CN113359257B - Pressure-resistant optical cable - Google Patents
Pressure-resistant optical cable Download PDFInfo
- Publication number
- CN113359257B CN113359257B CN202110728441.3A CN202110728441A CN113359257B CN 113359257 B CN113359257 B CN 113359257B CN 202110728441 A CN202110728441 A CN 202110728441A CN 113359257 B CN113359257 B CN 113359257B
- Authority
- CN
- China
- Prior art keywords
- optical cable
- force
- crush
- core wire
- sheath layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 75
- 239000013013 elastic material Substances 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 18
- 229920001971 elastomer Polymers 0.000 claims description 16
- 229920002635 polyurethane Polymers 0.000 claims description 14
- 239000004814 polyurethane Substances 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 14
- 229910052902 vermiculite Inorganic materials 0.000 claims description 14
- 235000019354 vermiculite Nutrition 0.000 claims description 14
- 239000010455 vermiculite Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 239000011324 bead Substances 0.000 claims description 8
- 239000005388 borosilicate glass Substances 0.000 claims description 7
- 239000002994 raw material Substances 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 238000007906 compression Methods 0.000 abstract description 20
- 230000006835 compression Effects 0.000 abstract description 20
- 239000013307 optical fiber Substances 0.000 abstract description 13
- 238000004891 communication Methods 0.000 abstract description 2
- 239000011325 microbead Substances 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000003712 anti-aging effect Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000009975 flexible effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4427—Pressure resistant cables, e.g. undersea cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4429—Means specially adapted for strengthening or protecting the cables
- G02B6/443—Protective covering
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4479—Manufacturing methods of optical cables
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
本发明属于通信线缆领域,尤其涉及一种抗压光缆。其包括:内芯线和套设在内芯线外的护套层;所述内芯线的外表面和护套层的内表面互不接触、两者相互分离,形成环形腔;所述护套层内绕光缆轴心周向,均匀嵌设有若干分离且截面为类J形的导力骨架件,导力骨架件由嵌段和导力段两段构成,在光缆的径向截面上,嵌段为半圆弧形,其嵌设在护套层中,且一端端部从护套层的内表面延伸入环形腔中,导力段在环形腔中贴合内芯线外表面和护套层的内表面设置,其一端与嵌段连接。本发明的抗压光缆具有良好的抗压性能;通过结构上的改进,改变光缆内部的导力形式和方向,有效避免了光缆内部光纤线受到较强的径向力。
The invention belongs to the field of communication cables, in particular to a compression-resistant optical cable. It includes: an inner core wire and a sheath layer sheathed outside the inner core wire; the outer surface of the inner core wire and the inner surface of the sheath layer are not in contact with each other, and the two are separated from each other to form an annular cavity; In the jacket layer, around the axis of the optical cable, there are evenly embedded a number of separate and J-like cross-section force-guiding skeleton pieces. , the block is a semi-circular arc, which is embedded in the sheath layer, and one end extends from the inner surface of the sheath layer into the annular cavity, and the force-guiding segment fits the outer surface of the inner core wire and the sheath in the annular cavity. The inner surface of the jacket layer is provided, and one end thereof is connected with the block. The compression-resistant optical cable of the present invention has good compression-resistant performance; through structural improvement, the guide force form and direction inside the optical cable are changed, and the optical fiber inside the optical cable is effectively prevented from being subjected to strong radial force.
Description
技术领域technical field
本发明属于通信线缆领域,尤其涉及一种抗压光缆。The invention belongs to the field of communication cables, in particular to a compression-resistant optical cable.
背景技术Background technique
光缆是为了满足光学、机械或环境的性能规范而制造的,它是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件。Fiber optic cables are manufactured to meet optical, mechanical, or environmental performance specifications, and are telecommunication cable assemblies that utilize one or more optical fibers in a sheathing as the transmission medium and can be used individually or in groups.
目前对于光缆而言,抗压性能是一项非常重要的性能,通常被认定为是除光缆传输性能以外最为重要的性能指标。但大多数的光缆不具备非常优异的抗压性能,在受到外界压力作用时,容易造成损伤、损坏。At present, for optical cables, the compressive performance is a very important performance, and it is usually regarded as the most important performance index besides the transmission performance of optical cables. However, most optical cables do not have very good compression resistance, and are easily damaged or damaged when subjected to external pressure.
目前提升光缆抗压性能的方式,大多采用在光纤外部包覆多层刚性或具有较大硬度的结构层,以避免光纤受到压力而损坏。但是该结构会导致光缆的比重大幅度提高,不利于光缆的架空设置。同时,该类加强结构仍为全密实结构,光缆受到外部作用力时,外力仍容易产生径向的传导、对内作用在光纤线上,造成光缆损伤。At present, most of the ways to improve the compression resistance of optical cables are to coat the optical fibers with multiple layers of rigid or relatively rigid structural layers to prevent the optical fibers from being damaged by pressure. However, this structure will greatly increase the specific gravity of the optical cable, which is not conducive to the overhead installation of the optical cable. At the same time, this type of reinforcing structure is still a fully dense structure. When the optical cable is subjected to external force, the external force is still prone to radial conduction, which acts on the optical fiber line internally, causing damage to the optical cable.
发明内容SUMMARY OF THE INVENTION
为解决现有的光缆普遍存在力学性能较差,目前改进方法中采用层绞式结构,虽然能够较为有效提高光缆的抗压性能,但实际光缆在受力后仍容易沿光缆径向进行力传导,导致光缆损伤等问题。本发明提供了一种抗压光缆。In order to solve the general poor mechanical properties of the existing optical cables, the current improvement method adopts a layered structure. Although the compressive performance of the optical cable can be effectively improved, the actual optical cable is still easy to conduct force transmission along the radial direction of the optical cable after being stressed. , resulting in cable damage and other problems. The invention provides a compression-resistant optical cable.
本发明的目的在于:The purpose of this invention is to:
一、提高整体光缆的抗压性能;1. Improve the compressive performance of the overall optical cable;
二、通过结构改进实现导力形式和方向的改变,阻碍光缆的径向导力。2. Changes in the form and direction of the guiding force are realized through structural improvement, which hinders the radial guiding force of the optical cable.
为实现上述目的,本发明采用以下技术方案。In order to achieve the above objects, the present invention adopts the following technical solutions.
一种抗压光缆,包括:A compression-resistant optical cable, comprising:
内芯线和套设在内芯线外的护套层;The inner core wire and the sheath layer sleeved outside the inner core wire;
所述内芯线的外表面和护套层的内表面互不接触、两者相互分离,形成环形腔;The outer surface of the inner core wire and the inner surface of the sheath layer are not in contact with each other, and the two are separated from each other to form an annular cavity;
所述护套层内绕光缆轴心周向均匀嵌设有若干分离且截面为类J形的导力骨架件,导力骨架件由嵌段和导力段两段构成,在光缆的径向截面上,嵌段为半圆弧形,其嵌设在护套层中且一端端部从护套层的内表面延伸入环形腔中,导力段在环形腔中贴合内芯线外表面和护套层的内表面设置,其一端与嵌段连接。The jacket layer is evenly embedded with a number of separate and J-shaped cross-section force-guiding skeleton members around the axis of the optical cable. On the cross section, the block is a semi-circular arc, which is embedded in the sheath layer and one end extends from the inner surface of the sheath layer into the annular cavity, and the force-guiding segment fits the outer surface of the inner core wire and the inner core wire in the annular cavity. The inner surface of the sheath layer is provided with one end connected to the block.
作为优选,As a preference,
所述导力骨架件在光缆的径向截面上扇形角度为α,导力骨架件设置数量为x,α=360/x±5°。The fan-shaped angle of the force-guiding skeleton on the radial section of the optical cable is α, and the number of the force-guiding skeletons is x, α=360/x±5°.
作为优选,As a preference,
所述内芯线外表面设有橡胶层。The outer surface of the inner core wire is provided with a rubber layer.
作为优选,As a preference,
所述橡胶层所用的橡胶为阻尼橡胶。The rubber used in the rubber layer is damping rubber.
作为优选,As a preference,
所述护套层中还设有向外凸起的弧形导力件;The sheath layer is also provided with an arc-shaped force-guiding member that protrudes outwards;
所述弧形导力件沿光缆周向均匀设置在导力骨架件的嵌段之间,设置数量与导力骨架件数量相等。The arc-shaped force-guiding members are uniformly arranged between the blocks of the force-guiding frame members along the circumferential direction of the optical cable, and the number of the force-guiding frame members is equal to that of the force-guiding frame members.
作为优选,As a preference,
所述弧形导力件与导力骨架件均采用玻璃微珠强化的弹性材料进行制备。Both the arc-shaped force-guiding member and the force-guiding frame member are prepared from elastic materials reinforced by glass microbeads.
作为优选,As a preference,
所述弹性材料的制备原料包括玻璃微珠、聚氨酯和蛭石粉。The raw materials for the preparation of the elastic material include glass microbeads, polyurethane and vermiculite powder.
作为优选,As a preference,
所述蛭石粉占聚氨酯和蛭石粉总质量的5~15wt%。The vermiculite powder accounts for 5-15wt% of the total mass of the polyurethane and the vermiculite powder.
作为优选,As a preference,
所述玻璃微珠为空心硼硅酸盐玻璃微珠,空心硼硅酸盐玻璃微珠粒径为220~350μm,壁厚为5~20μm。The glass microbeads are hollow borosilicate glass microbeads, the particle diameter of the hollow borosilicate glass microbeads is 220-350 μm, and the wall thickness is 5-20 μm.
作为优选,As a preference,
所述弹性材料由以下方法进行制备:The elastic material is prepared by the following method:
向聚氨酯中加入蛭石粉,混炼造粒后将所得的颗粒与玻璃微珠松装混合,进行二次混炼,得到玻璃微珠强化的弹性材料。The vermiculite powder is added to the polyurethane, and after kneading and granulation, the obtained granules are loosely mixed with glass microbeads, and the secondary mixing is performed to obtain an elastic material reinforced by the glass microbeads.
本发明的有益效果是:The beneficial effects of the present invention are:
1)能够确保光缆具有良好的抗压性能;1) It can ensure that the optical cable has good compression performance;
2)通过结构上的改进,改变光缆内部的导力形式和方向,有效避免了光缆内部光纤线受到较强的径向力;2) Through the structural improvement, the form and direction of the guiding force inside the optical cable are changed, which effectively avoids the strong radial force on the optical fiber inside the optical cable;
3)能够在一定程度上提高光缆的抗扭曲性能。3) The anti-twist performance of the optical cable can be improved to a certain extent.
附图说明:Description of drawings:
图1为本发明的结构示意图;Fig. 1 is the structural representation of the present invention;
图2为本发明的一种受力分析图;Fig. 2 is a kind of force analysis diagram of the present invention;
图3为本发明的另一种受力分析图;Fig. 3 is another kind of force analysis diagram of the present invention;
图中:100内芯线,101光纤线,102束管,103隔热层,104橡胶层,200护套层,201抗老化层,300导力骨架件,301嵌段,302导力段,400弧形导力件,500环形腔。In the picture: 100 inner core wire, 101 optical fiber cable, 102 bundled tube, 103 heat insulation layer, 104 rubber layer, 200 sheath layer, 201 anti-aging layer, 300 force-conducting skeleton, 301 block, 302 force-conducting section, 400 arc force guide, 500 annular cavity.
具体实施方式:Detailed ways:
以下结合具体实施例和说明书附图对本发明作出进一步清楚详细的描述说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。此外,下述说明中涉及到的本发明的实施例通常仅是本发明一部分的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。The present invention will be further described and described in detail below with reference to specific embodiments and accompanying drawings. Those of ordinary skill in the art will be able to implement the present invention based on these descriptions. In addition, the embodiments of the present invention referred to in the following description are generally only some embodiments of the present invention, not all of the embodiments. Therefore, based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative work shall fall within the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语“厚度”、“上”、“下”、“水平”、“顶”、“底”、“内”、“外”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定,“若干”的含义是表示一个或者多个。In the description of the present invention, it should be understood that the terms "thickness", "upper", "lower", "horizontal", "top", "bottom", "inner", "outer", "circumferential", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the accompanying drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limiting the invention. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined, the meaning of "several" means one or more.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
如无特殊说明,本发明实施例所用原料均为市售或本领域技术人员可获得的原料;如无特殊说明,本发明实施例所用方法均为本领域技术人员所掌握的方法。Unless otherwise specified, the raw materials used in the embodiments of the present invention are commercially available or available to those skilled in the art; unless otherwise specified, the methods used in the embodiments of the present invention are all methods mastered by those skilled in the art.
实施例Example
一种如图1所示的抗压光缆,其具体包括:A compression-resistant optical cable as shown in Figure 1, which specifically includes:
由内至外设置的内芯线100和套设在内芯线100外的护套层200;The
所述护套层200外表面设有抗老化层201;The outer surface of the
所述内芯线100内沿光缆轴向设有光纤线101,光纤线101为单模光纤或多模光纤或光纤束;The
所述光纤线101外套设有束管102,束管102外包覆隔热层103,隔热层103外包覆橡胶层104;The
所述内芯线100的外表面和护套层200的内表面互不接触、两者相互分离,形成环形腔500;The outer surface of the
所述护套层200内绕光缆轴心周向均匀嵌设有若干分离且截面为类J形的导力骨架件300,导力骨架件300由嵌段301和导力段302两段构成,在光缆的径向截面上,嵌段301为半圆弧形,其嵌设在护套层200中且一端端部从护套层200的内表面延伸入环形腔500中,导力段302在环形腔500中贴合内芯线100外表面和护套层200的内表面设置,其一端与嵌段301连接;The
所述导力骨架件300由弹性材料进行制备,其在光缆的径向截面上扇形角度为α,导力骨架件300设置数量为x,α=360/x±5°;The force-guiding
对导力骨架件300在光缆径向截面上的扇形角度进行设定后,After setting the sector angle of the force-guiding
如本实施例中,导力骨架件300设置数量为3,导力骨架件300在光缆的径向截面上扇形角度为115°。In this embodiment, the number of the force-guiding
在上述结构的配合下,如图2所示:Under the cooperation of the above structure, as shown in Figure 2:
在光缆受到导力骨架件300嵌段301方向的外力F1作用时,导力骨架件300的嵌段301会沿光缆的径向压缩、压紧,而在此过程中,由于导力段302处于环形腔500中,各个导力骨架件300相互分离,实际环形腔500存在活动间隙,使得导力段302能够在环形腔500约束下沿光缆的周向进行移动,因此,嵌段301变形时会推动导力段302的运动,使得外力F1实际会在嵌段301沿a方向传导、在导力段302沿b方向传导,直接减少沿光缆径向的力传导,并且通过位移的方式实现缓冲外力F1,进而对光缆内芯线100产生良好的抗压保护效果;When the optical cable is subjected to the external force F1 in the direction of the
同时,该结构的光缆并不设置硬质的加强件结构,能够大大提高光缆的柔度,能够有效解决常规抗压结构光缆如GYTA和GYTS等层绞式光缆存在的高比重、难弯折且不方便运输等问题。At the same time, the optical cable of this structure is not provided with a rigid reinforcement structure, which can greatly improve the flexibility of the optical cable, and can effectively solve the problems of high specific gravity, difficult bending and high density of the conventional compression-resistant optical cable such as GYTA and GYTS layered stranded optical cables. Inconvenient transportation and other issues.
进一步的,further,
所述内芯线100最外层的橡胶层104所用的橡胶为阻尼橡胶;The rubber used in the
由于本发明的导力骨架件300结构是通过位移的方式实现抗压缓冲,橡胶层104具有良好的耐磨性,不容易磨损,而进一步以阻尼橡胶制备为橡胶层104后,导力骨架件300的导力段302在位移过程中,会受到橡胶层104的阻尼作用,增大导力段302和橡胶层104的摩擦力,通过摩擦的方式能够进一步缓冲和抵消外力作用,因此能够更好地实现抗压和缓冲的作用。Since the structure of the force-conducting
进一步的,further,
所述护套层200中还设有向外凸起的弧形导力件400;The
所述弧形导力件400沿光缆周向均匀设置在导力骨架件300的嵌段301之间,设置数量与导力骨架件300数量相等;The arc-shaped force-guiding
所述弧形导力件400采用与导力骨架件300相同的弹性材料进行制备;The arc-shaped force-guiding
所述弹性材料为玻璃微珠强化的弹性材料,其制备原料包括玻璃微珠、聚氨酯和蛭石粉;The elastic material is a glass microbead reinforced elastic material, and its preparation raw materials include glass microbeads, polyurethane and vermiculite powder;
所述蛭石粉占聚氨酯和蛭石粉总质量的5~15wt%,本实施例中蛭石粉占聚氨酯和蛭石粉总质量的10wt%,以现有工艺进行95℃℃混炼造粒得到粒径为1~3mm的颗粒后,将混炼所得的颗粒与玻璃微珠松装混合,玻璃微珠和颗粒的松装体积比为5~8:100,两者混合均匀后进行二次混炼,控制混炼温度为68℃,二次混炼时需要控制聚氨酯流动性,因此应严格控制混炼温度为67~70℃,混炼后得到夹杂玻璃微珠强化颗粒的弹性材料;The vermiculite powder accounts for 5-15wt% of the total mass of the polyurethane and the vermiculite powder. In this embodiment, the vermiculite powder accounts for 10wt% of the total mass of the polyurethane and the vermiculite powder. The particle size obtained by mixing and granulating at 95°C with the existing technology is: After the particles are 1 to 3 mm in size, the particles obtained by kneading are loosely mixed with glass microbeads. The loose volume ratio of glass microbeads and particles is 5 to 8:100. The mixing temperature is 68°C, and the fluidity of the polyurethane needs to be controlled during the secondary mixing. Therefore, the mixing temperature should be strictly controlled to be 67-70°C. After mixing, an elastic material containing glass beads reinforced particles is obtained;
上述所选的玻璃微珠为空心硼硅酸盐玻璃微珠,空心硼硅酸盐玻璃微珠粒径为220~350μm,壁厚为5~20μm,本实施例所选的玻璃微珠粒径为280μm,壁厚15μm。The glass microbeads selected above are hollow borosilicate glass microbeads, the particle size of the hollow borosilicate glass microbeads is 220-350 μm, and the wall thickness is 5-20 μm. The particle size of the glass microbeads selected in this embodiment is It is 280μm and the wall thickness is 15μm.
通过上述方式制成的玻璃微珠强化的弹性材料,相较于现有的聚氨酯弹性材料,具有更优异的弹性模量和抗压缓冲性能,相较于现有的聚氨酯弹性材料,光缆的抗压能力能够提高约14~18%,同时配合本发明光缆的结构,在产生多方向的变形后,仍能有效地保持光缆的圆度。Compared with the existing polyurethane elastic material, the elastic material reinforced by glass microbeads made by the above method has more excellent elastic modulus and compression resistance and buffering performance. Compared with the existing polyurethane elastic material, the resistance of the optical cable The compressive capacity can be increased by about 14-18%, and at the same time, with the structure of the optical cable of the present invention, the roundness of the optical cable can still be effectively maintained after multi-directional deformation occurs.
此外,在上述的工艺中,空心硼硅酸盐玻璃微珠必须在蛭石粉和聚氨酯混炼造粒后再混合加入,在第一次混炼造粒过程中直接加入,一次形成弹性材料的制备会导致三者成分均匀性差,与现有的聚氨酯弹性材料相比,对光缆的抗压能力提升不明显,甚至产生一定的硬化下降。经试验,一次混炼制得的弹性材料用于光缆时,光缆的抗压能力能够提高约-3~7%。In addition, in the above-mentioned process, the hollow borosilicate glass microspheres must be mixed and added after the vermiculite powder and polyurethane are mixed and granulated, and added directly during the first mixing and granulation process to form the preparation of elastic materials at one time. It will lead to poor uniformity of the three components. Compared with the existing polyurethane elastic material, the compression resistance of the optical cable is not significantly improved, and even a certain reduction in hardening occurs. Tests have shown that when the elastic material obtained by one-time mixing is used in an optical cable, the compression resistance of the optical cable can be increased by about -3 to 7%.
弧形导力件400设置后,能够进一步提高光缆的抗压性能;After the arc-shaped
具体如图3所示,在光缆受到导力骨架件300导力段302方向的外力F2作用时,实际上会首先直接作用在弧形导力件400上形成F3作用力,弧形导力件400受到作用力F3的影响,其两端沿光缆周向会沿c向向外翘起,在该过程中,也会带动相应导力骨架件300的导力段302两端沿c向翘起,同时弧形导力件400靠近导力骨架件300嵌段301的一端,会带动嵌段301嵌入护套层200的一端沿d向翻转变形,并通过导力骨架件300的嵌段301和导力段302形成e向和f向的导力,实现对外力的缓冲和抵消,减少内芯线100径向的实际受力,起到良好的抗压效果。Specifically, as shown in FIG. 3 , when the optical cable is acted on by the external force F2 in the direction of the force-conducting
在本发明的技术方案中,若导力骨架件300相互抵接,则抗压效果显著下降,不具备良好的抗压能力,同时会显著影响光缆的柔性。In the technical solution of the present invention, if the force-guiding
此外,本发明光缆在抗扭曲性能上也表现优异。如图1所示结构的光缆,在顺时针转动22.6°后才能够带动内芯线100产生扭转,在逆时针转动17.2°后才能够带动内芯线100扭转。因此,本发明光缆,除具备柔质特性和良好的抗压性能以外,还具备良好的抗扭曲性能。In addition, the optical cable of the present invention is also excellent in torsion resistance. The optical cable with the structure shown in FIG. 1 can drive the
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110728441.3A CN113359257B (en) | 2021-06-29 | 2021-06-29 | Pressure-resistant optical cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110728441.3A CN113359257B (en) | 2021-06-29 | 2021-06-29 | Pressure-resistant optical cable |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113359257A CN113359257A (en) | 2021-09-07 |
CN113359257B true CN113359257B (en) | 2022-05-24 |
Family
ID=77537065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110728441.3A Active CN113359257B (en) | 2021-06-29 | 2021-06-29 | Pressure-resistant optical cable |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113359257B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113985543A (en) * | 2021-09-28 | 2022-01-28 | 杭州富通通信技术股份有限公司 | Optical cable with prestressed structure |
CN114236717B (en) * | 2021-11-03 | 2023-08-08 | 深圳新澳科电缆有限公司 | Pressure-resistant optical cable |
CN114325974A (en) * | 2021-12-02 | 2022-04-12 | 杭州富通通信技术股份有限公司 | Compression-resistant damping optical cable |
CN114967016B (en) * | 2022-06-29 | 2023-08-04 | 深圳新澳科电缆有限公司 | Anti-twisting ribbon optical cable |
CN115267995B (en) * | 2022-09-01 | 2023-05-05 | 富通集团有限公司 | Underwater optical cable for shallow water area |
CN118112733B (en) * | 2024-03-01 | 2024-12-03 | 杭州金龙光电股份有限公司 | An optical cable |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208061700U (en) * | 2018-03-01 | 2018-11-06 | 浙江英美达电缆科技有限公司 | A kind of anti-extrusion stretch-proof power cable |
CN111223603A (en) * | 2018-11-25 | 2020-06-02 | 大连龙腾流体设备有限公司 | High temperature resistant resistance to compression cable |
CN111897069A (en) * | 2020-08-22 | 2020-11-06 | 常熟高通智能装备有限公司 | Special-shaped compression-resistant optical cable |
CN112037979A (en) * | 2020-08-25 | 2020-12-04 | 杭州富通通信技术股份有限公司 | 5G is with mixed cable of resistance to compression photoelectricity |
CN112102995A (en) * | 2020-09-04 | 2020-12-18 | 杨恩德 | Force transfer type anti-bending cable |
-
2021
- 2021-06-29 CN CN202110728441.3A patent/CN113359257B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208061700U (en) * | 2018-03-01 | 2018-11-06 | 浙江英美达电缆科技有限公司 | A kind of anti-extrusion stretch-proof power cable |
CN111223603A (en) * | 2018-11-25 | 2020-06-02 | 大连龙腾流体设备有限公司 | High temperature resistant resistance to compression cable |
CN111897069A (en) * | 2020-08-22 | 2020-11-06 | 常熟高通智能装备有限公司 | Special-shaped compression-resistant optical cable |
CN112037979A (en) * | 2020-08-25 | 2020-12-04 | 杭州富通通信技术股份有限公司 | 5G is with mixed cable of resistance to compression photoelectricity |
CN112102995A (en) * | 2020-09-04 | 2020-12-18 | 杨恩德 | Force transfer type anti-bending cable |
Also Published As
Publication number | Publication date |
---|---|
CN113359257A (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113359257B (en) | Pressure-resistant optical cable | |
CN112835164B (en) | A compression type ribbon optical cable | |
CN113311553B (en) | fiber optic cable | |
WO2012064579A1 (en) | Multi-core optical fiber ribbons and methods for making the same | |
US11287598B2 (en) | Dual layer micro optical fiber cable | |
CN110047616A (en) | A kind of cable resistant to bending | |
CN102681113A (en) | Multi-core stranded loose tube soft-armored optical cable | |
CN103576268A (en) | Novel temperature measuring cable | |
US9057857B2 (en) | Fiber optic assembly for optical cable | |
CN209657836U (en) | A kind of cable resistant to bending | |
CN105676397A (en) | Optical cable with external symmetrical reinforcements | |
CN109407247B (en) | A flame retardant optical cable | |
CN201298093Y (en) | Anti-breakage optical cable protected by highly-elastic material | |
CN218826362U (en) | Extrusion-resistant flat power transmission cable | |
CN117031613A (en) | Thin-diameter low-loss optical fiber and optical cable | |
CN201909873U (en) | Multi-core multi-layer stranded flexible armoured optical cable | |
CN207488585U (en) | A kind of stainless steel tube layer-stranding cable | |
KR101820906B1 (en) | Multi-core optical cable for air blown installation | |
CN112151217A (en) | Flexible hinge photoelectric composite cable | |
CN218471606U (en) | Bending-resistant temperature-measuring type cable for building hoistway wiring | |
CN203587862U (en) | Novel temperature measurement optical cable | |
CN205920252U (en) | Corrosion -resistant high temperature resistant optical cable | |
CN222070900U (en) | A high temperature resistant optical cable | |
CN116400470B (en) | Optical cable for aerospace and preparation method | |
CN221687248U (en) | A photoelectric composite cable for deepwater equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PP01 | Preservation of patent right |
Effective date of registration: 20241125 Granted publication date: 20220524 |
|
PP01 | Preservation of patent right |