CN113372120A - 一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用 - Google Patents
一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用 Download PDFInfo
- Publication number
- CN113372120A CN113372120A CN202110706086.XA CN202110706086A CN113372120A CN 113372120 A CN113372120 A CN 113372120A CN 202110706086 A CN202110706086 A CN 202110706086A CN 113372120 A CN113372120 A CN 113372120A
- Authority
- CN
- China
- Prior art keywords
- nbte
- powder
- semiconductor material
- sintering
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/547—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62675—Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/401—Alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/404—Refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明提供了一种半导体材料,其化学通式为:Ba3NbTe5;所述半导体材料为六方晶系,空间群为P63/mcm,空间群号为193,其晶体结构沿着c轴方向由NbTe6八面体通过面共享方式连接,呈典型一维链状结构。该半导体材料通过以下方法制备得到:先将金属Ba颗粒和Te粉末以及Nb粉和Te粉分别按照Ba:Te=1:1和Nb:Te=1:2的摩尔比混合,密封在高真空度的石英管中烧结,得到前驱体BaTe和NbTe2;然后将制备的BaTe和NbTe2按照3:1的摩尔比,充分研磨,再利用压片机将混合物压制成形;最后在3~8GPa的压力以及1300~1500℃温度下烧结,得到Ba3NbTe5材料。本发明的Ba3NbTe5材料呈现出很好的一维导电链特性,是一种潜在的半导体材料。
Description
技术领域
本发明属于材料领域,具体涉及一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用。
背景技术
准一维系统因其结构的独特性展现出诸如量子相变、非常规超导、玻色爱因斯坦凝聚等新奇的物理特性而备受关注,一直以来都是人们研究的热门课题。此外,一维体系具有相对简单的模型,对一维体系的研究有助于我们理解更高维度的物理本质。对于一维导电链材料,由于维度的限制,电子的运动只能在前后两个方向上运动,进而表现出集体震荡的行为,因此无法利用费米液理论来描述,而是由Luttinger液体理论来描述。正因为这些特性,使得一维导电链材料出现许多新颖有趣的物理现象,比如金属绝缘体相变、压力诱导出非常规超导等等。
目前研究较多的一维导电链材料除了具有各相异性的电输运性质外,由于磁性离子的引入,同时使得其展现出一维自旋链的特征,导致无法独立的研究一维导电链的本征特性。而只具有一维导电链特性的材料主要集中在有机材料上,但是这些有机材料结构往往相对复杂,缺乏对其一维导电链特性的物理现象的深入研究,因此探索和制备单纯的一维导电链无机材料对一维自旋链物性的研究具有重要的科学意义;另外,一维导电链材料在各向异性电输运器件等方面的应用具有很大的潜力。
本发明提供了在高温高压条件下制备出的一种新的一维导电链半导体材料Ba3NbTe5,研究表明Ba3NbTe5展现出强的一维导电链特征,是一种新的各向异性电输运特性的半导体材料。
发明内容
本发明的一个目的是提供一种Ba3NbTe5材料。该材料可为探索研究一维导电链物理性质、一维导体向三维金属转变中出现的新奇量子现象等提供了材料基础。
本发明的另一个目的是提供所述一维导电链半导体材料的制备方法。
本发明的目的是通过以下技术方案来实现的。
一方面,本发明提供一种半导体材料,其化学式为:Ba3NbTe5;所述半导体材料为六方晶系,空间群为P63/mcm(No.193),在晶体结构上, NbTe6八面体通过面共享方式连接在c轴方向形成一维链,呈典型一维链状结构;此外,NbTe6链在ab平面内组成三角晶格,链与链之间平行排列,链间距离为晶格常数a。
另一方面,本发明提供一种制备本发明所述的准一维半导体材料的方法,包括以下步骤:
(1)将金属Ba颗粒和Te粉末按照化学计量比Ba:Te=1:1进行混合,密封在高真空度的石英管中,进行烧结,得到前驱体BaTe;
(2)将Nb粉和Te粉按照化学计量比1:2进行混合,密封在高真空度的石英管中,进行烧结,得到前驱体NbTe2;
(3)将上述制备的BaTe和NbTe2按照3:1的摩尔计量比,充分研磨,得到均匀的混合物;
(4)利用压片机将得到的混合物压制成形;
(5)将压制成形的混合物置于3~8GPa的压力以及1300~1500℃温度下进行烧结,得到Ba3NbTe5材料。
优选地,根据本发明提供的方法,其中,步骤(1)中金属Ba颗粒和Te粉末的称量以及研磨均在高纯氩气环境中进行的。
优选地,根据本发明提供的方法,其中,步骤(1)中烧结所用温度为400-700℃,所有时间为10-40h。
优选地,根据本发明提供的方法,其中,步骤(2)中Nb粉末和Te粉末的称量以及研磨均在高纯氩气环境中进行的。
优选地,根据本发明提供的方法,其中,步骤(1)中烧结所用温度为600-900℃,所有时间为10-40h。
优选地,根据本发明提供的方法,其中,步骤(4)中利用压片机将混合物压制成形,所述性状为直径6mm,高为1~3mm的圆柱体。
优选地,根据本发明提供的方法,其中,步骤(5)中烧结时间为0.1~3小时。
本发明具有如下有益效果:
本发明采用高温高压方法制备的一维导电链Ba3NbTe5属于六方晶系,空间群为P63/mcm(No.193),呈现出典型的一维导电链特性。对研究一维模型及一维导体向三维金属转变中出现的新奇量子现象提供了很好的材料基础,对强关联体系研究具有重要的物理意义;同时可在各向异性电输运器件的制备方面具有很大的应用潜力。
附图说明
以下,结合附图来详细说明本发明的实施方案,其中:
图1为实施例1中Ba3NbTe5的X射线衍射图;
图2为图1中X射线衍射图精修得到的Ba3NbTe5的晶体结构示意图;
图3示出了实施例1中Ba3NbTe5的电阻测试结果。图中,T表示温度,ρ表示电阻率,Eg表示半导体的禁带宽度;
图4示出了实施例1中Ba3NbTe5的磁性测试结果。图中,T表示温度,χ表示磁化率;
图5示出了实施例1中Ba3NbTe5半导体材料的比热测试结果。图中,T表示温度,C表示电容。
具体实施方式
下面结合具体实施例对本发明做进一步说明,下面实施例仅用于说明本发明而并非对本发明的限制。
实施例1
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在5 GPa压力、1400℃温度下进行高温高压实验,保温时间为30min。高温高压实验结束后即可得到Ba3NbTe5样品。
经粉末X射线衍射测定,半导体Ba3NbTe5为六方晶系,空间群为P63/mcm(No.193)。其晶体结构,沿着c轴方向由NbTe6八面体通过面共享方式连接,呈典型一维链状结构;而ab平面是由这些链组成三角晶格,链之间的距离为晶格常数a,具有明显的一维特征。其晶格参数为a = 10.2037(1) (Å),c = 20.0579(3)。
测定所得样品的X射线衍射图谱、磁性、电阻及比热结果,见图1-4。粉末X射线衍射实验表明,样品为单相,其化学式为Ba3NbTe5。按照其结构精修得到的晶格参数a值足够大,保证其一维链之间的独立性,进一步确定其为一维结构。磁性测试显示样品展现出顺磁性;电阻测试表明,样品为半导体,带隙大约0.15 eV。因此,Ba9Nb3Te15将是一种新的典型的一维导电链半导体材料,在科学研究方面具有很大的潜力。
实施例2
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在3 GPa压力、1400℃温度下进行高温高压实验,保温时间为30min。高温高压实验结束后即可得到Ba3NbTe5样品。
本实施例所制备的Ba3NbTe5晶体结构及物理性质同实施例1。
实施例3
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在8 GPa压力、1400℃温度下进行高温高压实验,保温时间为30min。高温高压实验结束后即可得到Ba3NbTe5样品。
本实施例所制备的Ba3NbTe5晶体结构及物理性质同实施例1。
实施例4
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在5GPa压力、1400℃温度下进行高温高压实验,保温时间为10min。高温高压实验结束后即可得到Ba3NbTe5样品。
本实施例所制备的Ba3NbTe5晶体结构及物理性质同实施例1。
实施例5
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在5 GPa压力、1400℃温度下进行高温高压实验,保温时间为150min。高温高压实验结束后即可得到Ba3NbTe5样品。
本实施例所制备的Ba3NbTe5晶体结构及物理性质同实施例1。
实施例6
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在5 GPa压力、1500℃温度下进行高温高压实验,保温时间为30min。高温高压实验结束后即可得到Ba3NbTe5样品。
本实施例所制备的Ba3NbTe5晶体结构及物理性质同实施例1。
实施例7
先将金属Ba颗粒和Te粉末在高纯氩气气氛中按照化学计量比1:1简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到BaTe粉末。先将Nb和Te粉末在高纯氩气气氛中按照化学计量比1:2简单混合,置于陶瓷管中;将所述陶瓷管置于高真空度(Pa<10-3)的石英管中,密封,加热到600℃,保温 20h得到NbTe2粉末。然后将得到的BaTe和NbTe2粉末按照摩尔比3:1均匀混合,通过压片机压成直径6mm,高度为3mm的圆柱。然后将得到的圆柱放入高压合成组装块中,在5 GPa压力、1300℃温度下进行高温高压实验,保温时间为30min。高温高压实验结束后即可得到Ba3NbTe5样品。
本实施例所制备的Ba3NbTe5晶体结构及物理性质同实施例1。
Claims (5)
1.一种半导体材料,其化学通式为:Ba3NbTe5;所述半导体材料为六方晶系,空间群为P63/mcm,空间群号为193,其晶体结构沿着c轴方向由三聚化的NbTe6八面体通过面共享方式连接,呈典型一维链状结构;而a//b平面由NbTe6链组成三角晶格,链与链之间平行排列,保持长度为晶格常数a的距离。
2.一种制备权利要求1所述半导体材料的方法,包括以下步骤:
(1)将金属Ba颗粒和Te粉末按照化学计量比Ba:Te=1:1进行混合,密封在高真空度的石英管中,进行烧结,得到前驱体BaTe;
(2)将Nb粉和Te粉按照化学计量比1:2进行混合,密封在高真空度的石英管中,进行烧结,得到前驱体NbTe2;
(3)将上述制备的BaTe和NbTe2按照3:1的摩尔计量比,充分研磨,得到均匀的混合物;
(4)利用压片机将得到的混合物压制成形;
(5)将压制成形的混合物置于3~8GPa的压力以及1300~1500℃温度下进行烧结,得到Ba3NbTe5材料。
3.根据权利要求2所述方法,其中,步骤(4)中利用压片机将混合物压制成形,所述性状为直径6mm,高为1~3mm的圆柱体。
4.根据权利要求2所述方法,其中,步骤(5)中烧结时间为0.1~3小时。
5.根据权利要求2所述方法,其中,步骤(5)中烧结温度为1300~1500℃,烧结压力为3~8GPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110706086.XA CN113372120A (zh) | 2021-06-24 | 2021-06-24 | 一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110706086.XA CN113372120A (zh) | 2021-06-24 | 2021-06-24 | 一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113372120A true CN113372120A (zh) | 2021-09-10 |
Family
ID=77578932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110706086.XA Pending CN113372120A (zh) | 2021-06-24 | 2021-06-24 | 一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113372120A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130009113A1 (en) * | 2011-05-13 | 2013-01-10 | Lg Chem, Ltd. | Compound semiconductors and their application |
JP2015048280A (ja) * | 2013-09-02 | 2015-03-16 | 日本碍子株式会社 | 固体電解質セラミックス材料の製造方法 |
CN107887098A (zh) * | 2017-11-02 | 2018-04-06 | 中国科学院物理研究所 | 一种磁性半导体材料及其制备方法 |
-
2021
- 2021-06-24 CN CN202110706086.XA patent/CN113372120A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130009113A1 (en) * | 2011-05-13 | 2013-01-10 | Lg Chem, Ltd. | Compound semiconductors and their application |
JP2015048280A (ja) * | 2013-09-02 | 2015-03-16 | 日本碍子株式会社 | 固体電解質セラミックス材料の製造方法 |
CN107887098A (zh) * | 2017-11-02 | 2018-04-06 | 中国科学院物理研究所 | 一种磁性半导体材料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
MING-YAN CHUNG ET AL.: "Ba3TM2Se9 (TM = Nb, Ta): Synthesis and Characterization of New Polyselenides", 《INORGANIC CHEMISTRY》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Pressure-Induced Superconductivity In Polycrystalline La 3 Ni 2 O 7-δ | |
Masubuchi et al. | Processing of dielectric oxynitride perovskites for powders, ceramics, compacts and thin films | |
Anis-ur-Rehman et al. | Synthesis and enhancement of current density in cerium doped Bi (Pb) Sr (Ba)-2 2 2 3 high Tc superconductor | |
Yazıcı et al. | Improvement of high T c phase formation in BPSCCO superconductor by adding vanadium and substituting titanium | |
Arifuzzaman et al. | Effect of Cu substitution on structural and electric transport properties of Ni-Cd nanoferrites | |
Shengelaya et al. | Signatures of filamentary superconductivity up to 94 K in tungsten oxide WO2. 90 | |
Liu | High pressure synthesis and preparation of inorganic materials | |
CN113372120A (zh) | 一种一维导电链半导体材料Ba3NbTe5及其制备方法和应用 | |
Kumar et al. | A comprehensive review on synthesis, properties, and applications of quaternary transition metal oxychalcogenides | |
CN107887098B (zh) | 一种磁性半导体材料及其制备方法 | |
Zhao et al. | Structural and physical properties of the 6M BaIrO3: a new metallic iridate synthesized under high pressure | |
Aguiar et al. | Structural and magnetic properties of the complex perovskite oxide Ba 2 HoHfO 5.5 | |
Naumov et al. | Pressure-induced magnetic collapse and metallization of TlF e 1.6 S e 2 | |
CN109384201B (zh) | 一种有室温柔性的p型热电材料及其超快速制备方法 | |
CN113277482A (zh) | 一种可调控超导电性和电荷密度波的新型过渡金属碲化物及其制备方法 | |
CN113481420B (zh) | 一种铁磁金属材料及其制备方法和应用 | |
Rwenyagila et al. | Impact of mechanical activation of reactant powders on the solid-state-densification of Zn1-xLixO and Zn0. 7Li0. 28Mg0. 02O ceramics | |
Qi et al. | Green-light pn junction particle inhomogeneous phase enhancement of MgB2 smart meta-superconductors | |
Tanaka et al. | Electrical properties of Ba3C60 collapsed under high-pressure and high-temperature conditions | |
Shahina et al. | Synthesis, structural and dielectric characterization of NiFe2O4 nanoparticles | |
Tian et al. | Multiband superconducting state and Lifshitz transition in V 0.7 Re 0.3 Se 2 at high pressure | |
Pei et al. | Pressure-induced superconductivity and structural phase transitions in magnetic topological insulator candidate MnSb4Te7 | |
Chamoire et al. | High-Temperature Transport Properties of Yb 4− x Sm x Sb 3 | |
Sibi et al. | Magnetodielectric response of composites based on a natural garnet and spinel ferrites for sub-GHz wireless applications | |
Mishra et al. | Structural and dielectric properties of GdFeAsO ceramic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210910 |