Non-equal-diameter vertical pipeline robot with improved climbing performance
Technical Field
The invention belongs to the technical field of pipeline robots, and relates to a non-isometric vertical pipeline robot capable of improving climbing performance.
Background
No matter building, urban construction, nuclear industry, chemical industry or municipal pipeline construction, all lay a large amount of pipelines, these pipelines often are invisible, for example the drainage pipe of city is mostly buried underground or because of the decoration reason invisible, especially those pass through the special pipeline of river, railway, road, these pipelines can cause the corruption, reveal, jam scheduling problem because of people's domestic waste, the waste liquid that discharges in the industry etc. if untimely clearance, mediation and maintenance, will make sewage flow leak, pollute living environment, cause the trouble for people's life. With the development of society, the arrangement of pipeline systems is increasing, so that the problem of exposure on the pipeline is also increasing, and great difficulties exist in cleaning, dredging, maintaining, repairing and managing the pipeline. The existing excavation and sampling inspection method increases labor intensity, has low benefit, low accuracy, is easy to leak, and the like, and in some special environments, such as chemical engineering, refrigeration, nuclear power stations, and the like, the conventional method wastes time and labor for detecting micro pipelines and has the dangers of poisoning, radiation, and the like, which has attracted the attention of related departments and becomes a considerable work of government departments.
Aiming at the problems in the work of cleaning, dredging, maintaining, repairing, managing and the like of the pipeline, when the important part of the pipeline is detected, the pipeline robot has certain advantages in the operation process, and has good application prospect. At this time, if manual operation is adopted, great potential safety hazards often exist, the labor intensity is high, and certain threats exist to the life safety of workers. Under the background, in order to ensure the life safety of workers and improve the working efficiency, the pipeline can be subjected to quality detection, fault diagnosis, cleaning, spraying, flaw detection, welding, pipeline maintenance and repair and the like in a mode of advancing by a pipeline robot, and great convenience is brought to the production and life of people.
The existing non-equal-diameter vertical pipeline robot mainly has the following problems:
1. the pipeline robot is generally single-drive or front-back single-drive, when the diameter is changed or a curve is met, mutual obstruction and interference are easy to generate between wheels and a pipeline, so that the pipeline robot is clamped in the pipeline;
2. the structure of the existing pipeline robot is complex, and time and economic cost are increased in the process of designing the pipeline robot and the process of manufacturing the pipeline robot;
3. because current pipeline robot structure is comparatively complicated, invisibly increased pipeline robot's weight for pipeline robot scrambles inefficiency.
Disclosure of Invention
The technical problem to be solved by the invention is as follows: the non-equal-diameter vertical pipeline robot with the improved climbing performance is provided to solve the technical problems in the prior art.
The technical scheme adopted by the invention is as follows: a non-isometric vertical pipeline robot for improving climbing performance comprises a robot body, wherein the robot body is provided with a driving mechanism, the driving mechanism comprises a walking wheel driving motor, a walking wheel, a pressing force adjusting motor, a ball screw, nuts and pressure sensors, the middle part of the ball screw is rotatably connected to the robot body, two ends of the ball screw are in matched connection with two nuts which are oppositely screwed, the outer side of each nut is provided with the pressure sensor, the outer side of the pressure sensor is abutted against a shaft sleeve movably sleeved on the ball screw, the walking wheel driving motor and the pressing force adjusting motor are fixedly connected to the robot body, motor shafts of the walking wheel driving motor and the pressing force adjusting motor are respectively connected with a first gear and a fifth gear, a second gear meshed with the first gear is rotatably connected to the robot body and is coaxial with the ball screw, and a sixth gear meshed with the fifth gear is fixedly connected to the ball screw, the third gear, the fourth gear and the first gear which are meshed with the second gear are uniformly distributed along the circumferential direction of the second gear and are rotatably connected to the robot body, three first connecting rods are hinged to the outer sides of the first gear, the third gear and the fourth gear through universal joints, the other end of each first connecting rod is rotatably connected with a traveling wheel, the middle of each first connecting rod is hinged with a second connecting rod, the other ends of the second connecting rods are hinged to the shaft sleeve, the traveling wheels, the first connecting rods and the second connecting rods are oppositely installed, the other sets of the traveling wheels, the first connecting rods and the second connecting rods are installed on the other side of the robot body, and the first connecting rods are hinged to the robot body.
Preferably, the pressure sensor is connected to a controller, and the controller is connected to the road wheel drive motor and the pressing force adjustment motor.
Preferably, the gear bi-pass is connected to the robot body through a quill.
The invention has the beneficial effects that: compared with the prior art, the driving walking structure in the umbrella structure form is composed of the first connecting rod, the second connecting rod, the shaft sleeve and the lead screw, so that the driving walking structure can not only drive the walking wheels to walk, but also realize the radial size change adjustment of the walking wheels, realize the walking of the non-equal-diameter vertical pipeline robot to be more stable, avoid the phenomenon of clamping, have simple integral structure and high working reliability, and is light and convenient after the equipment structure is optimized, and the walking working efficiency is improved.
Drawings
FIG. 1 is a schematic diagram of the overall structure of a non-equal-diameter vertical pipeline robot;
FIG. 2 is a schematic distribution diagram of three walking wheels on one side in a pipeline;
fig. 3 is a schematic view of the arrangement structure of a first gear, a second gear, a third gear and a fourth gear.
In the drawings: 1. a traveling wheel driving motor; 2. a traveling wheel; 3. a universal joint; 4. a pressing force adjusting motor; 5. a ball screw; 6. a feed screw nut; 7. a pressure sensor; 8. a shaft sleeve; 9. a sixth gear; 10. a fifth gear; 11. a third gear; 12, gear four; 13. a first gear; 14. a second gear; 15. a first connecting rod; 16. and a second connecting rod.
Detailed Description
The invention is further described with reference to the accompanying drawings and specific embodiments.
Example 1: as shown in fig. 1-3, a non-equal diameter vertical pipeline robot for improving climbing performance, comprising a robot body, wherein the robot body is provided with a driving mechanism, the driving mechanism comprises a walking wheel driving motor 1, walking wheels 2, a pressing force adjusting motor 4, a ball screw 5, a screw nut 6 and a pressure sensor 7, the middle part of the ball screw 5 is rotatably connected to the robot body, two ends of the ball screw 5 are connected with two screw nuts 6 which are oppositely screwed, the outer side of each screw nut 6 is provided with the pressure sensor 7, the outer side of the pressure sensor 7 is abutted against a shaft sleeve 8 which is movably sleeved on the ball screw 5, the walking wheel driving motor 1 and the pressing force adjusting motor 4 are fixedly connected to the robot body, motor shafts of the walking wheel driving motor 1 and the pressing force adjusting motor 4 are respectively connected with a first gear 13 and a fifth gear 10, a second gear 14 which is meshed with the first gear 13 is rotatably connected to the robot body and is coaxial with the ball screw 5, six 9 fixed connection on ball 5 with five 10 meshed gears of gear, gear three 11 and gear four 12 and gear one 13 with two 14 meshed gears along two 14 circumference equipartitions, and swivelling joint is on the robot body, gear one 13, three 11 and gear four 12 outside all articulates through universal joint 3 has three connecting rod one 15, every connecting rod one 15 other end swivelling joint has walking wheel 2, the middle part articulates there is connecting rod two 16, the connecting rod two 16 other end articulates on axle sleeve 8, walking wheel 2, connecting rod one 15 and connecting rod two 16 adopt two sets to install relatively, another set is installed the opposite side on the robot body and connecting rod one 15 articulates on the robot body.
Preferably, the above-mentioned pressure sensor 7 is connected to a controller, which is connected to the traction motor 1 and the pressing force adjusting motor 4.
Preferably, the second gear 14 is connected to the robot body through a quill.
The travel of the traveling wheels is realized by arranging three pinions on the ring gear.
The annular gear II is driven by a gear I driven by a traveling wheel driving motor, and the gear II drives a gear III and a gear IV after obtaining moment. The first gear transmits torque to the travelling wheels through universal joints, so that the travelling wheels can drive the whole pipeline robot; the universal joint plays a role in adjusting and adapting to non-equal diameters besides transmitting torque. The non-equal-diameter vertical pipeline robot can stably walk in the pipeline through the design of an umbrella structure consisting of a connecting rod I, a connecting rod II, a shaft sleeve and a lead screw; the umbrella structure realizes synchronous expansion or contraction through the ball screw and the nut which are screwed to different directions at the two ends of the robot body; the pressure generated when the walking wheel changes the diameter is received by a pressure sensor arranged on the ball screw; the pressure sensor feeds the received pressure signal back to the pressing force adjusting motor; the pressing force adjusting motor makes corresponding rotation amount after receiving the signal so as to adapt to stable walking of the walking wheel on different pipe diameters.
When the pipeline robot moves vertically in the axial direction, the motion state of the mechanism can be changed under the comprehensive action of the force. The driving wheel of the pipeline robot and the inner wall of the pipeline can generate axial friction force and radial friction force, the driving motor overcomes the axial friction force, the axial friction force provides advancing power, and the radial friction force provides circumferential force. When the front end load is too big, through the force sensor feedback adjustment motor of installation, ball starts, adjusts the friction force that can increase walking wheel and pipe wall through the umbrella structure.
The above description is only an embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily conceive of changes or substitutions within the technical scope of the present invention, and therefore, the scope of the present invention should be determined by the scope of the claims.