CN113369671A - High-entropy alloy stirring friction material increasing device and preparation process - Google Patents

High-entropy alloy stirring friction material increasing device and preparation process Download PDF

Info

Publication number
CN113369671A
CN113369671A CN202110784736.2A CN202110784736A CN113369671A CN 113369671 A CN113369671 A CN 113369671A CN 202110784736 A CN202110784736 A CN 202110784736A CN 113369671 A CN113369671 A CN 113369671A
Authority
CN
China
Prior art keywords
entropy alloy
friction
rotary
heat sink
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110784736.2A
Other languages
Chinese (zh)
Inventor
尹伊
高阳
徐方达
于明
于楠
安亚通
龚海
王俊博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou Institute of Zhejiang University
Original Assignee
Huzhou Institute of Zhejiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou Institute of Zhejiang University filed Critical Huzhou Institute of Zhejiang University
Priority to CN202110784736.2A priority Critical patent/CN113369671A/en
Publication of CN113369671A publication Critical patent/CN113369671A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention discloses a high-entropy alloy stirring friction material increasing device and a preparation process, and the device comprises a stirring head, wherein a heat sink module is arranged at the upper end of the stirring head, a feed inlet is arranged at one side of the heat sink module, a cooling liquid outlet and a cooling liquid inlet are sequentially and vertically arranged at the lower end of the feed inlet, a rotary friction mechanism is arranged in an inner cavity of the heat sink module, a crushing mechanism is arranged at the upper end of the rotary friction mechanism, a driving module is arranged at the upper end of the heat sink module, pure metal wires with different thicknesses are fed into the feed inlet, are rapidly rotated and crushed by a grinding wheel to obtain sheet-shaped sheets, are thermally fused by a friction rotating mechanism and then are cooled, and are stacked layer by layer after solidification to finish high-entropy alloy material increasing manufacturing. The experimental progress of the new high-entropy alloy material is accelerated.

Description

High-entropy alloy stirring friction material increasing device and preparation process
Technical Field
The invention relates to the technical field of metal additive, in particular to a high-entropy alloy friction stir additive device and a preparation process thereof.
Background
In the friction stir manufacturing, friction heat and plastic deformation heat are generated on a friction surface and its vicinity by a stirring motion of a stirring head under a constant or increasing pressure and torque, and the temperature of its vicinity is increased to a temperature range close to but generally lower than the melting point, so that the deformation resistance of the material is reduced, the plasticity is improved, an oxide film at the interface is broken, and the material is plastically deformed and flowed by a ram pressure, and molecular diffusion and recrystallization at the interface are performed.
Additive manufacturing is distinguished from subtractive manufacturing, which refers to removing material from a blank to obtain a desired part or structure. The material increase can be simply understood as a 3D printing technology, the existing stirring friction material increase technology is to carry out high-entropy alloy material increase manufacturing, the high-entropy alloy is required to be prepared into a wire or powder material firstly, then the friction material increase is carried out, and the steps are complex.
Disclosure of Invention
The invention aims to provide a high-entropy alloy friction stir material increasing device and a preparation process, and aims to solve the problems in the background technology.
In order to achieve the purpose, the invention provides the following technical scheme: the utility model provides a high entropy alloy friction stir material device, includes the stirring head, the stirring head upper end is equipped with heat sink module, heat sink module one side is equipped with the feed inlet, the feed inlet lower extreme has set gradually coolant liquid delivery port and coolant liquid water inlet perpendicularly, heat sink module inner chamber is equipped with rotary friction mechanism, rotary friction mechanism upper end is equipped with rubbing crusher and constructs, heat sink module upper end is equipped with the drive module.
Preferably, the rotary friction mechanism comprises a rotary shaft, a plurality of rotary blades are arranged on the rotary shaft, and collecting port tools are further arranged on two sides of the upper end of the rotary shaft.
Preferably, the grinding mechanism comprises a grinding wheel, fixed blocks are further arranged on two sides of the grinding mechanism, and the grinding mechanism is rotationally connected with the rotary friction mechanism.
Preferably, the stirring head is rotatably connected with the rotary friction mechanism.
Preferably, a stepping motor is arranged in the driving module, and the output end of the stepping motor is connected with the crushing mechanism.
Preferably, the rotary friction mechanism is connected with the coolant outlet and the coolant inlet in a penetrating manner.
The invention also provides a preparation process for preparing the high-entropy alloy friction stir additive by using the high-entropy alloy friction stir additive device, which comprises the following steps:
feeding pure metal wires with different thicknesses into a feeding hole through a feeding mechanism;
feeding the fed pure metal wire into a crushing mechanism, and crushing to obtain a flaky sheet;
thirdly, enabling the crushed pure metal sheet to flow into a rotary friction mechanism for stirring and friction to obtain a fused and softened metal base material;
step four, the fused and softened metal base material flows to the substrate from the opening of the stirring head, and further friction and stirring treatment are carried out;
fifthly, cooling the dynamic metal base material after further friction and stirring;
and step six, after the cooled and recrystallized metal base materials are accumulated layer by layer, the high-entropy alloy friction stir material additive manufacturing is completed.
Preferably, in the step one, the number of the pure metal wires is five or more.
Preferably, in the second step, the pulverized sheet material is a sheet-shaped powder in which the metal wire with a low melting point is large and the metal with a high melting point is pulverized into a sheet-shaped powder in which the metal wire with a high melting point is small.
Preferably, in the fifth step, cooling solidification is performed by circulating a cooling liquid.
Advantageous effects
The invention relates to a high-entropy alloy friction stir material increasing device and a preparation process, in particular to a friction stir welding method, which is characterized in that a high-entropy alloy original metal wire is firstly crushed, metal powder generates heat and is fused through friction stir welding, and the metal powder is combined layer by layer at a temperature lower than a melting point.
Drawings
Fig. 1 is a schematic view of the overall structure of the present invention.
Reference numerals
1-stirring head, 2-cooling liquid water inlet, 3-cooling liquid water outlet, 4-feeding port, 5-driving module, 6-crushing mechanism, 7-collecting port tool, 8-rotating shaft, 9-heat sink module, 10-rotating friction mechanism, 11-rotating blade and 12-fixed block.
Detailed Description
The following are specific embodiments of the present invention and are further described with reference to the drawings, but the present invention is not limited to these embodiments.
Examples
As shown in fig. 1, the high-entropy alloy stirring friction material increasing device comprises a stirring head 1, wherein a heat sink module 9 is arranged at the upper end of the stirring head 1, a feed inlet 4 is arranged on one side of the heat sink module 9, a coolant outlet 3 and a coolant inlet 2 are sequentially and vertically arranged at the lower end of the feed inlet 4, a rotary friction mechanism 10 is arranged in an inner cavity of the heat sink module 9, a crushing mechanism 6 is arranged at the upper end of the rotary friction mechanism 10, a driving module 5 is arranged at the upper end of the heat sink module 9, a stepping motor is arranged in the driving module 5, and the output end of the stepping motor is connected with the crushing mechanism 6; the stirring head 1 is rotatably connected with a rotary friction mechanism 10.
Wherein, rotatory friction mechanism 10 contains rotation axis 8, is equipped with a plurality of rotating vane 11 on the rotation axis 8, and rotation axis 8 upper end both sides still are equipped with collection mouth frock 7.
Wherein, rubbing crusher 6 contains the emery wheel piece, and rubbing crusher 6 both sides still are equipped with fixed block 12, and rubbing crusher 6 rotates with rotatory friction mechanism 10 and is connected.
Wherein, the rotary friction mechanism 10 is connected with the cooling liquid water outlet 3 and the cooling liquid water inlet 2 in a penetrating way.
A high-entropy alloy friction stir additive preparation process comprises the following steps:
feeding pure metal wires with different thicknesses into a feeding hole through a feeding mechanism;
feeding the fed pure metal wire into a crushing mechanism, and crushing to obtain a flaky sheet;
thirdly, enabling the crushed pure metal sheet to flow into a rotary friction mechanism for stirring and friction to obtain a fused and softened metal base material;
step four, the fused and softened metal base material flows to the substrate from the opening of the stirring head, and further friction and stirring treatment are carried out;
fifthly, cooling the dynamic metal base material after further friction and stirring;
and step six, after the cooled and recrystallized metal base materials are accumulated layer by layer, the high-entropy alloy friction stir material additive manufacturing is completed.
Wherein, in the first step, the number of the pure metal wires is five or more than five, such as Fe, Co, Cr, Al and Ni alloy.
In the second step, the crushed sheet material is formed by crushing the metal wire with low melting point into larger flaky powder and the metal with high melting point into smaller flaky powder.
And in the fifth step, cooling solidification is carried out through circulating of cooling liquid.
Finally, it should be noted that: although the present invention has been described in detail with reference to the foregoing embodiments, it will be apparent to those skilled in the art that changes may be made in the embodiments and/or equivalents thereof without departing from the spirit and scope of the invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the content of the present invention within the scope of the protection of the present invention.

Claims (10)

1. The utility model provides a high entropy alloy friction stir material disk, includes stirring head (1), its characterized in that: stirring head (1) upper end is equipped with heat sink module (9), heat sink module (9) one side is equipped with feed inlet (4), feed inlet (4) lower extreme has set gradually coolant liquid delivery port (3) and coolant liquid water inlet (2) perpendicularly, heat sink module (9) inner chamber is equipped with rotary friction mechanism (10), rotary friction mechanism (10) upper end is equipped with rubbing crusher structure (6), heat sink module (9) upper end is equipped with drive module (5).
2. A high entropy alloy friction stir additive device according to claim 1, wherein: the rotary friction mechanism (10) comprises a rotary shaft (8), a plurality of rotary blades (11) are arranged on the rotary shaft (8), and collecting port tools (7) are further arranged on two sides of the upper end of the rotary shaft (8).
3. A high entropy alloy friction stir additive device according to claim 1, wherein: the grinding mechanism (6) comprises a grinding wheel, fixed blocks (12) are further arranged on two sides of the grinding mechanism (6), and the grinding mechanism (6) is rotationally connected with the rotary friction mechanism (10).
4. A high entropy alloy friction stir additive device according to claim 1, wherein: the stirring head (1) is rotationally connected with the rotary friction mechanism (10).
5. A high entropy alloy friction stir additive device according to claim 1, wherein: a stepping motor is arranged in the driving module (5), and the output end of the stepping motor is connected with the crushing mechanism (6).
6. A high entropy alloy friction stir additive device according to claim 1, wherein: the rotary friction mechanism (10) is connected with the cooling liquid water outlet (3) and the cooling liquid water inlet (2) in a penetrating mode.
7. A preparation process for preparing a high-entropy alloy friction stir additive by using the high-entropy alloy friction stir additive device of any one of claims 1 to 6, wherein the preparation process comprises the following steps: the method comprises the following steps:
feeding pure metal wires with different thicknesses into a feeding hole through a feeding mechanism;
feeding the fed pure metal wire into a crushing mechanism, and crushing to obtain a flaky sheet;
thirdly, enabling the crushed pure metal sheet to flow into a rotary friction mechanism for stirring and friction to obtain a fused and softened metal base material;
step four, the fused and softened metal base material flows to the substrate from the opening of the stirring head, and further friction and stirring treatment are carried out;
fifthly, cooling the dynamic metal base material after further friction and stirring;
and step six, after the cooled and recrystallized metal base materials are accumulated layer by layer, the high-entropy alloy friction material increase manufacturing is completed.
8. The high-entropy alloy friction-stir additive manufacturing process of claim 7, wherein: in the step one, the number of the pure metal wires is five or more than five.
9. The high-entropy alloy friction-stir additive manufacturing process of claim 7, wherein: in the second step, the crushed sheet material is formed by crushing the metal wire with low melting point into larger flaky powder and the metal with high melting point into smaller flaky powder.
10. The high-entropy alloy friction-stir additive manufacturing process of claim 7, wherein: and in the fifth step, cooling solidification is carried out through circulating of cooling liquid.
CN202110784736.2A 2021-07-12 2021-07-12 High-entropy alloy stirring friction material increasing device and preparation process Pending CN113369671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110784736.2A CN113369671A (en) 2021-07-12 2021-07-12 High-entropy alloy stirring friction material increasing device and preparation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110784736.2A CN113369671A (en) 2021-07-12 2021-07-12 High-entropy alloy stirring friction material increasing device and preparation process

Publications (1)

Publication Number Publication Date
CN113369671A true CN113369671A (en) 2021-09-10

Family

ID=77581808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110784736.2A Pending CN113369671A (en) 2021-07-12 2021-07-12 High-entropy alloy stirring friction material increasing device and preparation process

Country Status (1)

Country Link
CN (1) CN113369671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113857643A (en) * 2021-09-17 2021-12-31 Dig自动化工程(武汉)有限公司 Friction stir welding additive manufacturing mechanism based on powder
CN114799480A (en) * 2022-04-23 2022-07-29 哈尔滨工业大学 Synchronous uninterrupted wire feeding all-solid-phase friction stir additive manufacturing method and device
CN115213544A (en) * 2022-06-15 2022-10-21 南京工业大学 System and method for manufacturing high-entropy alloy through multi-wire synchronous stirring and material increase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113857643A (en) * 2021-09-17 2021-12-31 Dig自动化工程(武汉)有限公司 Friction stir welding additive manufacturing mechanism based on powder
CN114799480A (en) * 2022-04-23 2022-07-29 哈尔滨工业大学 Synchronous uninterrupted wire feeding all-solid-phase friction stir additive manufacturing method and device
CN115213544A (en) * 2022-06-15 2022-10-21 南京工业大学 System and method for manufacturing high-entropy alloy through multi-wire synchronous stirring and material increase

Similar Documents

Publication Publication Date Title
CN113369671A (en) High-entropy alloy stirring friction material increasing device and preparation process
CN215145653U (en) High-entropy alloy friction stir material increasing device
CN1144241C (en) Alloy raw material, its powder and making method for nanometer composite magnet
CN109732093A (en) A kind of preparation method of graphene/aluminum alloy composite materials
CN102212817B (en) Aluminum-based composite material with superfine crystal texture and preparation method thereof
WO2019153953A1 (en) Copper material and preparation method therefor
CN113828907B (en) High-entropy alloy-added auxiliary friction stir welding method, joint and application
CN103331451B (en) A kind of method of producing Al2O3 dispersion strengthening copper alloy powder
CN108145118A (en) A kind of non-crystaline amorphous metal knife and preparation method thereof
CN102728838A (en) Molybdenum-based rare earth oxide powder metallurgical alloy wafer and preparing method thereof
WO2024088252A1 (en) Long-life sputtering target material and preparation method therefor
CN113000843A (en) Internal cooling drill bit forming process
CN109967752A (en) Metal surface melt ultrasonic disruption device
CN1890762A (en) Nano-composite magnet, quenched alloy for nano-composite magnet, and method for producing them and method for distinguishing them
TW200427874A (en) Electrode for discharge surface treatment, evaluation method thereof and method for discharge surface treatment
WO2013047678A1 (en) Method for manufacturing fine particles
CN111230188A (en) Stirring head for friction stir manufacturing and method for preparing water cooling channel by using stirring head
CN115922058A (en) Method for improving surface corrosion resistance of magnesium alloy component based on strong deformation in-situ powder metallurgy
CN106244838B (en) Niobium titanium carbon Al-alloy alterant and preparation method thereof
CN210700421U (en) Ball-milling jar for graphite alkene
CN115026458A (en) Ag-based alloy powder slurry, Ag-based alloy active solder and preparation method thereof
CN215197303U (en) High-efficient waterborne coating grinds machine
CN100404448C (en) Dual-purpose saw web for cutting and grinding glass and its manufacturing method
CN110935394B (en) Micro-nano powder fine processing method and device
CN206343629U (en) A kind of fuel pulverizing plant for powder metallurgy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination