同时,本发明的麦克风是利用质点振速传声器进行声信号采集,可以充分利用传声器本身的噪声抑制特性,进而可以提高语音增强效果。
本发明第二实施例提供了一种微型双麦克风,该微型双麦克风采用上述任一种所述方法进行语音增强处理。本发明实施例的相关内容可参见本发明第一实施例和第二实施例进行理解,在此不做详细论述。
尽管为示例目的,已经公开了本发明的优选实施例,本领域的技术人员将意识到各种改进、增加和取代也是可能的,因此,本发明的范围应当不限于上述实施例。

Claims (10)

1.一种微型双麦克风语音增强方法,其特征在于,包括:
利用阵列布置的双麦克风采集带噪语音信号,所述阵列布置的双麦克风包括第一麦克风和第二麦克风;
对所采集的带噪语音信号进行处理,将所述带噪语音信号转换为单帧频域带噪语音信号;
对转换后的单帧频域带噪语音信号进行相干系数计算和空域滤波器设计,使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向,利用所述空域滤波器对所述单帧频域带噪语音信号进行空域滤波,对空域滤波后的信号进行快速傅里叶逆变换IFFT,得到单帧时域增强语音信号,并对所述单帧时域增强语音信号进行拼接得到整段带噪语音的语音增强信号;
其中,所述双麦克风的语音增强方向为所述第二麦克风到所述第一麦克风的端射方向。
2.根据权利要求1所述的方法,其特征在于,
所述阵列布置的双麦克风中第一麦克风的中心点与第二麦克风的中心点之间的间距为1.5-3厘米。
3.根据权利要求1所述的方法,其特征在于,所述对所采集的带噪语音信号进行处理,将所述带噪语音信号转换为单帧频域带噪语音信号,包括:
对所采集的带噪语音信号进行分帧与加窗处理,并通过快速傅里叶变换将单帧的带噪语音信号转换为单帧频域带噪语音信号。
4.根据权利要求3所述的方法,其特征在于,
所述对所采集的带噪语音信号进行分帧与加窗处理,包括:
设定所述第一麦克风采集的带噪语音信号为x 1,所述第二麦克风采集的带噪语音信号为x 2,对所述第一麦克风采集的带噪语音信号x 1以及所述第二麦克风采集的带噪语音信号x 2进行分帧加窗,得到对应的单帧时域带噪语音信号x 1win(l),x 2win(l),其中,L为单帧时域带噪语音信号长度,l=1,2,…,L
所述通过快速傅里叶变换将单帧的带噪语音信号转换为单帧频域带噪语音信号,包括:
对单帧时域带噪语音信号x 1win(l),x 2win(l)进行如下处理,
Figure DEST_PATH_IMAGE001
(1)
Figure 257382DEST_PATH_IMAGE002
(2)
将计算得到的x 1fwin(k),x 2fwin(k)利用FFT转换到频域,得到单帧频域带噪语音信号
Figure DEST_PATH_IMAGE003
Figure 331779DEST_PATH_IMAGE004
,;
其中,为向上取整,x 1fwin(k),x 2fwin(k)分别为所述第一麦克风和所述第二麦克风的待变换的单帧时域带噪语音信号,为所述第一麦克风的单帧频域带噪语音信号,为所述第二麦克风的单帧频域带噪语音信号,fft为快速傅里叶变换算子。
5.根据权利要求4所述的方法,其特征在于,所述对转换后的单帧频域带噪语音信号进行相干系数计算和空域滤波器设计,使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向,包括:
根据
Figure DEST_PATH_IMAGE005
计算转换后的单帧频域带噪语音信号所对应的相干系数,其中,
Figure 970571DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure 523037DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
,E为数学期望;
根据相干系数的实部与虚部的幅值大小与单帧频域带噪语音信号方位和信噪比的对应关系,设计所述空域滤波器,以使所述空域滤波器的最大响应方向对准所述双麦克风的语音增强方向。
6.根据权利要求4所述的方法,其特征在于,设计所述空域滤波器的步骤包括:
Figure 258781DEST_PATH_IMAGE010
的实部为
Figure DEST_PATH_IMAGE011
,虚部为
Figure 487768DEST_PATH_IMAGE012
,第一空域滤波器设计为,
Figure DEST_PATH_IMAGE013
,其中,
Figure 929637DEST_PATH_IMAGE014
为第一空域滤波器的增益函数,
Figure DEST_PATH_IMAGE015
满足 ,
Figure 253170DEST_PATH_IMAGE016
其中,
Figure DEST_PATH_IMAGE017
Figure 813727DEST_PATH_IMAGE018
为正整数,且
Figure DEST_PATH_IMAGE019
第二空域滤波器设计为,
Figure 931725DEST_PATH_IMAGE020
,其中,
Figure DEST_PATH_IMAGE021
为第二滤波器的增益函数,
Figure 889316DEST_PATH_IMAGE022
为接近于0的正数,
Figure DEST_PATH_IMAGE023
满足:
Figure 986848DEST_PATH_IMAGE024
式中
Figure DEST_PATH_IMAGE025
Figure 431604DEST_PATH_IMAGE026
为负数,且
Figure DEST_PATH_IMAGE027
将和相乘得到最终空域滤波器增益函数。
7.根据权利要求5所述的方法,其特征在于,所述方法还包括:
基于所述空域滤波器增益函数
Figure 487547DEST_PATH_IMAGE028
,将所述第一麦克风的单帧频域带噪语音信号
Figure DEST_PATH_IMAGE029
Figure 588227DEST_PATH_IMAGE030
相乘,得到单帧频域增强语音信号:
Figure DEST_PATH_IMAGE031
并对单帧频域增强语音信号进行快速傅里叶逆变换,得到对应的单帧时域增强语音信号
Figure 483590DEST_PATH_IMAGE032
其中,
Figure DEST_PATH_IMAGE033
为单帧频域增强语音信号,
Figure 782853DEST_PATH_IMAGE034
为单帧时域增强语音信号,ifft为傅里叶逆变换算子。
8.根据权利要求1-7中任意一项所述的方法,其特征在于,所述对所述单帧时域增强语音信号进行拼接得到整段带噪语音的语音增强信号,包括:
将所有单帧时域增强语音按分帧和加窗参数进行拼接,得到整段带噪语音的增强结果。
9.根据权利要求1-7中任意一项所述的方法,其特征在于,所述利用阵列布置的双麦克风采集带噪语音信号,包括:
利用阵列布置的双麦克风上的质点振速传声器采集所述带噪语音信号。
10.一种微型双麦克风,其特征在于,所述微型双麦克风采用权利要求1-9中任意一项所述方法进行语音增强处理。
CN202110587857.8A 2021-05-28 2021-05-28 一种微型双麦克风语音增强方法及微型双麦克风 Active CN113380266B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110587857.8A CN113380266B (zh) 2021-05-28 2021-05-28 一种微型双麦克风语音增强方法及微型双麦克风

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110587857.8A CN113380266B (zh) 2021-05-28 2021-05-28 一种微型双麦克风语音增强方法及微型双麦克风

Publications (2)

Publication Number Publication Date
CN113380266A CN113380266A (zh) 2021-09-10
CN113380266B true CN113380266B (zh) 2022-06-28

Family

ID=77572340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110587857.8A Active CN113380266B (zh) 2021-05-28 2021-05-28 一种微型双麦克风语音增强方法及微型双麦克风

Country Status (1)

Country Link
CN (1) CN113380266B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916567A (zh) * 2009-11-23 2010-12-15 瑞声声学科技(深圳)有限公司 应用于双麦克风系统的语音增强方法
DE102013205790A1 (de) * 2013-04-02 2014-10-02 Friedrich-Alexander-Universität Erlangen - Nürnberg Verfahren zum Schätzen eines Nutzsignals und Hörvorrichtung
CN104157295A (zh) * 2014-08-22 2014-11-19 中国科学院上海高等研究院 用于检测及抑制瞬态噪声的方法
WO2015106401A1 (zh) * 2014-01-15 2015-07-23 宇龙计算机通信科技(深圳)有限公司 语音处理方法和语音处理装置
CN109215677A (zh) * 2018-08-16 2019-01-15 北京声加科技有限公司 一种适用于语音和音频的风噪检测和抑制方法和装置
CN111048106A (zh) * 2020-03-12 2020-04-21 深圳市友杰智新科技有限公司 基于双麦克风的拾音方法、装置和计算机设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916567A (zh) * 2009-11-23 2010-12-15 瑞声声学科技(深圳)有限公司 应用于双麦克风系统的语音增强方法
DE102013205790A1 (de) * 2013-04-02 2014-10-02 Friedrich-Alexander-Universität Erlangen - Nürnberg Verfahren zum Schätzen eines Nutzsignals und Hörvorrichtung
WO2015106401A1 (zh) * 2014-01-15 2015-07-23 宇龙计算机通信科技(深圳)有限公司 语音处理方法和语音处理装置
CN104157295A (zh) * 2014-08-22 2014-11-19 中国科学院上海高等研究院 用于检测及抑制瞬态噪声的方法
CN109215677A (zh) * 2018-08-16 2019-01-15 北京声加科技有限公司 一种适用于语音和音频的风噪检测和抑制方法和装置
CN111048106A (zh) * 2020-03-12 2020-04-21 深圳市友杰智新科技有限公司 基于双麦克风的拾音方法、装置和计算机设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭业才等.LCMV分频的改进维纳滤波后置波束形成算法.《电子测量与仪器学报》.2017,(第10期), *
闵新宇等.基于麦克风阵列的语音增强算法.《计算机工程与设计》.2020,(第04期), *

Also Published As

Publication number Publication date
CN113380266A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
WO2015196729A1 (zh) 一种麦克风阵列语音增强方法及装置
CN105575397B (zh) 语音降噪方法及语音采集设备
CN109285557B (zh) 一种定向拾音方法、装置及电子设备
WO2007026827A1 (ja) マイクロホンアレイ用ポストフィルタ
US20170229137A1 (en) Audio processing apparatus, audio processing method, and program
WO2010092568A1 (en) Multiple microphone based directional sound filter
CN107369460B (zh) 基于声学矢量传感器空间锐化技术的语音增强装置及方法
CN101853665A (zh) 语音中噪声的消除方法
WO2015129760A1 (ja) 信号処理装置、方法及びプログラム
CN101587712B (zh) 一种基于小型麦克风阵列的定向语音增强方法
CN105702262A (zh) 一种头戴式双麦克风语音增强方法
CN113380266B (zh) 一种微型双麦克风语音增强方法及微型双麦克风
CN113409804A (zh) 一种基于变张成广义子空间的多通道频域语音增强算法
CN109901114B (zh) 一种适用于声源定位的时延估计方法
WO2023108864A1 (zh) 小型麦克风阵列设备的区域拾音方法及系统
CN110931034A (zh) 一种送话拾音麦克风内置型耳机的拾音降噪方法
Zhu et al. Modified complementary joint sparse representations: a novel post-filtering to MVDR beamforming
CN110310650A (zh) 一种基于二阶微分麦克风阵列的语音增强算法
CN116106826A (zh) 声源定位方法、相关装置和介质
CN114189781A (zh) 双麦神经网络降噪耳机的降噪方法及系统
CN114566179A (zh) 一种时延可控的语音降噪方法
CN113889133A (zh) 一种基于矢量语音传感器阵列的语音增强方法及装置
CN111210836A (zh) 一种麦克风阵列波束形成动态调整方法
CN113936687B (zh) 一种实时语音分离语音转写的方法
CN116320947B (zh) 一种应用于助听器的频域双通道语音增强方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant