CN113379646A - 一种利用生成对抗网络进行稠密点云补全的算法 - Google Patents
一种利用生成对抗网络进行稠密点云补全的算法 Download PDFInfo
- Publication number
- CN113379646A CN113379646A CN202110768864.8A CN202110768864A CN113379646A CN 113379646 A CN113379646 A CN 113379646A CN 202110768864 A CN202110768864 A CN 202110768864A CN 113379646 A CN113379646 A CN 113379646A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- feature vector
- feature
- encoder
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013598 vector Substances 0.000 claims abstract description 131
- 238000012549 training Methods 0.000 claims abstract description 16
- 239000000284 extract Substances 0.000 claims abstract description 4
- 238000013508 migration Methods 0.000 claims abstract description 4
- 230000005012 migration Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 32
- 238000011176 pooling Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 238000012935 Averaging Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000011069 regeneration method Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 16
- 230000008901 benefit Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/77—Retouching; Inpainting; Scratch removal
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110768864.8A CN113379646B (zh) | 2021-07-07 | 2021-07-07 | 一种利用生成对抗网络进行稠密点云补全的算法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110768864.8A CN113379646B (zh) | 2021-07-07 | 2021-07-07 | 一种利用生成对抗网络进行稠密点云补全的算法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113379646A true CN113379646A (zh) | 2021-09-10 |
CN113379646B CN113379646B (zh) | 2022-06-21 |
Family
ID=77581322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110768864.8A Active CN113379646B (zh) | 2021-07-07 | 2021-07-07 | 一种利用生成对抗网络进行稠密点云补全的算法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113379646B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114004871A (zh) * | 2022-01-04 | 2022-02-01 | 山东大学 | 一种基于点云补全的点云配准方法及系统 |
CN114048845A (zh) * | 2022-01-14 | 2022-02-15 | 深圳大学 | 点云修复方法、装置、计算机设备和存储介质 |
CN114298946A (zh) * | 2022-03-10 | 2022-04-08 | 武汉大学 | 一种框架细节增强的深度学习点云补全方法 |
CN114863062A (zh) * | 2022-06-07 | 2022-08-05 | 南京航空航天大学深圳研究院 | 基于点、体素特征表示的工业场景3d点云模型构建方法 |
CN115496881A (zh) * | 2022-10-19 | 2022-12-20 | 南京航空航天大学深圳研究院 | 单目图像辅助的大型飞机点云补全方法 |
CN115578265A (zh) * | 2022-12-06 | 2023-01-06 | 中汽智联技术有限公司 | 点云增强方法、系统和存储介质 |
CN117115225A (zh) * | 2023-09-01 | 2023-11-24 | 安徽羽亿信息科技有限公司 | 一种自然资源智慧综合信息化管理平台 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107481313A (zh) * | 2017-08-18 | 2017-12-15 | 深圳市唯特视科技有限公司 | 一种基于学习有效点云生成的密集三维物体重建方法 |
CN111724443A (zh) * | 2020-06-09 | 2020-09-29 | 中国科学院自动化研究所 | 基于生成式对抗网络的统一场景视觉定位方法 |
CN112561796A (zh) * | 2020-12-02 | 2021-03-26 | 西安电子科技大学 | 基于自注意生成对抗网络的激光点云超分辨率重建方法 |
CN112785526A (zh) * | 2021-01-28 | 2021-05-11 | 南京大学 | 一种用于图形处理的三维点云修复方法 |
CN112927359A (zh) * | 2021-03-22 | 2021-06-08 | 南京大学 | 一种基于深度学习和体素的三维点云补全方法 |
CN113052955A (zh) * | 2021-03-19 | 2021-06-29 | 西安电子科技大学 | 一种点云补全方法、系统及应用 |
-
2021
- 2021-07-07 CN CN202110768864.8A patent/CN113379646B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107481313A (zh) * | 2017-08-18 | 2017-12-15 | 深圳市唯特视科技有限公司 | 一种基于学习有效点云生成的密集三维物体重建方法 |
CN111724443A (zh) * | 2020-06-09 | 2020-09-29 | 中国科学院自动化研究所 | 基于生成式对抗网络的统一场景视觉定位方法 |
CN112561796A (zh) * | 2020-12-02 | 2021-03-26 | 西安电子科技大学 | 基于自注意生成对抗网络的激光点云超分辨率重建方法 |
CN112785526A (zh) * | 2021-01-28 | 2021-05-11 | 南京大学 | 一种用于图形处理的三维点云修复方法 |
CN113052955A (zh) * | 2021-03-19 | 2021-06-29 | 西安电子科技大学 | 一种点云补全方法、系统及应用 |
CN112927359A (zh) * | 2021-03-22 | 2021-06-08 | 南京大学 | 一种基于深度学习和体素的三维点云补全方法 |
Non-Patent Citations (3)
Title |
---|
MING CHENG ET AL.: "Dense Point Cloud Completion Based on Generative Adversarial Network", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 * |
MUHAMMAD SARMAD ET AL.: "RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape Completion", 《2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)》 * |
陈坤源 等: "铁路高精度点云智能的处理技术", 《厦门大学学报(自然科学版)》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114004871A (zh) * | 2022-01-04 | 2022-02-01 | 山东大学 | 一种基于点云补全的点云配准方法及系统 |
CN114048845A (zh) * | 2022-01-14 | 2022-02-15 | 深圳大学 | 点云修复方法、装置、计算机设备和存储介质 |
CN114048845B (zh) * | 2022-01-14 | 2022-06-03 | 深圳大学 | 点云修复方法、装置、计算机设备和存储介质 |
CN114298946A (zh) * | 2022-03-10 | 2022-04-08 | 武汉大学 | 一种框架细节增强的深度学习点云补全方法 |
CN114298946B (zh) * | 2022-03-10 | 2022-06-14 | 武汉大学 | 一种框架细节增强的深度学习点云补全方法 |
CN114863062A (zh) * | 2022-06-07 | 2022-08-05 | 南京航空航天大学深圳研究院 | 基于点、体素特征表示的工业场景3d点云模型构建方法 |
CN114863062B (zh) * | 2022-06-07 | 2023-09-15 | 南京航空航天大学深圳研究院 | 基于点、体素特征表示的工业场景3d点云模型构建方法 |
CN115496881A (zh) * | 2022-10-19 | 2022-12-20 | 南京航空航天大学深圳研究院 | 单目图像辅助的大型飞机点云补全方法 |
CN115496881B (zh) * | 2022-10-19 | 2023-09-22 | 南京航空航天大学深圳研究院 | 单目图像辅助的大型飞机点云补全方法 |
CN115578265A (zh) * | 2022-12-06 | 2023-01-06 | 中汽智联技术有限公司 | 点云增强方法、系统和存储介质 |
CN117115225A (zh) * | 2023-09-01 | 2023-11-24 | 安徽羽亿信息科技有限公司 | 一种自然资源智慧综合信息化管理平台 |
CN117115225B (zh) * | 2023-09-01 | 2024-04-30 | 安徽羽亿信息科技有限公司 | 一种自然资源智慧综合信息化管理平台 |
Also Published As
Publication number | Publication date |
---|---|
CN113379646B (zh) | 2022-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113379646B (zh) | 一种利用生成对抗网络进行稠密点云补全的算法 | |
Hu et al. | Structure‐aware 3D reconstruction for cable‐stayed bridges: A learning‐based method | |
Chen et al. | Joint hand-object 3d reconstruction from a single image with cross-branch feature fusion | |
WO2024060395A1 (zh) | 一种基于深度学习的高精度点云补全方法及装置 | |
CN110458939A (zh) | 基于视角生成的室内场景建模方法 | |
CN108876814B (zh) | 一种生成姿态流图像的方法 | |
CN112241997A (zh) | 基于多尺度点云上采样的三维模型建立、修复方法及系统 | |
CN112950775A (zh) | 一种基于自监督学习的三维人脸模型重建方法及系统 | |
CN114782634B (zh) | 基于表面隐函数的单目图像着装人体重建方法与系统 | |
CN111127538A (zh) | 一种基于卷积循环编码-解码结构的多视影像三维重建方法 | |
CN110516643A (zh) | 一种基于联合热力图的人脸3d关键点检测方法及系统 | |
Sharma et al. | Point cloud upsampling and normal estimation using deep learning for robust surface reconstruction | |
CN117315169A (zh) | 基于深度学习多视密集匹配的实景三维模型重建方法和系统 | |
CN112418235A (zh) | 一种基于膨胀最近邻特征增强的点云语义分割方法 | |
CN115423938A (zh) | 一种基于语义识别的三维模型重建方法及系统 | |
CN115984339A (zh) | 基于几何特征精炼与对抗生成网络的双管道点云补全方法 | |
CN117576312A (zh) | 手部模型构建方法、装置以及计算机设备 | |
Gao et al. | Vision‐based fatigue crack automatic perception and geometric updating of finite element model for welded joint in steel structures | |
CN117252892B (zh) | 基于轻量化视觉自注意力网络的双分支人像自动抠图装置 | |
Correia et al. | 3D reconstruction of human bodies from single-view and multi-view images: A systematic review | |
Rasoulzadeh et al. | Strokes2Surface: Recovering Curve Networks From 4D Architectural Design Sketches | |
CN116894940A (zh) | 一种基于特征融合与注意机制的点云语义分割方法 | |
CN116977636A (zh) | 一种三维点云的大规模点云语义分割方法 | |
CN116485892A (zh) | 一种弱纹理物体的六自由度位姿估计方法 | |
Jiang et al. | Neighborhood-based neural implicit reconstruction from point clouds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Yuan Inventor after: Chen Yiping Inventor after: Li Guoyan Inventor after: Cheng Ming Inventor after: Wang Cheng Inventor after: Li Jun Inventor after: Huang Jingxiong Inventor before: Li Yuan Inventor before: Chen Yiping Inventor before: Li Guoyan Inventor before: Cheng Ming Inventor before: Wang Cheng Inventor before: Li Jun Inventor before: Jing Xiong |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |