CN113359775A - 一种动态变采样区域rrt无人车路径规划方法 - Google Patents

一种动态变采样区域rrt无人车路径规划方法 Download PDF

Info

Publication number
CN113359775A
CN113359775A CN202110774053.9A CN202110774053A CN113359775A CN 113359775 A CN113359775 A CN 113359775A CN 202110774053 A CN202110774053 A CN 202110774053A CN 113359775 A CN113359775 A CN 113359775A
Authority
CN
China
Prior art keywords
node
sampling
path
new
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110774053.9A
Other languages
English (en)
Other versions
CN113359775B (zh
Inventor
栾添添
王皓
孙明晓
胡占永
谢春旺
王万鹏
原张杰
付强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Mingfeng Jiachuang Technology Co.,Ltd.
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202110774053.9A priority Critical patent/CN113359775B/zh
Publication of CN113359775A publication Critical patent/CN113359775A/zh
Application granted granted Critical
Publication of CN113359775B publication Critical patent/CN113359775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种基于动态变采样区域的概率目标偏置快速扩展随机树(RRT)无人车路径规划方法。所述方法包括:首先,初始化地图信息,根据动态变采样区域公式判断所处区域;在此基础上进行预留安全距离的碰撞检测,并根据概率目标偏置公式和步长选择公式生成新生节点,重复上述步骤直到满足新生节点和目标节点之间的距离小于距离阈值,反向搜索,输出路径;最后,考虑最大转角约束对输出路径进行逆向寻优和3次B样条曲线拟合优化,仿真验证了所述方法的有效性。本发明能够降低节点搜索的盲目性和随机性,减少路径搜索的时间,且规划的路径平滑符合车辆运动动力学约束。

Description

一种动态变采样区域RRT无人车路径规划方法
技术领域
本发明涉及一种动态变采样区域快速扩展随机树(RRT)算法的无人车路径规划方法,属于无人车路径规划领域。
背景技术
随着科学技术的持续发展,无人车被广泛应用于军事领域,包括物资运输、危险作业、特种任务等,但在无人车路径规划方面仍存在不足,例如规划速度慢、全局规划难度大等缺点。
针对上述缺点,多种路径规划算法被应用于无人车路径规划,常用的路径规划算法有蚁群算法、遗传算法、A*算法、RRT算法等。RRT算法因运算速度快、搜索能力强、结构简单等优点广泛应用于无人车的路径规划。但是RRT算法在无人车路径规划方面的应用存在如下问题:
(1)路径的不连续问题,传统RRT算法由于节点搜索的盲目性和随机性,易造成无人车规划路径的不连续与曲折,不符合无人车自身的动力学约束;
(2)局部最优问题,常规的基于单一目标偏置的RRT算法容易导致算法在障碍物附近震荡,造成局部最优和区域停滞问题。
论文《改进RRT-Connect算法的移动机器人路径规划》提供的方法,有如下问题:
(1)动态步长的选择未考虑安全距离,规划的路径可能无法进行实际应用,为此,本发明结合安全距离进行步长选择;
(2)路径规划过程未进行路径优化,生成路径的质量较差,为此,本发明利用逆向寻优和3次B样条曲线优化,使路径更加的平滑。
专利《路径规划系统及路径规划方法》提供的方法,有如下问题:
(1)当区域障碍物过多时,易导致路径局部震荡,为此,本发明引入了后退机制,避免节点搜索陷入局部震荡;
(2)未考虑动力学约束,生成的路径可行性差,为此,本发明考虑了车长和最大转角约束,满足车辆动力学约束。
专利《基于高斯采样和目标偏向引导的快速扩展随机树算法、电子设备及存储介质》提供的方法,存在如下问题:
(1)新生节点Xnew生成过程未考虑安全距离,节点缺乏可行性,为此,本发明在节点生成中考虑了动态安全距离,保证了生成路径的可行性;
(2)对于目标点和随机点权重参数k1、k2实时性选择难度大,复杂性高,为此,本发明利用概率目标偏置策略,保证了节点生成的多样性和简单易行性。
发明内容
本发明创造目的在于,提供一种改进快速扩展随机树算法。利用动态变采样区域的方法,优化快速扩展随机树算法节点选择的全局盲目性;运用动态概率目标偏向策略,避免陷入局部最优解和障碍物区域震荡;结合安全距离的动态步长选择,保证了规划路径的安全性和合理性;利用考虑最大转角的逆向寻优和3次B样条曲线拟合,保证了路径的连续性和平滑度。
为实现上述目的,本发明采用如下技术方案。
本发明的一种基于动态变采样区域RRT路径规划方法,包括如下步骤:
步骤1:
初始化地图信息,载入地图的边界以及障碍物的信息,并将地图信息二值化,设定起始节点Xstart存入有效节点集Xnodes中并设定目标节点Xend,设定新生节点Xnew的初始值为起点坐标,设定车长Dcar、三级动态步长σ、二级动态安全距离Dsafe和最大转角θ,设定四级动态变采样区域Sarea,初始采样区域为全地图,设定区域采样阈值K和区域采样次数k;
步骤2:
判断区域采样次数k是否超过区域采样阈值K,若采样次数未超过区域采样阈值K则进入步骤4,否则进入步骤3;
步骤3:
判断新生节点Xnew是否位于一级采样区间,若位于一级采样区域则重新设定起始节点Xstart并返回步骤1,否则初始化区域采样次数k并返回上一级采样区域,进入步骤4;
步骤4:
采样区域范围内取随机采样点Xrand,寻找有效节点集Xnodes中距离随机采样点Xrand最近的点作为最近节点Xnear,进入步骤5;
步骤5:
构建随机点重构函数:
Figure BDA0003153702000000031
式中:flag为碰撞检测结果、ω为目标权重因子、p为随机数、ρ为概率因子,在最近节点Xnear的方向基于车长Dcar进行碰撞检测,当flag=0时表示未检测到碰撞,flag=1表示检测到碰撞,结合公式(1)重新选取随机采样点Xrand,此时区域采样次数k=k+1;
构建步长选择函数:
Figure BDA0003153702000000032
式中:σ1为一级步长、σ2为二级步长、σ3为三级步长,flag2为结合二级安全距离Dsafe2的碰撞检测结果,flag1为结合一级安全距离Dsafe1的碰撞检测结果,σ为动态步长,根据公式(2)确定动态步长σ,构建新生节点生成函数:
Figure BDA0003153702000000033
根据公式(3)生成新生节点Xnew,并将新生节点Xnew存入有效节点集Xnodes中,进入步骤6;
步骤6:
判断Xnew是否满足|Xend-Xnew|≤radius,是则进入步骤8,否则进入步骤7,其中,|Xend-Xnew|为计算目标节点Xend和新生节点Xnew的距离公式,radius为范围阈值;
步骤7:
构建动态区域选择函数:
Figure BDA0003153702000000041
式中:δ1为一级距离阈值、δ2为二级距离阈值、δ3为三级距离阈值、δ4为四级距离阈值,Sarea1为一级采样区域、Sarea2为二级采样区域、Sarea3为三级采样区域、Sarea4为四级采样区域,结合公式(4)确定采样区域Sarea,返回步骤2;
步骤8:
在有效节点集Xnodes中根据各个节点间的关系,反向搜索生成路径,进入步骤9;
步骤9:
利用考虑最大转角θ限制的逆向寻优的方法对生成路径进行初步优化,首先判断起始节点Xstart和目标节点Xend间是否存在障碍物,若没有障碍物,则起始节点Xstart和目标节点Xend间为最佳路径;若存在障碍物,则选取目标节点Xend的前一节点Xnodes1,判断该节点与起始节点Xstart是否存在障碍物并判断三点间形成的转角是否小于最大转角θ,若符合条件,则直接将起始节点Xstart作为该节点的父节点,若不符合条件则继续向前寻找节点Xnodes2,重复上述操作直到完成整条路径优化,生成路径并进入步骤10;
步骤10:
对步骤9生成的路径点进行3次B样条曲线拟合优化路径,得到可实际应用的平滑路径,结束规划。
本发明具有如下有益效果:
(1)本发明所述动态变采样区域RRT算法有效提升了节点搜索效率,简单易行,规划路径长度也有显著降低,且避免了陷入局部最优和区域震荡,考虑安全距离,保证了路径的安全性与可行性;
(2)在动态变采样区域选择过程中,引入了后退机制,避免了因为区域障碍物过多造成的区域停滞;
(3)利用逆向寻优和3次B样条曲线拟合优化路径增加了路径的可行性,使路径更加平滑,符合无人车的动力学约束;
(4)仿真结果表明,本发明的改进RRT算法相比于传统RRT算法搜索时间减少了78.2%,平均搜索节点数减少了65.8%,经过逆向寻优和3次B样条曲线优化,相比优化前的距离减少11.4%左右,且路径平滑并符合最大转角要求。
附图说明
图1是本发明一种动态变采样区域RRT无人车路径规划方法的总体流程图;
图2是动态变采样区域RRT算法的剪枝结果图;
图3是原始RRT算法的剪枝结果图;
图4是目标偏置RRT算法的剪枝结果图;
图5是概率目标偏置RRT算法的剪枝结果图;
图6是动态变采样区域RRT算法的逆向寻优结果图;
图7是动态变采样区域RRT算法3次B样条曲线优化结果图;
图8是未考虑安全距离的动态变采样区域RRT算法的剪枝结果图。
具体实施方式
以下结合具体实施例和图1对本发明作详细说明:
本发明涉及一种基于动态变采样区域的概率目标偏置RRT无人车路径规划方法。RRT算法有强大的搜索能力,但是由于其全局采样的盲目性和随机性,导致其搜索效率的不足,且规划的路径曲折不连续,很难直接进行实际应用,为此本发明提供了基于动态变采样区域的概率目标偏置RRT无人车路径规划方法,利用动态变采样区域的方法,控制采样区间,降低快速扩展随机树算法节点选择的全局盲目性;运用动态概率目标偏向策略,实现随机点的重新选择,避免陷入局部最优解和障碍物局部震荡;结合安全距离的动态步长选择,保证了规划路径的安全性和合理性;利用考虑最大转角的逆向寻优和3次B样条曲线拟合,保证了路径的连续性和平滑度。其具体包括如下步骤:
步骤1:
初始化地图信息,将地图按栅格数目均匀分割,载入地图的边界以及障碍物的信息,并将地图信息二值化,根据栅格化的地图结果,将其转化为一个二维数组,如果是障碍物将该点对应数组设置为1,如果是可行路径将该点对应数组设置为0,设定起始节点Xstart存入有效节点集Xnodes中并设定目标节点Xend,设定新生节点Xnew的初始值为起点坐标,设定车长Dcar、三级动态步长σ、二级动态安全距离Dsafe和最大转角θ,设定四级动态变采样区域Sarea,初始采样区域为全地图,设定区域采样阈值K和区域采样次数k;
步骤2:
判断区域采样次数k是否超过区域采样阈值K,若采样次数未超过区域采样阈值K则进入步骤4,否则进入步骤3;
步骤3:
判断新生节点Xnew是否位于一级采样区间,若位于一级采样区域则重新设定起始节点Xstart并返回步骤1,否则初始化区域采样次数k并返回上一级采样区域,进入步骤4;
步骤4:
采样区域范围内取随机采样点Xrand,寻找有效节点集Xnodes中距离随机采样点Xrand最近的点作为最近节点Xnear,进入步骤5;
步骤5:
构建随机点重构函数:
Figure BDA0003153702000000071
式中:flag为碰撞检测结果、ω为目标权重因子、p为随机数、ρ为概率因子,在最近节点Xnear的方向基于车长Dcar进行碰撞检测,当flag=0时表示未检测到碰撞,flag=1表示检测到碰撞,结合公式(1)重新选取随机采样点Xrand,此时区域采样次数k=k+1;
构建步长选择函数:
Figure BDA0003153702000000072
式中:σ1为一级步长、σ2为二级步长、σ3为三级步长,flag2为结合二级安全距离Dsafe2的碰撞检测结果,flag1为结合一级安全距离Dsafe1的碰撞检测结果,σ为动态步长,根据公式(2)确定动态步长σ,构建新生节点生成函数:
Figure BDA0003153702000000073
根据公式(3)生成新生节点Xnew,并将新生节点Xnew存入有效节点集Xnodes中,进入步骤6;
步骤6:
判断Xnew是否满足|Xend-Xnew|≤radius,是则进入步骤8,否则进入步骤7,其中,|Xend-Xnew|为计算目标节点Xend和新生节点Xnew的距离公式,radius为范围阈值;
步骤7:
构建动态区域选择函数:
Figure BDA0003153702000000081
式中:δ1为一级距离阈值、δ2为二级距离阈值、δ3为三级距离阈值、δ4为四级距离阈值,Sarea1为一级采样区域、Sarea2为二级采样区域、Sarea3为三级采样区域、Sarea4为四级采样区域,结合公式(4)确定采样区域Sarea,返回步骤2;
步骤8:
在有效节点集Xnodes中根据各个节点间的关系,逆行连接有效节点集Xnodes中的各个节点,输出初始路径;
步骤9:
利用考虑最大转角θ限制的逆向寻优的方法対生成路径进行初步优化,首先判断起始节点Xstart和目标节点Xend间是否存在障碍物,若没有障碍物,则起始节点Xstart和目标节点Xend间为最佳路径;若存在障碍物,则选取目标节点Xend的前一节点Xnodes1,判断该节点与起始节点Xstart是否存在障碍物并判断三点间形成的转角是否小于最大转角θ,若符合条件,则直接将起始节点Xstart作为该节点的父节点,若不符合条件则继续向前寻找节点Xnodes2,重复上述操作直到完成整条路径优化,生成如图6所示路径并进入步骤10;
步骤10:
对步骤9生成的路径点进行3次B样条曲线拟合优化路径,得到可实际应用的如图7所示的平滑路径,结束规划。
为了进一步验证前述方案的实际效果,下面以Matlab进行仿真实验,具体而言:
设定地图规模为500×500,起始节点为(20,20),终止节点为(480,480),概率因子ρ=0.2,目标权重因子ω=0.8,一级动态步长σ1=20、二级动态步长σ2=10、三级动态步长σ3=5,车长Dcar=10,一级安全距离Dsafe1=20、二级安全距离Dsafe2=40,区域采样阈值K=500,一级距离阈值δ1=700、二级距离阈值δ2=500、三级距离阈值δ3=300、四级距离阈值δ4=100、终点距离阈值radius=40,最大转角θ=120°。
为了验证改进RRT算法的可靠性,对比原始RRT算法、目标偏置RRT算法和概率目标偏置RRT算法,每种算法在地图中重复仿真50次,图2、图3、图4、图5为四种路径规划算法的剪枝结果图,仿真数据如表1所示。
表1四种算法实验数据图
Figure BDA0003153702000000091
由表可知,本文改进的RRT算法相较于原始RRT和目标偏置RRT算法有显著的提升,搜索时间减少了78.2%,平均搜索节点数减少了65.8%。相较于概率目标偏置RRT算法平均搜索节点数减少了34.8%,平均搜索时间减少了35.2%。
为了验证路径优化的效果,在地图中重复试验50次,图2、图3、图4分别为动态变采样区域RRT算法剪枝图、动态变采样区域RRT算法逆向寻优图、动态变采样区域RRT算法3次B样条曲线优化图,经过逆向寻优后的平均路径长度为669.367m,3次B样条曲线拟合后的平均路径长度为664.392m,经过逆向寻优和3次B样条曲线优化,相比优化前的距离减少11.4%左右,且路径更加平滑并符合最大转角要求。
当不考虑安全距离时,仿真结果如图8所示,规划路径紧靠障碍物,不符合实际应用要求,图2-7均考虑了安全距离,所以考虑安全距离是有必要的。
本发明的基于动态采样区间的概率目标偏置RRT算法有较高的可靠性,进一步扩展应用,结合动态障碍物,可以满足更多使用条件。
以上所述具体实施方案,对本发明的发明目的、技术方案和有益效果进行了进一步说明,以上实施例仅用于说明本发明的技术方案,而非对本发明创造保护范围的限制,本领域的普通技术人员应当理解,凡在本发明的技术方案进行修改、等同替换,均包含在本发明的保护范围内。

Claims (1)

1.本发明是一种动态变采样区域快速扩展随机树(RRT)无人车路径规划方法,包括如下步骤:
步骤1:
初始化地图信息,包括地图的边界以及障碍物的信息,并将地图信息二值化,设定起始节点Xstart存入有效节点集Xnodes中并设定目标节点Xend,设定新生节点Xnew的初始位置为起点坐标,设定车长Dcar、三级动态步长σ、二级动态安全距离Dsafe和最大转角θ,设定四级动态变采样区域Sarea,初始采样区域为全地图,设定区域采样阈值K和区域采样次数k;
步骤2:
判断区域采样次数k是否超过区域采样阈值K,若采样次数未超过区域采样阈值K则进入步骤4,否则进入步骤3;
步骤3:
判断新生节点Xnew是否位于一级采样区间,若位于一级采样区域则重新设定起始节点Xstart并返回步骤1,否则初始化区域采样次数k并返回上一级采样区域,进入步骤4;
步骤4:
采样区域范围内取随机采样点Xrand,寻找有效节点集Xnodes中距离随机采样点Xrand最近的点作为最近节点Xnear,进入步骤5;
步骤5:
构建随机点重构函数:
Figure FDA0003153701990000011
式中:flag为碰撞检测结果、ω为目标权重因子、p为随机数、ρ为概率因子,在最近节点Xnear的方向基于车长Dcar进行碰撞检测,当flag=0时表示未检测到碰撞,flag=1表示检测到碰撞,结合公式(1)重新选取随机采样点Xrand,此时区域采样次数k=k+1;
构建步长选择函数:
Figure FDA0003153701990000021
式中:σ1为一级步长、σ2为二级步长、σ3为三级步长,flag2为结合二级安全距离Dsafe2的碰撞检测结果,flag1为结合一级安全距离Dsafe1的碰撞检测结果,σ为动态步长,根据公式(2)确定动态步长σ,构建新生节点生成函数:
Figure FDA0003153701990000022
根据公式(3)生成新生节点Xnew,并将新生节点Xnew存入有效节点集Xnodes中,进入步骤6;
步骤6:
判断Xnew是否满足|Xend-Xnew|≤radius,是则进入步骤8,否则进入步骤7,其中,|Xend-Xnew|为计算目标节点Xend和新生节点Xnew的距离公式,radius为范围阈值;
步骤7:
构建动态区域选择函数:
Figure FDA0003153701990000023
式中:δ1为一级距离阈值、δ2为二级距离阈值、δ3为三级距离阈值、δ4为四级距离阈值,Sarea1为一级采样区域、Sarea2为二级采样区域、Sarea3为三级采样区域、Sarea4为四级采样区域,结合公式(4)确定采样区域Sarea,返回步骤2;
步骤8:
在有效节点集Xnodes中根据各个节点间的关系,反向搜索生成路径,进入步骤9;
步骤9:
利用考虑最大转角限制的逆向寻优方法对生成路径进行初步优化,进入步骤10;
步骤10:
对步骤9生成的路径点进行3次B样条曲线拟合优化路径,得到可实际应用的平滑路径,结束规划。
CN202110774053.9A 2021-07-08 2021-07-08 一种动态变采样区域rrt无人车路径规划方法 Active CN113359775B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110774053.9A CN113359775B (zh) 2021-07-08 2021-07-08 一种动态变采样区域rrt无人车路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110774053.9A CN113359775B (zh) 2021-07-08 2021-07-08 一种动态变采样区域rrt无人车路径规划方法

Publications (2)

Publication Number Publication Date
CN113359775A true CN113359775A (zh) 2021-09-07
CN113359775B CN113359775B (zh) 2022-01-18

Family

ID=77538568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110774053.9A Active CN113359775B (zh) 2021-07-08 2021-07-08 一种动态变采样区域rrt无人车路径规划方法

Country Status (1)

Country Link
CN (1) CN113359775B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093378A1 (zh) * 2021-11-29 2023-06-01 中移(成都)信息通信科技有限公司 路径规划方法及装置、设备、存储介质
CN116295443A (zh) * 2023-05-16 2023-06-23 北京科技大学 铰链式无人采矿装备的路径规划方法、装置、装备及介质
CN117021094A (zh) * 2023-08-20 2023-11-10 哈尔滨理工大学 一种适用于狭窄空间的盾构机换刀机器人路径规划方法
CN117168483A (zh) * 2023-09-01 2023-12-05 哈尔滨理工大学 一种考虑地图复杂度的无人车路径规划方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106306A1 (en) * 2009-11-02 2011-05-05 Samsung Electronics Co., Ltd. Path planning apparatus of robot and method and computer-readable medium thereof
CN102175256A (zh) * 2010-12-27 2011-09-07 浙江工业大学 一种基于进化树拓扑路网构建的路径规划确定方法
CN104155974A (zh) * 2013-07-29 2014-11-19 深圳信息职业技术学院 一种用于机器人快速避碰的路径规划方法及设备
CN106444740A (zh) * 2016-07-15 2017-02-22 浙江工业大学 基于mb‑rrt的无人机二维航迹规划方法
CN108195383A (zh) * 2018-03-13 2018-06-22 济南大学 一种基于改进rrt算法的地下无人铲运机路径规划方法
CN108458717A (zh) * 2018-05-07 2018-08-28 西安电子科技大学 一种迭代的快速扩展随机树irrt的无人机路径规划方法
CN108896052A (zh) * 2018-09-20 2018-11-27 鲁东大学 一种基于动态复杂环境下的移动机器人平滑路径规划方法
CN111562788A (zh) * 2020-06-04 2020-08-21 哈尔滨理工大学 一种室内智能清扫机器人的路径规划与避障方法
CN111752281A (zh) * 2020-07-13 2020-10-09 浪潮软件股份有限公司 基于改进rrt算法的移动机器人路径规划方法及系统
CN113064426A (zh) * 2021-03-17 2021-07-02 安徽工程大学 一种改进双向快速搜索随机树算法的智能车路径规划方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106306A1 (en) * 2009-11-02 2011-05-05 Samsung Electronics Co., Ltd. Path planning apparatus of robot and method and computer-readable medium thereof
CN102175256A (zh) * 2010-12-27 2011-09-07 浙江工业大学 一种基于进化树拓扑路网构建的路径规划确定方法
CN104155974A (zh) * 2013-07-29 2014-11-19 深圳信息职业技术学院 一种用于机器人快速避碰的路径规划方法及设备
CN106444740A (zh) * 2016-07-15 2017-02-22 浙江工业大学 基于mb‑rrt的无人机二维航迹规划方法
CN108195383A (zh) * 2018-03-13 2018-06-22 济南大学 一种基于改进rrt算法的地下无人铲运机路径规划方法
CN108458717A (zh) * 2018-05-07 2018-08-28 西安电子科技大学 一种迭代的快速扩展随机树irrt的无人机路径规划方法
CN108896052A (zh) * 2018-09-20 2018-11-27 鲁东大学 一种基于动态复杂环境下的移动机器人平滑路径规划方法
CN111562788A (zh) * 2020-06-04 2020-08-21 哈尔滨理工大学 一种室内智能清扫机器人的路径规划与避障方法
CN111752281A (zh) * 2020-07-13 2020-10-09 浪潮软件股份有限公司 基于改进rrt算法的移动机器人路径规划方法及系统
CN113064426A (zh) * 2021-03-17 2021-07-02 安徽工程大学 一种改进双向快速搜索随机树算法的智能车路径规划方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093378A1 (zh) * 2021-11-29 2023-06-01 中移(成都)信息通信科技有限公司 路径规划方法及装置、设备、存储介质
CN116295443A (zh) * 2023-05-16 2023-06-23 北京科技大学 铰链式无人采矿装备的路径规划方法、装置、装备及介质
CN116295443B (zh) * 2023-05-16 2023-08-04 北京科技大学 铰链式无人采矿装备的路径规划方法、装置、装备及介质
CN117021094A (zh) * 2023-08-20 2023-11-10 哈尔滨理工大学 一种适用于狭窄空间的盾构机换刀机器人路径规划方法
CN117021094B (zh) * 2023-08-20 2024-04-26 哈尔滨理工大学 一种适用于狭窄空间的盾构机换刀机器人路径规划方法
CN117168483A (zh) * 2023-09-01 2023-12-05 哈尔滨理工大学 一种考虑地图复杂度的无人车路径规划方法
CN117168483B (zh) * 2023-09-01 2024-05-14 哈尔滨理工大学 一种考虑地图复杂度的无人车路径规划方法

Also Published As

Publication number Publication date
CN113359775B (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
CN113359775B (zh) 一种动态变采样区域rrt无人车路径规划方法
CN110962130B (zh) 基于目标偏向寻优的启发式rrt机械臂运动规划方法
CN113064426B (zh) 一种改进双向快速搜索随机树算法的智能车路径规划方法
CN109579854B (zh) 基于快速扩展随机树的无人车避障方法
CN112650256A (zh) 一种基于改进双向rrt机器人路径规划方法
CN106371445A (zh) 一种基于拓扑地图的无人车规划控制方法
CN112286202B (zh) 一种非均匀采样fmt*的移动机器人路径规划方法
CN113485367A (zh) 一种舞台多功能移动机器人的路径规划方法
Li et al. Mobile robot path planning based on improved genetic algorithm with A-star heuristic method
CN114545921B (zh) 一种基于改进rrt算法的无人汽车路径规划算法
CN116817947B (zh) 一种基于变步长机制的任意时路径规划方法
CN113188555A (zh) 一种移动机器人路径规划方法
CN116952239A (zh) 一种基于改进a*与dwa融合的无人艇路径规划方法
CN115056222A (zh) 一种基于改进rrt算法的机械臂路径规划方法
CN116300883A (zh) 基于改进RRT-Connect算法的智能体路径规划方法
Zhang et al. An improved dynamic step size RRT algorithm in complex environments
CN115741686A (zh) 一种基于变概率约束采样的机器人路径规划方法
Shi et al. Local path planning of unmanned vehicles based on improved RRT algorithm
CN113325834A (zh) 一种基于图形预处理的改进a*算法的路径规划方法
Xiong et al. Path planning for automatic parking based on improved hybrid A* algorithm
CN115237139B (zh) 一种考虑虚拟目标点的无人船路径规划方法
CN115454106B (zh) 一种基于双向搜索rrt*的auv回坞路径规划方法
CN117168483B (zh) 一种考虑地图复杂度的无人车路径规划方法
Prakash et al. Path planning of UGV using sampling-based method and PSO in 2D map configuration: a comparative analysis
Wang et al. Improved RRT Algorithm for Field Environment Tends to Smooth Path

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230927

Address after: No. 05, Floor 1-2, Building F4, Songmei Road, Songmu Street, Songlan Street, Kancao Street, Xiangfang District, Harbin City, Heilongjiang Province, 150000

Patentee after: Harbin Mingfeng Jiachuang Technology Co.,Ltd.

Address before: 150080 Harbin University of Science and Technology, Harbin Road, Nangang District, Heilongjiang, 52

Patentee before: HARBIN University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right