CN113355389B - Method and application of targeted enrichment nucleic acid target region using CRISPR/Cas12a system - Google Patents
Method and application of targeted enrichment nucleic acid target region using CRISPR/Cas12a system Download PDFInfo
- Publication number
- CN113355389B CN113355389B CN202010146552.9A CN202010146552A CN113355389B CN 113355389 B CN113355389 B CN 113355389B CN 202010146552 A CN202010146552 A CN 202010146552A CN 113355389 B CN113355389 B CN 113355389B
- Authority
- CN
- China
- Prior art keywords
- sequence
- complementary
- nucleic acid
- rna
- target region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 60
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 59
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 52
- 108700004991 Cas12a Proteins 0.000 title claims abstract description 42
- 108091033409 CRISPR Proteins 0.000 title abstract description 20
- 238000010354 CRISPR gene editing Methods 0.000 title abstract description 19
- 230000000295 complement effect Effects 0.000 claims abstract description 89
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 59
- 108091027544 Subgenomic mRNA Proteins 0.000 claims abstract description 45
- 238000012163 sequencing technique Methods 0.000 claims abstract description 27
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 16
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 14
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 11
- 239000003398 denaturant Substances 0.000 claims abstract description 9
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 claims abstract description 6
- 102100034343 Integrase Human genes 0.000 claims abstract 2
- 238000003780 insertion Methods 0.000 claims description 20
- 230000037431 insertion Effects 0.000 claims description 20
- 238000011534 incubation Methods 0.000 claims description 18
- 238000012408 PCR amplification Methods 0.000 claims description 14
- 108010067770 Endopeptidase K Proteins 0.000 claims description 9
- 102000006382 Ribonucleases Human genes 0.000 claims description 9
- 108010083644 Ribonucleases Proteins 0.000 claims description 9
- 238000004925 denaturation Methods 0.000 claims description 6
- 230000036425 denaturation Effects 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 230000008685 targeting Effects 0.000 abstract description 11
- 102000040650 (ribonucleotides)n+m Human genes 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 abstract 1
- 108020004414 DNA Proteins 0.000 description 40
- 238000005516 engineering process Methods 0.000 description 10
- 238000012165 high-throughput sequencing Methods 0.000 description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000029087 digestion Effects 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 102100031780 Endonuclease Human genes 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000001502 gel electrophoresis Methods 0.000 description 4
- 238000007481 next generation sequencing Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 229920001817 Agar Polymers 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 238000007480 sanger sequencing Methods 0.000 description 2
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 101800005109 Triakontatetraneuropeptide Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 101150038500 cas9 gene Proteins 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000005782 double-strand break Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011027 product recovery Methods 0.000 description 1
- 108010071967 protein K Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- NMEHNETUFHBYEG-IHKSMFQHSA-N tttn Chemical group C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 NMEHNETUFHBYEG-IHKSMFQHSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B50/00—Methods of creating libraries, e.g. combinatorial synthesis
- C40B50/06—Biochemical methods, e.g. using enzymes or whole viable microorganisms
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种利用CRISPR/Cas12a系统靶向富集核酸目标区域的方法及其应用。该方法包括(1)设计第一和第二RNA,第一RNA除第一sgRNA分子,还含有第一互补序列,第二RNA除第二sgRNA分子,还含有第二互补序列,第一sgRNA分子和第一互补序列与目标区域上游互补,第二sgRNA分子和第二互补序列与目标区域下游互补;(2)与Cas12a蛋白混合获得复合物;(3)将复合物、核酸、逆转录酶、变性剂和dNTP混合孵育和变性,获得变性产物;(4)去除RNA和蛋白质,扩增获得富集产物。由此可简便、快捷实现目标区域的富集,应用于测序领域。The invention relates to a method for targeting and enriching nucleic acid target regions by using the CRISPR/Cas12a system and its application. The method includes (1) designing first and second RNAs, wherein the first RNA contains a first complementary sequence in addition to the first sgRNA molecule, the second RNA contains a second complementary sequence in addition to the second sgRNA molecule, and the first sgRNA molecule The first complementary sequence is complementary to the upstream of the target region, and the second sgRNA molecule and the second complementary sequence are complementary to the downstream of the target region; (2) mixed with the Cas12a protein to obtain a complex; (3) compound, nucleic acid, reverse transcriptase, The denaturant and dNTP are mixed and incubated and denatured to obtain denatured products; (4) RNA and protein are removed, and enriched products are amplified. In this way, the enrichment of the target region can be realized simply and quickly, and it can be applied in the field of sequencing.
Description
技术领域technical field
本发明涉及分子生物学技术领域,特别涉及核酸捕获测序领域,具体涉及一种利用CRISPR/Cas12a系统靶向富集核酸目标区域的方法及其应用。The present invention relates to the technical field of molecular biology, in particular to the field of nucleic acid capture sequencing, and in particular to a method for targeting and enriching nucleic acid target regions using a CRISPR/Cas12a system and its application.
背景技术Background technique
近年DNA测序技术得到了不断地发展,由传统的Sanger测序技术发展到当前“下一代测序技术(NGS)”,NGS突出的特点就是可以实现数百万甚至亿万个测序反应同时进行,提高了测序通量,实现了测序高通量,使得DNA的信息不断被解析,DNA测序对于性状的遗传调控、疾病形成等方面的理解具有积极意义。In recent years, DNA sequencing technology has been continuously developed, from the traditional Sanger sequencing technology to the current "Next Generation Sequencing Technology (NGS)". The outstanding feature of NGS is that it can realize millions or even hundreds of millions of sequencing reactions simultaneously, improving the Sequencing throughput has achieved high-throughput sequencing, allowing DNA information to be continuously analyzed. DNA sequencing has positive significance for the understanding of genetic regulation of traits and disease formation.
尽管NGS技术的不断发展,但目前对于全基因组测序仍存在成本较高的弊端,并且我们经常不需要对全基因组进行测序,而只需要对特定感兴趣的区域进行DNA测序,还可以有效降低测序成本以及人力物力,因此靶向富集目标区域DNA的方法应运而生。目前常见的靶向富集方法是利用液相杂交进行捕获目标区域,从而能够对感兴趣的基因组区域进行靶向捕获富集,缩小了测序范围,实现目标区域的有效捕获富集。Despite the continuous development of NGS technology, there are still disadvantages of high cost for whole genome sequencing, and we often do not need to sequence the whole genome, but only need to perform DNA sequencing on specific regions of interest, which can effectively reduce the cost of sequencing The cost and manpower and material resources, so the method of targeting and enriching DNA in the target region came into being. The current common target enrichment method is to use liquid phase hybridization to capture the target region, so that the targeted capture enrichment of the genomic region of interest can be carried out, the sequencing range is reduced, and the effective capture and enrichment of the target region is achieved.
利用液相杂交捕获可以有效靶向富集目标区域,但通常需要较长时间的杂交时间(16-24h),且需要较多输入量的DNA,同时高温变性也容易导致非特异性杂交,导致背景噪音加大,使得靶向效率不佳,同时杂交后需要繁琐的洗脱程序,费时费力。The use of liquid-phase hybridization capture can effectively target and enrich the target region, but usually requires a long hybridization time (16-24h), and requires a large amount of input DNA, and high-temperature denaturation can also easily lead to non-specific hybridization, resulting in background Increased noise leads to poor targeting efficiency, and cumbersome elution procedures are required after hybridization, which is time-consuming and labor-intensive.
因此很有必要提供一种快捷、高效、精准的目标区域富集的方法很有必要。Therefore, it is necessary to provide a fast, efficient and accurate method for enriching the target region.
发明内容Contents of the invention
本发明旨在至少在一定程度上解决现有技术中存在的技术问题之一。为此,本发明提供了一种利用CRISPR/Cas12a系统靶向富集核酸目标区域的方法及其应用。The present invention aims at solving one of the technical problems existing in the prior art at least to a certain extent. To this end, the present invention provides a method for targeting and enriching nucleic acid target regions using the CRISPR/Cas12a system and its application.
CRISPR技术是一种源于古细菌免疫系统的技术,可以有效的识别目标区域PAM序列,从而对目标序列进行编辑。近日,David Liu等(参考文献Anzalone A V,Randolph P B,Davis J R,et al.Search-and-replace genome editing without double-strandbreaks or donor DNA[J].Nature,2019.)团队改进了现有的基因编辑CRSPR/cas9技术,提出了先导编辑(Prime editing)的概念,该技术可以实现目标序列的精确插入,并能有效降低脱靶效应,这一技术的提出将使得我们捕获目的序列变的简单高效。Cas12a(Cpf1)是一种类似于Cas9的蛋白,其识别基因组的PAM序列为TTTN,切割位点远离识别序列,形成粘性末端,这为目标区域的精确编辑提供了有效的保障(参考文献Zetsche B,Gootenberg J S,Abudayyeh O O,et al.Cpf1 Is a Single RNA-Guided Endonuclease of a Class2CRISPR-Cas System[J].CELL,2015,163(3):759-771.)。本发明的发明人通过研究,创造性地发现,可以利用CRISPR/Cas12a系统以及先导编辑对核酸的目标区域进行有效编辑,从而对其进行高效精准捕获,然后借助于通过PCR扩增有效富集目的区域,最后对目标区域进行高通量测序并进行分析,有效降低了测序成本,提高了捕获的特异性以及灵敏性,将在DNA检测等领域具有很强的实用性。CRISPR technology is a technology derived from the immune system of archaea, which can effectively recognize the PAM sequence of the target region, so as to edit the target sequence. Recently, the team of David Liu et al. (reference Anzalone A V, Randolph P B, Davis J R, et al. Search-and-replace genome editing without double-strandbreaks or donor DNA [J]. Nature, 2019.) improved the existing gene The editing CRSPR/cas9 technology proposes the concept of Prime editing, which can achieve precise insertion of target sequences and effectively reduce off-target effects. The introduction of this technology will make it easier and more efficient for us to capture target sequences. Cas12a (Cpf1) is a protein similar to Cas9. Its recognition genome PAM sequence is TTTN, and the cleavage site is far away from the recognition sequence, forming a sticky end, which provides an effective guarantee for precise editing of the target region (reference Zetsche B , Gootenberg J S, Abudayyeh O O, et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class2 CRISPR-Cas System [J]. CELL, 2015, 163(3): 759-771.). Through research, the inventors of the present invention creatively found that the target region of nucleic acid can be effectively edited by using the CRISPR/Cas12a system and lead editing, so as to capture it efficiently and accurately, and then effectively enrich the target region by means of PCR amplification , and finally perform high-throughput sequencing and analysis of the target region, which effectively reduces the cost of sequencing, improves the specificity and sensitivity of capture, and will have strong practicability in the fields of DNA detection.
利用CRISPR/Cas12a系统靶向富集核酸目标区域的方法,其根据核酸的目标区域分别的上游以及下游设计一对RNA序列(即第一RNA和第二RNA),第一RNA含有与所述目标区域的上游互补的第一互补序列,第二RNA含有与所述目标区域的下游互补的第二互补序列,这对RNA序列与Cas12a进行共孵育形成复合物;然后将核酸、逆转录酶、DTT以及dNTP加至复合物中进行孵育,并进行变性处理,即可以靶向性获得目标区域,而且进行PCR扩增,即可以使得目标区域获得富集,可用于后续高通量测序分析。本发明所提供的靶向富集核酸目标区域的方法与当前常用的杂交捕获靶向测序技术相比具有简便性、快捷、高灵敏性以及低成本等优势,能够在DNA序列分析、疾病监测等方面进行有效应用。The method of using the CRISPR/Cas12a system to target and enrich the nucleic acid target region, which designs a pair of RNA sequences (ie, the first RNA and the second RNA) according to the upstream and downstream of the target region of the nucleic acid respectively, the first RNA contains the target and The upstream complementary first complementary sequence of the region, the second RNA contains the second complementary sequence complementary to the downstream of the target region, and the RNA sequence is co-incubated with Cas12a to form a complex; then nucleic acid, reverse transcriptase, DTT And dNTPs are added to the complex for incubation and denaturation treatment, that is, the target region can be obtained in a targeted manner, and PCR amplification can enrich the target region, which can be used for subsequent high-throughput sequencing analysis. Compared with the currently commonly used hybrid capture targeted sequencing technology, the method for targeting and enriching nucleic acid target regions provided by the present invention has the advantages of simplicity, speed, high sensitivity, and low cost, and can be used in DNA sequence analysis, disease monitoring, etc. for effective application.
具体而言,本发明提供了如下技术方案:Specifically, the present invention provides the following technical solutions:
在本发明的第一方面,本发明提供了一种富集核酸目标区域的方法,包括:(1)针对所述核酸的目标区域,设计一组RNA序列,所述一组RNA序列包括第一RNA和第二RNA,所述第一RNA包括依次相连的第一启动子序列、Cas12a蛋白scaffold序列、第一sgRNA分子、第一插入序列和第一互补序列,所述第一sgRNA分子和所述第一互补序列均与所述目标区域的上游序列互补,所述第一sgRNA分子和所述核酸的一条链互补,所述第一互补序列和所述核酸的另一条链互补,所述第二RNA包括依次相连的第二启动子序列、Cas12a蛋白scaffold序列、第二sgRNA分子、第二插入序列和第二互补序列,所述第二sgRNA分子和所述第二互补序列均与所述目标区域的下游序列互补,所述第二sgRNA分子和所述核酸的一条链互补,所述第二互补序列和所述核酸的另一条链互补;(2)将所述一组RNA序列和Cas12a复合物混合,进行第一孵育,以便获得复合物;(3)将所述复合物、所述核酸、逆转录酶、变性剂和dNTP混合,进行第二孵育,所获得的孵育产物进行变性处理,以便获得变性产物;(4)去除所述变性产物中的RNA和蛋白质,进行PCR扩增,以便获得富集产物。本发明提供了一种利用CRISPR/Cas12a系统对所述核酸的目标区域进行富集的方法,该方法能够实现快捷、低成本、靶向富集核酸目标区域,所得到的富集序列可通过高通量测序等方法进行分析,从而可快速、低成本获得目标序列DNA信息,为后续的分析提供基础。In the first aspect of the present invention, the present invention provides a method for enriching a nucleic acid target region, comprising: (1) designing a set of RNA sequences for the target region of the nucleic acid, the set of RNA sequences including the first RNA and the second RNA, the first RNA includes the first promoter sequence, the Cas12a protein scaffold sequence, the first sgRNA molecule, the first insertion sequence and the first complementary sequence connected in sequence, the first sgRNA molecule and the The first complementary sequence is complementary to the upstream sequence of the target region, the first sgRNA molecule is complementary to one strand of the nucleic acid, the first complementary sequence is complementary to the other strand of the nucleic acid, and the second The RNA includes a second promoter sequence, a Cas12a protein scaffold sequence, a second sgRNA molecule, a second insertion sequence, and a second complementary sequence that are connected in sequence, and the second sgRNA molecule and the second complementary sequence are all related to the target region The downstream sequence of the nucleic acid is complementary, the second sgRNA molecule is complementary to one strand of the nucleic acid, and the second complementary sequence is complementary to the other strand of the nucleic acid; (2) combining the set of RNA sequences and the Cas12a complex Mixing, performing the first incubation, so as to obtain the complex; (3) mixing the complex, the nucleic acid, reverse transcriptase, denaturant and dNTP, performing the second incubation, and denaturing the obtained incubation product, so that Obtaining a denatured product; (4) removing RNA and protein in the denatured product, and performing PCR amplification, so as to obtain an enriched product. The present invention provides a method for enriching the target region of the nucleic acid by using the CRISPR/Cas12a system, which can achieve fast, low-cost, targeted enrichment of the target region of the nucleic acid, and the obtained enriched sequence can be obtained through high Through-put sequencing and other methods can be used for analysis, so that the DNA information of the target sequence can be obtained quickly and at low cost, providing a basis for subsequent analysis.
根据本发明的实施例,以上所述富集核酸目标区域的方法可以进一步包括如下技术特征:According to an embodiment of the present invention, the method for enriching a nucleic acid target region described above may further include the following technical features:
根据本发明的实施例,步骤(2)中所述第一孵育处理为在20~28摄氏度温度下孵育10~30分钟,优选在25摄氏度温度下孵育15分钟。According to an embodiment of the present invention, the first incubation treatment in step (2) is incubation at a temperature of 20-28 degrees Celsius for 10-30 minutes, preferably at a temperature of 25 degrees Celsius for 15 minutes.
根据本发明的实施例,步骤(3)中所述第二孵育处理为在35~40摄氏度条件下进行第二孵育,优选在37摄氏度条件下孵育1~2小时。According to an embodiment of the present invention, the second incubation treatment in step (3) is the second incubation at 35-40 degrees Celsius, preferably at 37 degrees Celsius for 1-2 hours.
根据本发明的实施例,所述第一启动子序列和所述第二启动子序列各自独立地选自T7启动子序列、U6启动子序列中的至少一种,优选地,所述第一启动子序列和所述第二启动子序列均为T7启动子序列。According to an embodiment of the present invention, the first promoter sequence and the second promoter sequence are each independently selected from at least one of a T7 promoter sequence and a U6 promoter sequence. Preferably, the first promoter Both the subsequence and the second promoter sequence are T7 promoter sequences.
根据本发明的实施例,步骤(1)中所述第一互补序列和所述目标区域的上游互补位置作为第一位置,所述第二互补序列和所述目标区域的下游互补位置作为第二位置,所述第一位置和所述第二位置的距离为100bp~300bp,优选为180~250bp。According to an embodiment of the present invention, the upstream complementary position of the first complementary sequence and the target region in step (1) is used as the first position, and the downstream complementary position of the second complementary sequence and the target region is used as the second position. position, the distance between the first position and the second position is 100bp-300bp, preferably 180-250bp.
根据本发明的实施例,步骤(4)中利用RNA酶去除所述RNA,利用蛋白酶K去除所述蛋白质。According to an embodiment of the present invention, in step (4), RNase is used to remove the RNA, and proteinase K is used to remove the protein.
根据本发明的实施例,利用RNA酶在37摄氏度温度下孵育10~20分钟,以便去除所述RNA;利用蛋白酶K在37摄氏度温度下孵育8-10小时,以便去除所述蛋白质。According to an embodiment of the present invention, RNase is used to incubate at 37 degrees Celsius for 10-20 minutes to remove the RNA; proteinase K is used to incubate at 37 degrees Celsius for 8-10 hours to remove the protein.
根据本发明的实施例,所述变性剂为DTT,优选地,所述变性剂的使用浓度为0.5~5mM,优选为1mM。According to an embodiment of the present invention, the denaturant is DTT, preferably, the denaturant is used at a concentration of 0.5-5 mM, preferably 1 mM.
根据本发明的实施例,在80~90摄氏度温度下处理10~20分钟,以便进行所述变性处理,优选在85摄氏度温度下处理15分钟。According to an embodiment of the present invention, the denaturing treatment is performed at a temperature of 80-90 degrees Celsius for 10-20 minutes, preferably at a temperature of 85 degrees Celsius for 15 minutes.
在本发明的第二方面,本发明提供了一种富集核酸目标区域的方法,包括:利用CRISPR/Cas12a系统对所述核酸的目标区域进行富集,所述CRISPR/Cas12a系统包括一组RNA序列和Cas12a蛋白,所述一组RNA序列包括第一RNA和第二RNA,所述第一RNA包括依次相连的第一启动子序列、Cas12a蛋白scaffold序列、第一sgRNA分子、第一插入序列和第一互补序列,所述第一互补序列与所述目标区域的上游序列互补,所述第一sgRNA分子和所述核酸的一条链互补,所述第一互补序列和所述核酸的另一条链互补,所述第二RNA包括相连的第二启动子序列、Cas12a蛋白scaffold序列、第二sgRNA分子、第二插入序列和第二互补序列,所述第二互补序列和所述目标区域的下游序列互补,所述第二sgRNA分子和所述核酸的一条链互补,所述第二互补序列和所述核酸的另一条链互补。本发明提供了一种利用CRISPR/Cas12a系统对所述核酸的目标区域进行富集的方法,该方法能够实现快捷、低成本、靶向富集核酸目标区域,所得到的富集序列可通过高通量测序等方法进行分析,从而可快速、低成本获得目标序列DNA信息,为后续的分析提供基础。In a second aspect of the present invention, the present invention provides a method for enriching a target region of a nucleic acid, comprising: enriching the target region of the nucleic acid using a CRISPR/Cas12a system, the CRISPR/Cas12a system comprising a set of RNA Sequence and Cas12a protein, described one group of RNA sequence comprises first RNA and second RNA, and described first RNA comprises first promoter sequence, Cas12a protein scaffold sequence, first sgRNA molecule, first insertion sequence and The first complementary sequence, the first complementary sequence is complementary to the upstream sequence of the target region, the first sgRNA molecule is complementary to one strand of the nucleic acid, the first complementary sequence is complementary to the other strand of the nucleic acid Complementary, the second RNA includes a connected second promoter sequence, Cas12a protein scaffold sequence, a second sgRNA molecule, a second insertion sequence and a second complementary sequence, the second complementary sequence and the downstream sequence of the target region Complementary, the second sgRNA molecule is complementary to one strand of the nucleic acid, and the second complementary sequence is complementary to the other strand of the nucleic acid. The present invention provides a method for enriching the target region of the nucleic acid by using the CRISPR/Cas12a system, which can achieve fast, low-cost, targeted enrichment of the target region of the nucleic acid, and the obtained enriched sequence can be obtained through high Through-put sequencing and other methods can be used for analysis, so that the DNA information of the target sequence can be obtained quickly and at low cost, providing a basis for subsequent analysis.
在本发明的第三方面,本发明提供了一种构建测序文库的方法,包括:采用本发明第一方面任一实施例所述的方法或者采用本发明第二方面所述的方法对所述核酸目标区域进行富集,以便获得所述富集产物;基于所述富集产物进行建库,以便获得测序文库。In the third aspect of the present invention, the present invention provides a method for constructing a sequencing library, comprising: using the method described in any embodiment of the first aspect of the present invention or using the method described in the second aspect of the present invention to Enriching the nucleic acid target region to obtain the enriched product; building a library based on the enriched product to obtain a sequencing library.
在本发明的第四方面,本发明提供了一种测序方法,包括:基于本发明第三方面所述的方法构建测序文库;基于所述测序文库进行测序,以便获得测序结果。In the fourth aspect of the present invention, the present invention provides a sequencing method, comprising: constructing a sequencing library based on the method described in the third aspect of the present invention; performing sequencing based on the sequencing library, so as to obtain a sequencing result.
本发明所取得的有益效果为:本发明提供了一种快捷、低成本、靶向富集的DNA目标区域的方法,与传统的液相杂交捕获相比,大大缩短了建库时间、降低了噪音、降低了成本,可以有效地适应高通量测序,为解析靶标DNA区域序列信息提供了一种良好的策略,进一步为基因检测、基因诊断等方面奠定了坚实基础。The beneficial effects obtained by the present invention are as follows: the present invention provides a fast, low-cost method for targeting enriched DNA target regions, which greatly shortens the time for building a library and reduces the It can effectively adapt to high-throughput sequencing, provide a good strategy for analyzing the sequence information of the target DNA region, and further lay a solid foundation for gene detection and gene diagnosis.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
图1为根据本发明的实施例提供的靶向富集核酸目标区域的方法示意图。Fig. 1 is a schematic diagram of a method for targeting and enriching a nucleic acid target region according to an embodiment of the present invention.
图2为根据本发明的实施例提供的对CRISPR/Cas12a酶切后原液进行PCR扩增的凝胶琼脂电泳图。Fig. 2 is a gel agar electrophoresis image of PCR amplification of the stock solution after CRISPR/Cas12a digestion provided according to an embodiment of the present invention.
图3为根据本发明的实施例提供的利用蛋白酶消化沉淀后产物的凝胶电泳图。Fig. 3 is a gel electrophoresis image of the precipitated product digested with protease according to an embodiment of the present invention.
图4为根据本发明的实施例提供的以目标DNA为模板进行PCR凝胶琼脂电泳图。Fig. 4 is an agar electrophoresis diagram of PCR gel using target DNA as a template according to an embodiment of the present invention.
图5为根据本发明的实施例提供的目标序列经TA克隆后的测序结果图。Fig. 5 is a diagram of the sequencing results after TA cloning of the target sequence provided according to an embodiment of the present invention.
具体实施方式Detailed ways
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below. The embodiments described below are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
本发明提供了一种富集核酸目标区域的方法,该方法通过对CRISPR/Cas12a系统进行改造,来实现核酸目标区域的靶向富集。所提供的CRISPR/Cas12a系统包括一组RNA序列和Cas12a蛋白,所述一组RNA序列包括第一RNA和第二RNA,所述第一RNA包括依次相连的第一启动子序列、Cas12a蛋白scaffold序列、第一sgRNA分子、第一插入序列和第一互补序列,所述第一sgRNA分子和所述第一互补序列均与所述目标区域的上游互补,所述第一sgRNA分子和所述核酸的一条链互补,所述第一互补序列和所述核酸的另一条链互补,所述第二RNA包括依次相连的第二启动子序列、Cas12a蛋白scaffold序列、第二sgRNA分子、第二插入序列和第二互补序列,所述第二sgRNA分子和所述第二互补序列均与所述目标区域的下游序列互补,所述第二sgRNA分子和所述核酸的一条链互补,所述第二互补序列和所述核酸的另一条链互补。利用该系统对核酸目标区域靶向的同时,同时能够与核酸目标区域进行互补结合,并借助于PCR扩增,能够实现目标区域的富集,所得序列可用于后续高通量测序分析。所提供的富集方法与当前常用的杂交捕获靶向测序技术相比具有简便性、快捷、高灵敏性以及低成本等优势,能够在DNA序列分析、疾病监测等方面进行有效应用。The present invention provides a method for enriching nucleic acid target regions. The method realizes targeted enrichment of nucleic acid target regions by modifying the CRISPR/Cas12a system. The provided CRISPR/Cas12a system comprises a set of RNA sequences and Cas12a protein, wherein said set of RNA sequences comprises a first RNA and a second RNA, and said first RNA comprises a first promoter sequence, a Cas12a protein scaffold sequence connected in sequence , the first sgRNA molecule, the first insertion sequence and the first complementary sequence, the first sgRNA molecule and the first complementary sequence are complementary to the upstream of the target region, the first sgRNA molecule and the nucleic acid One strand is complementary, the first complementary sequence is complementary to the other strand of the nucleic acid, and the second RNA includes a second promoter sequence, a Cas12a protein scaffold sequence, a second sgRNA molecule, a second insertion sequence and The second complementary sequence, the second sgRNA molecule and the second complementary sequence are complementary to the downstream sequence of the target region, the second sgRNA molecule is complementary to a strand of the nucleic acid, and the second complementary sequence Complementary to the other strand of the nucleic acid. While using this system to target nucleic acid target regions, it can also perform complementary binding with nucleic acid target regions, and by means of PCR amplification, the enrichment of target regions can be achieved, and the obtained sequences can be used for subsequent high-throughput sequencing analysis. Compared with the currently commonly used hybrid capture targeted sequencing technology, the enrichment method provided has the advantages of simplicity, speed, high sensitivity and low cost, and can be effectively applied in DNA sequence analysis and disease monitoring.
本文中,所提到的Cas12a蛋白scaffold序列用于与Cas12a蛋白结合。本文中所提到的第一sgRNA分子和第二sgRNA分子用于识别PAM序列,与核酸的一条链互补,用于核酸序列的切割。Herein, the mentioned Cas12a protein scaffold sequence is used for binding to Cas12a protein. The first sgRNA molecule and the second sgRNA molecule mentioned herein are used to recognize the PAM sequence, are complementary to one strand of nucleic acid, and are used to cut the nucleic acid sequence.
根据本发明的实施例,所提供的富集核酸目标区域的方法包括:针对所述核酸的目标区域,设计一组RNA序列,所述一组RNA序列包括第一RNA和第二RNA,所述第一RNA包括依次相连的第一启动子序列、Cas12a蛋白scaffold序列、第一sgRNA分子、第一插入序列和第一互补序列,所述第一插入序列和所述第一互补序列均与所述目标区域的上游序列互补,所述第一sgRNA分子和所述核酸的一条链互补,所述第一互补序列和所述核酸的另一条链互补,所述第二RNA包括相连的第二启动子序列、Cas12a蛋白scaffold序列、第二sgRNA分子、第二插入序列和第二互补序列,所述第二插入序列和所述第二互补序列均与所述目标区域的下游序列互补,所述第二sgRNA分子和所述核酸的一条链互补,所述第二互补序列和所述核酸的另一条链互补;(2)将所述一组RNA序列和Cas12a蛋白混合,进行第一孵育处理,以便获得复合物;(3)将所述复合物、所述核酸、逆转录酶、变性剂和dNTP混合,进行第二孵育处理,并进行变性处理,以便获得变性产物;(4)去除所述变性产物中的RNA和蛋白质,进行PCR扩增,以便获得富集产物。According to an embodiment of the present invention, the provided method for enriching a nucleic acid target region includes: designing a set of RNA sequences for the target region of the nucleic acid, the set of RNA sequences including a first RNA and a second RNA, the The first RNA includes the first promoter sequence, the Cas12a protein scaffold sequence, the first sgRNA molecule, the first insertion sequence and the first complementary sequence connected in sequence, and the first insertion sequence and the first complementary sequence are all compatible with the described first RNA. The upstream sequence of the target region is complementary, the first sgRNA molecule is complementary to one strand of the nucleic acid, the first complementary sequence is complementary to the other strand of the nucleic acid, and the second RNA includes a connected second promoter sequence, the Cas12a protein scaffold sequence, the second sgRNA molecule, the second insertion sequence and the second complementary sequence, the second insertion sequence and the second complementary sequence are complementary to the downstream sequence of the target region, the second The sgRNA molecule is complementary to one strand of the nucleic acid, and the second complementary sequence is complementary to the other strand of the nucleic acid; (2) mixing the set of RNA sequences and the Cas12a protein, and performing the first incubation treatment, so as to obtain Complex; (3) mixing the complex, the nucleic acid, reverse transcriptase, denaturant and dNTP, performing a second incubation treatment, and performing denaturation treatment, so as to obtain a denatured product; (4) removing the denatured product The RNA and protein in the sample were amplified by PCR in order to obtain enriched products.
具体地,可以参照图1所示,需要说明的是,图1中的第一RNA和第二RNA仅示出了部分序列,用于表征第一RNA和第二RNA与目标区域的上游和下游互补配对,并结合Cas12a蛋白,用于切割和扩增。Specifically, as shown in Figure 1, it should be noted that the first RNA and the second RNA in Figure 1 only show partial sequences, which are used to characterize the upstream and downstream of the first RNA and the second RNA and the target region Complementary pairing and binding to Cas12a protein for cleavage and amplification.
根据本发明的实施例,步骤(1)中所述第一互补序列和所述目标区域的上游序列互补位置作为第一位置,所述第二互补序列和所述目标区域的下游序列互补位置作为第二位置,所述第一位置和所述第二位置的距离为200bp。根据本发明的实施例,步骤(4)中利用RNA酶去除所述RNA,利用蛋白酶K去除所述蛋白质。根据本发明的实施例,利用RNA酶在37摄氏度温度下孵育10~20分钟,以便去除所述RNA。根据本发明的实施例,利用蛋白酶K在37摄氏度温度下孵育6小时,以便去除所述蛋白质。According to an embodiment of the present invention, the complementary position of the first complementary sequence and the upstream sequence of the target region in step (1) is taken as the first position, and the complementary position of the second complementary sequence and the downstream sequence of the target region is taken as The second position, the distance between the first position and the second position is 200bp. According to an embodiment of the present invention, in step (4), RNase is used to remove the RNA, and proteinase K is used to remove the protein. According to an embodiment of the present invention, RNase is used to incubate at a temperature of 37 degrees Celsius for 10-20 minutes, so as to remove the RNA. According to an embodiment of the present invention, proteinase K was used to incubate at a temperature of 37 degrees Celsius for 6 hours, so as to remove the protein.
所用到的变性剂可以为DTT,其中DTT的使用浓度可以为1mM(终浓度)。根据本发明的实施例,可以在80~90摄氏度温度下处理10~20分钟,以便进行所述变性处理,优选在85摄氏度温度下处理15分钟。The denaturant used may be DTT, wherein the concentration of DTT used may be 1 mM (final concentration). According to an embodiment of the present invention, the denaturing treatment may be performed at a temperature of 80-90 degrees Celsius for 10-20 minutes, preferably at a temperature of 85 degrees Celsius for 15 minutes.
下面将结合具体实施例对本发明的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。需要说明的是,本发明所列举的实施例仅为了说明本发明的应用性,并不限定本发明的应用范围,本领域技术人员在不偏离本发明主旨的情况下,可对本发明进行各种优化。The solutions of the present invention will be explained below in conjunction with specific embodiments. Those skilled in the art will understand that the following examples are only for illustrating the present invention and should not be considered as limiting the scope of the present invention. If no specific technique or condition is indicated in the examples, it shall be carried out according to the technique or condition described in the literature in this field or according to the product specification. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products. It should be noted that the embodiments listed in the present invention are only to illustrate the applicability of the present invention, and do not limit the scope of application of the present invention. optimization.
实施例1Example 1
实施例1具体提供了一种利用CRISPR/Cas12a系统靶向富集核酸目标区域的方法。Embodiment 1 specifically provides a method of using the CRISPR/Cas12a system to target and enrich nucleic acid target regions.
其中所用到的寡核苷酸序列如下表1所示,每个序列所对应的名称在后续步骤中均会有相应的介绍。The oligonucleotide sequences used are shown in Table 1 below, and the names corresponding to each sequence will be introduced in subsequent steps.
表1核苷酸序列Table 1 Nucleotide sequence
选择P27基因作为目标区域序列,通过设计靶向P27基因目标区域的sgRNA序列,对P27基因的目标区域进行富集,具体的实验步骤如下:Select the P27 gene as the target region sequence, and enrich the target region of the P27 gene by designing the sgRNA sequence targeting the target region of the P27 gene. The specific experimental steps are as follows:
1、用于靶向P27基因目标区域的sgRNA序列的制备1. Preparation of sgRNA sequence for targeting the target region of P27 gene
1)选定P27目标区域序列(如表1中SEQ ID NO:1所示),使用Chop-Chop在线sgRNA设计软件(http://chopchop.cbu.uib.no/)在目标区域的正义链和反义链上分别设计一条sgRNA。1) Select the target region sequence of P27 (as shown in SEQ ID NO: 1 in Table 1), and use Chop-Chop online sgRNA design software (http://chopchop.cbu.uib.no/) in the sense strand of the target region One sgRNA was designed on the antisense and antisense strands respectively.
2)利用软件设计靶向P27特异sgRNA,根据软件预测,选定评分值较高的两条sgRNA,所选择的两条sgRNA分子分别为(所示出的序列以DNA分子表示,代表与作为模板的核酸互补的序列):2) Use the software to design the specific sgRNA targeting P27, and according to the prediction of the software, select two sgRNAs with higher scores, and the two selected sgRNA molecules are (the sequences shown are represented by DNA molecules, representing and as templates Nucleic acid complementary sequence):
SgRNA1:TTCTTCTTCAGAACGGTTCAG(SEQ ID NO:11)sgRNA1: TTCTTTCTTCAGAACGGTTCAG (SEQ ID NO: 11)
SgRNA2:AGAGCAGACATTAGTTTTTCA(SEQ ID NO:12)sgRNA2: AGAGCAGACATTAGTTTTTCA (SEQ ID NO: 12)
将两条sgRNA的3’端均加上插入序列(如SEQ ID NO:9和SEQ ID NO:10所示)。Insertion sequences (as shown in SEQ ID NO:9 and SEQ ID NO:10) were added to the 3' ends of the two sgRNAs.
3)根据选定的sgRNA,设计pegRNA,具体的,在pegRNA从5’端到3’端分别为T7启动子序列(用于转录后面的sgRNA、Scaffold、插入序列以及结合位点PBS)、Cas12a蛋白scaffold序列(用于结合Cas12a)、sgRNA序列(用于切割目标序列)、插入序列(可作为通用接头序列,用于后续测序及验证是否成功插入)、结合位点序列(PBS)(也即所提到的第一互补序列或者第二互补序列,能够与目标区域的上游序列能够结合,便于插入序列的插入)。3) According to the selected sgRNA, design pegRNA, specifically, from the 5' end to the 3' end of the pegRNA are the T7 promoter sequence (for transcription of the following sgRNA, Scaffold, insertion sequence and binding site PBS), Cas12a Protein scaffold sequence (for binding to Cas12a), sgRNA sequence (for cutting target sequence), insertion sequence (can be used as a universal linker sequence for subsequent sequencing and verification of successful insertion), binding site sequence (PBS) (that is, The mentioned first complementary sequence or second complementary sequence can be combined with the upstream sequence of the target region to facilitate the insertion of the insertion sequence).
然后使用特异引物进行overlap以及PCR扩增,回收纯化后进行体外转录并纯化RNA,放于-80℃备用。Then use specific primers for overlap and PCR amplification, after recovery and purification, perform in vitro transcription and purification of RNA, and store at -80°C for later use.
其中在进行overlap以及PCR扩增时的扩增体系以及扩增程序如下表2和表3所示。其中表2中,3-Cas12a-pegRNA1/5-F分别用于合成目标序列上游的Cas12a蛋白Scoffold序列(即表1中SEQ ID NO:2所示)、用于合成目标序列下游的Cas12a蛋白Scoffold序列(即表1中SEQ ID NO:6所示),分别与对应的3-Cas12a-pegRNA1/5-R(分别如表1中SEQ ID NO:3以及SEQ ID NO:7所示)进行退火。Wherein, the amplification system and amplification program during overlap and PCR amplification are shown in Table 2 and Table 3 below. Wherein in Table 2, 3-Cas12a-pegRNA1/5-F is respectively used to synthesize the Cas12a protein Scoffold sequence upstream of the target sequence (i.e. shown in SEQ ID NO:2 in Table 1), and is used to synthesize the Cas12a protein Scoffold downstream of the target sequence Sequence (shown in SEQ ID NO:6 in table 1), respectively annealed with corresponding 3-Cas12a-pegRNA1/5-R (shown in SEQ ID NO:3 and SEQ ID NO:7 in table 1 respectively) .
p-sf-f(即表1中SEQ ID NO:4所示)是指用于扩增T7启动子序列的上游引物,3-Cas12a-pegRNA1/5-R2(分别如表1中SEQ ID NO:5以及SEQ ID NO:8所示)是用来扩增T7启动子序列的下游引物。经过PCR扩增后的产物用于体外转录获得pegRNA。p-sf-f (shown in SEQ ID NO:4 in table 1) refers to the upstream primer for amplifying the T7 promoter sequence, 3-Cas12a-pegRNA1/5-R2 (respectively as SEQ ID NO in table 1 : 5 and shown in SEQ ID NO: 8) are downstream primers used to amplify the T7 promoter sequence. The products amplified by PCR were used for in vitro transcription to obtain pegRNA.
表2 pegRNA PCR扩增体系Table 2 pegRNA PCR amplification system
表3 PCR程序Table 3 PCR program
对PCR扩增的产物进行回收(zymo D4010),然后利用Nanodrop 2000定量。配制表4的体外转录体系,在37摄氏度条件下过夜,进行体外转录。The PCR amplified product was recovered (zymo D4010), and then quantified using Nanodrop 2000. Prepare the in vitro transcription system in Table 4, and perform in vitro transcription at 37 degrees Celsius overnight.
表4体外转录体系Table 4 In vitro transcription system
所获得的转录产物中加入6μl Buffer和4μl DNase,在37摄氏度条件下温育30分钟,以便去除转录产物中的基因组,获得pegRNA1(对应目标序列P27上游sgRNA序列)和pegRNA5(对应目标序列P27下游sgRNA序列)。Add 6 μl Buffer and 4 μl DNase to the obtained transcript, and incubate at 37 degrees Celsius for 30 minutes to remove the genome in the transcript, and obtain pegRNA1 (corresponding to the target sequence P27 upstream sgRNA sequence) and pegRNA5 (corresponding to the target sequence P27 downstream sgRNA sequence).
最后使用NEB RNA纯化试剂盒对pegRNA进行纯化,Nanodrop定量后放于-80℃备用。Finally, pegRNA was purified using NEB RNA purification kit, quantified by Nanodrop and stored at -80°C for later use.
2、组装CRISPR/Cas12a-pegRNA复合物以及酶切目标区域2. Assemble the CRISPR/Cas12a-pegRNA complex and digest the target region
(1)制备CRISPR/Cas12a-pegRNA复合物(1) Preparation of CRISPR/Cas12a-pegRNA complex
将2μg Cas12a蛋白(NEB,40μl,1μM/μl=151ng/μl)以及2μg pegRNA1和pegRNA5加至250μl PCR管中,并加入6μl缓冲液NEB2.1Buffer以及4μl RNA抑制剂(RNA block),用H2O补至60μl,置于25℃孵育15min(使用PCR仪孵育)形成CRISPR/Cas12a-presgRNA复合物。Add 2 μg Cas12a protein (NEB, 40 μl, 1 μM/μl=151ng/μl) and 2 μg pegRNA1 and pegRNA5 to a 250 μl PCR tube, and add 6 μl buffer NEB2.1Buffer and 4 μl RNA inhibitor (RNA block), wash with H 2 Make up to 60 μl with O, and incubate at 25°C for 15 minutes (incubating with a PCR machine) to form a CRISPR/Cas12a-presgRNA complex.
(2)酶切(2) Digestion
将2μg P27 DNA、0.5mM dNTP、1mM DTT、4μl逆转录酶(本实验室自行纯化,ss3)、4μl缓冲液NEB2.1Buffer,用H2O补至80μl,最终形成100μl酶切体系,酶切反应为:37℃孵育120min、85℃15min,获得组装液。Add 2μg P27 DNA, 0.5mM dNTP, 1mM DTT, 4μl reverse transcriptase (purified by our laboratory, ss3), 4μl buffer NEB2.1Buffer to 80μl with H 2 O, and finally form a 100μl enzyme digestion system. The reaction is as follows: incubate at 37°C for 120 minutes and at 85°C for 15 minutes to obtain assembly solution.
以组装液为模板,按照表5和表6的富集体积以及程序进行PCR扩增,扩增结果如图2所示。其中M1是指DNA Ladder,是由11条线状双链DNA条带组成,片段由上至下依次为1500bp,1000bp,900bp,800bp,700bp,600bp,500bp,400bp,300bp,200bp,100bp;M2是指DL2000 DNA Marker,分子量分别为2000bp、1000bp、750bp、500bp、250bp以及100bp。图2中原始质粒作为阴性对照,是指表1中P27序列与T载体连接的产物,不经任何处理。Using the assembly solution as a template, PCR amplification was performed according to the enrichment volumes and programs in Table 5 and Table 6, and the amplification results are shown in Figure 2. Among them, M1 refers to DNA Ladder, which is composed of 11 linear double-stranded DNA strips. The fragments are 1500bp, 1000bp, 900bp, 800bp, 700bp, 600bp, 500bp, 400bp, 300bp, 200bp, 100bp from top to bottom; M2 Refers to DL2000 DNA Marker, the molecular weights are 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp. The original plasmid in Figure 2 is used as a negative control, which refers to the product of the connection of the P27 sequence in Table 1 and the T vector without any treatment.
表5 PCR富集体系Table 5 PCR enrichment system
表6 PCR富集程序Table 6 PCR enrichment program
3、进行RNA酶处理、蛋白酶K消化,异丙醇沉淀并对产物回收,进行琼脂凝胶电泳分离纯化目的DNA序列;3. Perform RNase treatment, proteinase K digestion, isopropanol precipitation and product recovery, and agar gel electrophoresis to separate and purify the target DNA sequence;
具体的,将4μl RNA酶处理加至上述产物中37℃孵育30min;对RNA酶处理后的产物中加入100μl 1×蛋白酶K Buffer(通用配方,用于缓冲蛋白酶K)和60μlProtein K进行37℃消化6h,优选的,消化条件为37℃、800rpm消化6h;对消化后的产物进行过树脂并进行异丙醇沉淀过夜。Specifically, add 4 μl of RNase treatment to the above product and incubate at 37°C for 30 minutes; add 100 μl of 1×Protease K Buffer (general formula for buffering proteinase K) and 60 μl of Protein K to the product after RNase treatment for digestion at 37°C 6h, preferably, the digestion condition is 37°C, 800rpm for 6h; the digested product is subjected to resin and isopropanol precipitation overnight.
将沉淀后的目标DNA产物进行2%琼脂凝胶电泳(见图3),验证是否有切割。图3为经蛋白酶消化沉淀后产物的凝胶电泳图,其中M1是指DNA Ladder,是由11条线状双链DNA条带组成,片段由上至下依次为1500bp,1000bp,900bp,800bp,700bp,600bp,500bp,400bp,300bp,200bp,100bp;M2是指DL2000 DNA Marker,分子量分别为2000bp、1000bp、750bp、500bp、250bp以及100bp。其中酶切后沉淀是指利用Cas12a酶切P27载体后经异丙醇沉淀后的片段,原始质粒作为阴性对照,是指表1中P27序列与T载体连接的产物,不经任何处理。由图3可知,经PCR扩增后得到了预期片段(603bp)并能发生有效切割。The precipitated target DNA product was subjected to 2% agarose gel electrophoresis (see FIG. 3 ) to verify whether there was cleavage. Figure 3 is the gel electrophoresis of the product after protease digestion and precipitation, where M1 refers to DNA Ladder, which is composed of 11 linear double-stranded DNA bands, and the fragments are 1500bp, 1000bp, 900bp, 800bp from top to bottom, 700bp, 600bp, 500bp, 400bp, 300bp, 200bp, 100bp; M2 refers to DL2000 DNA Marker, the molecular weights are 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp. Wherein, the precipitation after enzyme digestion refers to the fragment after digestion of the P27 vector by Cas12a and precipitation with isopropanol. The original plasmid, as a negative control, refers to the product of the connection of the P27 sequence in Table 1 to the T vector without any treatment. It can be seen from Fig. 3 that the expected fragment (603bp) was obtained after PCR amplification and effective cleavage could occur.
对上述琼脂凝胶电泳获得的目标DNA产物进行回收,并使用含测序接头的引物对回收的目标DNA产物进行PCR扩增富集(PCR扩增体系以及扩增条件参照上表5和表6所示),获得PCR产物。并进行凝胶电泳验证富集效果,其结果如图4所示。其中图4中M1是指DNALadder,是由11条线状双链DNA条带组成,片段由上至下依次为1500bp,1000bp,900bp,800bp,700bp,600bp,500bp,400bp,300bp,200bp,100bp;M2是指DL2000 DNA Marker,DNA分子量分别为2000bp、1000bp、750bp、500bp、250bp以及100bp。图4中沉淀后PCR均是指以上述图3中目标DNA回收后的产物为模板,进行PCR扩增的产物,与上述图3中目标DNA为同一产物,表明酶切后通过对组装液进行PCR即可富集目标区域。The target DNA product obtained by the above-mentioned agarose gel electrophoresis was recovered, and the recovered target DNA product was enriched by PCR amplification using primers containing sequencing adapters (refer to the above table 5 and table 6 for the PCR amplification system and amplification conditions. shown) to obtain PCR products. The enrichment effect was verified by gel electrophoresis, and the results are shown in Figure 4. M1 in Figure 4 refers to DNA Ladder, which is composed of 11 linear double-stranded DNA strips, and the fragments are 1500bp, 1000bp, 900bp, 800bp, 700bp, 600bp, 500bp, 400bp, 300bp, 200bp, 100bp from top to bottom ; M2 refers to DL2000 DNA Marker, DNA molecular weights are 2000bp, 1000bp, 750bp, 500bp, 250bp and 100bp respectively. PCR after precipitation in Figure 4 all refers to the product of PCR amplification using the product recovered from the target DNA in Figure 3 above as a template, which is the same product as the target DNA in Figure 3 above, indicating that after enzyme digestion, the assembly solution was processed PCR can enrich the target region.
取所获得的PCR产物进行TA克隆(5min TA/Blunt-Zero Cloning Kit,C601-01),连接条件,置于PCR仪25℃孵育10min,将连接产物进行快转至Fast-T1 competent cell感受态(诺维赞,C505-02),涂板37℃过夜,挑单克隆使用Sanger测序法检测目标序列是否被富集捕获以及正确插入(如图5所示)。Take the obtained PCR product for TA cloning (5min TA/Blunt-Zero Cloning Kit, C601-01), ligation conditions, incubate at 25°C for 10min in a PCR machine, and quickly transfer the ligation product to Fast-T1 competent cell (Novizan, C505-02), plate overnight at 37°C, pick a single clone and use Sanger sequencing to detect whether the target sequence is enriched and captured and inserted correctly (as shown in Figure 5).
图5为相应的测序结果。经研究表明,预期序列(即利用插入序列RT1和RT2)能够正确插入并能捕获和富集目标区域,表明所得产物可用于目标区域富集及高通量测序。Figure 5 shows the corresponding sequencing results. Studies have shown that the expected sequence (that is, using the insertion sequence RT1 and RT2) can be correctly inserted and can capture and enrich the target region, indicating that the obtained product can be used for target region enrichment and high-throughput sequencing.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, descriptions with reference to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 广西扬翔股份有限公司<110> Guangxi Yangxiang Co., Ltd.
华中农业大学Huazhong Agricultural University
<120> 利用CRISPR/Cas12a系统靶向富集核酸目标区域的方法及其应用<120> The method and application of using CRISPR/Cas12a system to target and enrich the target region of nucleic acid
<130> PIDC3196816<130> PIDC3196816
<160> 12<160> 12
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 660<211> 660
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> P27<223> P27
<400> 1<400> 1
actgtaacgc agcacagctg aaccgttctg aagaagaaga aagttaatag cagatgccga 60actgtaacgc agcacagctg aaccgttctg aagaagaaga aagttaatag cagatgccga 60
taccacaaga tcagccgtag tgatagaccc cacgtaatcc gtgtcccaac taatataaaa 120taccacaaga tcagccgtag tgatagaccc cacgtaatcc gtgtcccaac taatataaaa 120
ttctcttgct ctggatacgt taatatgacc actgggttgg tattcctccc gtggcttcaa 180ttctcttgct ctggatacgt taatatgacc actgggttgg tattcctccc gtggcttcaa 180
agcaaaggta atcatcatcg cacccggatc atcgggggtt ttaatcgcat tgcctccgta 240agcaaaggta atcatcatcg cacccggatc atcgggggtt ttaatcgcat tgcctccgta 240
gtggaagggt atgtaagagc tgcagaactt tgatggaaat ttatcgataa gattgatacc 300gtggaagggt atgtaagagc tgcagaactt tgatggaaat ttatcgataa gattgatacc 300
atgagcagtt acggaaatgt ttttaataat aggtaatgtg atcggatacg taacggggct 360atgagcagtt acggaaatgt ttttaataat aggtaatgtg atcggatacg taacggggct 360
aatatcagat atagatgaac atgcgtctgg aagagctgta tctctatcct gaaagcttat 420aatatcagat atagatgaac atgcgtctgg aagagctgta tctctatcct gaaagcttat 420
ctctgcgtgg tgagtgggct gcataatggc gttaacaaca tgtccgaact tgtgccaatc 480ctctgcgtgg tgagtgggct gcataatggc gttaacaaca tgtccgaact tgtgccaatc 480
tcggtgttga tgaggatttt gatcggagat gttccaggta ggttttaatc ctataaacat 540tcggtgttga tgaggatttt gatcggagat gttccaggta ggttttaatc ctataaacat 540
atattcaatg ggccacttaa gagcagacat tagtttttca tcgtggtggt tataatctct 600atattcaatg ggccacttaa gagcagacat tagtttttca tcgtggtggt tataatctct 600
agaggatccc cgggtaccga gctcgaattc gtaatcatgg tcatagctgt ttcctgtgtg 660agaggatccc cgggtaccga gctcgaattc gtaatcatgg tcatagctgt ttcctgtgtg 660
<210> 2<210> 2
<211> 57<211> 57
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 3-Cas12a-pegRNA1-F<223> 3-Cas12a-pegRNA1-F
<400> 2<400> 2
ggatcctaat acgactcact atagaatttc tactgttgta gatttcttct tcagaac 57ggatcctaat acgactcact atagaatttc tactgttgta gatttcttct tcagaac 57
<210> 3<210> 3
<211> 55<211> 55
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 3-Cas12a-pegRNA1-R<223> 3-Cas12a-pegRNA1-R
<400> 3<400> 3
cagaacggtt cagctacacg ctggtgcgat tccctgaacc gttctgaaga agaaa 55cagaacggtt cagctacacg ctggtgcgat tccctgaacc gttctgaaga agaaa 55
<210> 4<210> 4
<211> 21<211> 21
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> p-sg-f<223> p-sg-f
<400> 4<400> 4
ggatcctaat acgactcact a 21ggatcctaat acgactcact a 21
<210> 5<210> 5
<211> 21<211> 21
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 3-Cas12a-pegRNA1-R2<223> 3-Cas12a-pegRNA1-R2
<400> 5<400> 5
cagaacggtt cagctacacg c 21cagaacggtt cagctacacg c 21
<210> 6<210> 6
<211> 59<211> 59
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 3-Cas12a-pegRNA5-F<223> 3-Cas12a-pegRNA5-F
<400> 6<400> 6
ggatcctaat acgactcact atagaatttc tactgttgta gatagagcag acattagtt 59ggatcctaat acgactcact atagaatttc tactgttgta gatagagcag acattagtt 59
<210> 7<210> 7
<211> 53<211> 53
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 3-Cas12a-pegRNA5-R<223> 3-Cas12a-pegRNA5-R
<400> 7<400> 7
cattagtttt tcatccactg cggctcctca tcctgaaaaa ctaatgtctg ctc 53cattagtttt tcatccactg cggctcctca tcctgaaaaa ctaatgtctg ctc 53
<210> 8<210> 8
<211> 21<211> 21
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> 3-Cas12a-pegRNA5-R2<223> 3-Cas12a-pegRNA5-R2
<400> 8<400> 8
cattagtttt tcatccactg c 21cattagtttt tcatccactg c 21
<210> 9<210> 9
<211> 18<211> 18
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> RT1-F<223> RT1-F
<400> 9<400> 9
ggaatcgcac cagcgtgt 18ggaatcgcac cagcgtgt 18
<210> 10<210> 10
<211> 18<211> 18
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> RT2-R<223> RT2-R
<400> 10<400> 10
ggatgaggag ccgcagtg 18ggatgaggag ccgcagtg 18
<210> 11<210> 11
<211> 21<211> 21
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> SgRNA1<223> sgRNA1
<400> 11<400> 11
ttcttcttca gaacggttca g 21ttcttcttca gaacggttca g 21
<210> 12<210> 12
<211> 21<211> 21
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> SgRNA2<223> sgRNA2
<400> 12<400> 12
agagcagaca ttagtttttc a 21agagcagaca ttagtttttc a 21
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010146552.9A CN113355389B (en) | 2020-03-05 | 2020-03-05 | Method and application of targeted enrichment nucleic acid target region using CRISPR/Cas12a system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010146552.9A CN113355389B (en) | 2020-03-05 | 2020-03-05 | Method and application of targeted enrichment nucleic acid target region using CRISPR/Cas12a system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113355389A CN113355389A (en) | 2021-09-07 |
CN113355389B true CN113355389B (en) | 2022-11-15 |
Family
ID=77523632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010146552.9A Active CN113355389B (en) | 2020-03-05 | 2020-03-05 | Method and application of targeted enrichment nucleic acid target region using CRISPR/Cas12a system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113355389B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201916379D0 (en) * | 2019-11-11 | 2019-12-25 | Biocrucible Ltd | Biochemical reaction methods and reagents |
AU2018383712A1 (en) * | 2017-12-11 | 2020-07-02 | Editas Medicine, Inc. | Cpf1-related methods and compositions for gene editing |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210301269A1 (en) * | 2020-01-22 | 2021-09-30 | New York Genome Center, Inc. | Recombinant crispr-cas9 nucleases with altered pam specificity |
-
2020
- 2020-03-05 CN CN202010146552.9A patent/CN113355389B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018383712A1 (en) * | 2017-12-11 | 2020-07-02 | Editas Medicine, Inc. | Cpf1-related methods and compositions for gene editing |
GB201916379D0 (en) * | 2019-11-11 | 2019-12-25 | Biocrucible Ltd | Biochemical reaction methods and reagents |
Non-Patent Citations (3)
Title |
---|
Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering;Teng-Kuei Huang等;《Transgenic Res》;20210301;第30卷;第529-549页 * |
Search-and-replace genome editing without double-strand breaks or donor DNA;Andrew V Anzalone等;《Nature》;20191021;第576卷(第7785期);第149-157页 * |
植物基因组编辑新工具——引导编辑技术;杜秋丽等;《生物工程学报》;20220125;第38卷(第01期);第26-33页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113355389A (en) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240352507A1 (en) | Method for increasing throughput of single molecule sequencing by concatenating short dna fragments | |
US9745614B2 (en) | Reduced representation bisulfite sequencing with diversity adaptors | |
US9598728B2 (en) | Method for relative quantification of nucleic acid sequence, expression, or copy changes, using combined nuclease, ligation, and polymerase reactions | |
CN103898199B (en) | A kind of high-throughput nucleic acid analysis method and application thereof | |
EP4090766B1 (en) | Methods of targeted sequencing | |
JP7641118B2 (en) | Probes and methods for enriching target regions using same for high-throughput sequencing | |
WO2018024082A1 (en) | Method for constructing serially-connected rad tag sequencing libraries | |
JP7539770B2 (en) | Sequencing methods for detecting genomic rearrangements | |
CN110607356B (en) | Genome editing detection method, kit and application | |
CN112626173B (en) | RNA library construction method | |
WO2017215517A1 (en) | Method for removing 5' and 3' linker connection by-products in sequencing library construction | |
WO2019090621A1 (en) | Hooked probe, method for ligating nucleic acid and method for constructing sequencing library | |
WO2020177012A1 (en) | Nucleic acid sequence for direct rna library construction, method for directly constructing sequencing library based on rna samples, and use thereof | |
CN118562933A (en) | Library construction method combining low-depth whole genome sequencing and targeted sequencing | |
CN113355389B (en) | Method and application of targeted enrichment nucleic acid target region using CRISPR/Cas12a system | |
US20180100180A1 (en) | Methods of single dna/rna molecule counting | |
WO2018232594A1 (en) | Pcr primer pair and application thereof | |
CN113667714A (en) | Target area capturing method, kit and sequencing method | |
WO2023060539A1 (en) | Compositions and methods for detecting target cleavage sites of crispr/cas nucleases and dna translocation | |
CN115927540A (en) | Construction method of small RNA high-throughput sequencing library based on splint connection | |
CN105154567A (en) | Method for researching RNA combined with target protein based on high-throughput sequencing | |
CN108676847A (en) | The preparation method and kit of the capture probe of large fragment genome | |
CN115852494A (en) | Construction method of target sequencing library | |
CN117721178A (en) | Method and kit for constructing microorganism sequencing library based on DSN | |
CN119331953A (en) | A method for removing ribosomal RNA (rRNA) from total RNA and a kit thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |