CN113355345A - Method for integrating exogenous sequence into genome - Google Patents

Method for integrating exogenous sequence into genome Download PDF

Info

Publication number
CN113355345A
CN113355345A CN202010152728.1A CN202010152728A CN113355345A CN 113355345 A CN113355345 A CN 113355345A CN 202010152728 A CN202010152728 A CN 202010152728A CN 113355345 A CN113355345 A CN 113355345A
Authority
CN
China
Prior art keywords
site
sequence
gene
ala
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010152728.1A
Other languages
Chinese (zh)
Other versions
CN113355345B (en
Inventor
尹进
张倩
董一名
李腾
张浩千
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Blue Crystal Biotechnology Co ltd
Original Assignee
Shenzhen Blue Crystal Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Blue Crystal Biotechnology Co ltd filed Critical Shenzhen Blue Crystal Biotechnology Co ltd
Priority to CN202010152728.1A priority Critical patent/CN113355345B/en
Publication of CN113355345A publication Critical patent/CN113355345A/en
Application granted granted Critical
Publication of CN113355345B publication Critical patent/CN113355345B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides a method for integrating exogenous sequences into a genome. The method comprises the following steps: 1) inserting an attB site corresponding to a site-specific recombinase Bxb1 into the genome of the Eubacterium rolfsii to construct a recombinant Eubacterium rolfsii with an attB sequence integrated on the genome; 2) constructing a recombinant vector containing an exogenous sequence, a site-specific recombinase Bxb1 gene and an attP sequence corresponding to the site-specific recombinase Bxb 1; 3) transferring the recombinant vector constructed in the step 2) into the recombinant Rogowski eubacterium constructed in the step 1), and mediating recombination between attB and attP sequences by using the site-specific recombinase Bxb1, thereby integrating the recombinant vector into the genome of the recombinant Rogowski eubacterium.

Description

Method for integrating exogenous sequence into genome
Technical Field
The invention belongs to the technical field of biology, and relates to a method for integrating a foreign sequence into a genome, in particular to a gene insertion method based on a site-specific recombinase, which is suitable for an oxygen bacterium rolfsii.
Background
The eubacterium rolfsii (Ralstonia eutropha, also called cupriavidius dicator) is an important model bacterium for researching the synthesis of PHA (polyhydroxyalkanoate), which is a completely degradable bio-based material, and has the potential to be used as a strain for PHA industrial production.
The existing gene editing technical means of the eubacterium rolfsii is based on homologous recombination taking suicide plasmid as a vector. The suicide plasmid contains R6K gamma replicon which can not replicate in the eubacterium rolfsii, resistance gene and DNA sequence (called homology arm) for homologous recombination, and the sequence of the homology arm can be freely designed according to the gene site needing editing. After the suicide plasmid is transferred into the oxygen bacterium rochei, homologous recombination occurs between a homologous arm sequence on the suicide plasmid vector and the same sequence on a genome under the selective pressure of antibiotics, so that site-directed gene editing is realized. In addition, a gene editing method based on CRISPR/Cas9 has been developed in Eubacterium rolfsii, the principle is also homologous recombination, and the selection pressure is changed to that the Cas9 protein is used for site-specific Genome cutting (Xiong, B., Li, Z., Liu, L., ZHao, D., Zhang, X., Bi, C.,2018.Genome editing of Ralstonia eutropha usage an electrophoresis-based CRISPR-Cas9technique. Biotechnol. Biofuels.11: 172).
Homologous recombination is the recombination that occurs between non-sister chromatids or between or within DNA molecules containing homologous sequences on the same chromosome. Homologous recombination relies on the presence of homologous regions or sequences, where DNA strand breaks are random, exposing sequences that bind to a range of proteins (e.g., RecA in prokaryotic cells, and Rad51 in eukaryotic cells, etc.), ultimately allowing cross-recombination between or within DNA molecules. However, the length of the integrated exogenous sequence is limited by the random sequence fragmentation and the recombination system of the underpinning microorganism, and in addition, homologous regions (such as the length and the position of the homologous sequence) need to be optimized to achieve better gene editing effect.
Although homologous recombination can theoretically realize gene knockout, insertion and replacement, in practical application, the larger the inserted fragment is, the smaller the gene insertion efficiency is, and the application in scenes such as large fragment gene insertion of multiple gene lines, complex metabolic pathways and the like is limited.
In contrast, site-specific recombination, during recombination, relies not on the homology of the DNA sequences (although partly on the short homologous sequences) but on the presence of short DNA sequences capable of binding to certain enzymes, and the cleavage and religation of the DNA strands occurs under the action of these recombinases with high efficiency and specificity. Therefore, the site specificity is realized, the high specificity and the high conservation of the recombination are ensured, and the efficiency of the site-specific recombination is superior to that of a homologous recombination method depending on proteins such as RecA and the like.
The site-specific recombination system has the advantages of high efficiency, controllability, accuracy, rapidness, strong specificity, good element orthogonality and the like, has wide application prospect, and can be applied to gene editing and genetic engineering operation. The system is derived from a bacteriophage which inserts its DNA into the chromosome of a host bacterium when infecting the bacterium and replicates and divides in synchrony with the host, and this process requires site-specific recombinases within the phage to recognize specific "recognition sites" - "attP" and "attB" (attP and attB are present in the phage and host chromosome respectively). The recombinase mediates recombination between the two sequences attP and attB, which inserts the phage DNA into the host bacterium chromosome, and the original attP and attB sequences form two new sequences "attL" and "attR" on the chromosome. As a tool, the site-specific recombination system consists of a recognition site/sequence of integrase and integrase that recognizes DNA sequences and mediates DNA recombination. By changing the position and sequence orientation of the recognition sites of the recombinase, the site-specific recombinase can serve as a tool enzyme for inserting a specific sequence into a DNA strand or deleting or inverting a specific sequence from a DNA strand, and thus is widely used for any incision-making cutting and suturing operation (recombination of DNA fragments) in various underplate microorganisms.
Site-specific recombination-based systems have been applied to various microorganisms, even eukaryotic cells, including E.coli, Bacillus, Saccharomyces cerevisiae, T cells, and even embryonic stem cells, and are widely used for integration of foreign genes, production of natural products, gene therapy, and the like. For example, integration of a 34kb sized metabolic pathway in the E.coli genome for alginate degradation and ethanol production can be achieved using integrase as a gene editing tool (Christine Nicole S. Santos., draw D. Regitsky., and Yasuo Yoshikuni.,2013. augmentation of stable and complex biological systems through restriction enzyme engineering. Nature communications.4: 2503).
In conclusion, the existing gene editing technical means of the eubacterium rolfsii is based on homologous recombination taking suicide plasmids as vectors and a gene editing method based on CRISPR/Cas 9. Homologous recombination and gene editing methods of CRISPR/Cas9 become less efficient at inserting genes as the insert becomes longer. The site-specific recombinase can realize efficient long fragment insertion, and the site-specific recombinase and related tools thereof available in the eubacterium rolfsii are not available at present.
Disclosure of Invention
Aiming at the defects of the prior art, the inventor develops a gene insertion method based on site-specific recombinase suitable for the Roche bacteria, and perfects the Roche bacteria gene editing technology by adding the existing homologous recombination technology.
Accordingly, in one aspect, the present invention provides a method for inserting a gene based on a site-specific recombinase into eubacterium rolfsii, comprising the steps of:
1) inserting an attB site corresponding to a site-specific recombinase Bxb1 into the genome of the Eubacterium rolfsii to construct a recombinant Eubacterium rolfsii with an attB sequence integrated on the genome;
2) constructing a recombinant vector containing an exogenous sequence, a site-specific recombinase Bxb1 gene and an attP sequence corresponding to the site-specific recombinase Bxb 1;
3) transferring the recombinant vector constructed in the step 2) into the recombinant Rogowski eubacterium constructed in the step 1), and mediating recombination between attB and attP sequences by using the site-specific recombinase Bxb1, thereby integrating the recombinant vector into the genome of the recombinant Rogowski eubacterium.
By the method, the exogenous sequence (DNA fragment) and the vector can be integrated on the genome of the recombinant bacterium. In practice, it is preferred that the vector portion other than the DNA fragment to be integrated be deleted as necessary.
Therefore, the method for inserting a gene based on a site-specific recombinase suitable for Eubacterium rolfsii of the present invention preferably comprises the steps of:
a) inserting an attB site corresponding to a site-specific recombinase Bxb1 into the genome of the Eubacterium rolfsii to construct a recombinant Eubacterium rolfsii with an attB sequence integrated on the genome;
b) constructing a recombinant vector containing a VCre recombinase gene;
c) constructing a recombinant vector containing an exogenous sequence, a site-specific recombinase Bxb1 gene, attP sequence corresponding to the site-specific recombinase Bxb1, and 2 VloxP sequences capable of being specifically recognized by VCre recombinase in step b), wherein the exogenous sequence and the attP sequence are between the 2 VloxP sequences, and the site-specific recombinase Bxb1 gene is not between the 2 VloxP sequences;
d) transferring the recombinant vector constructed in the step c) into the recombinant Rogowski bacterium constructed in the step a), and mediating recombination between attB and attP sequences by using the site-specific recombinase Bxb1, thereby integrating the recombinant vector into the genome of the recombinant Rogowski bacterium;
e) transferring the recombinant vector constructed in the step b) into the recombinant bacterium integrated with the recombinant vector on the genome obtained in the step d), so as to delete the skeleton part of the recombinant vector from the genome.
In step 1) or a) of the process according to the invention, the said Eubacterium rolfsii may also be another bacterium of the genus Ralstonia. Preferably, the eubacterium rolfsii may be Ralstonia eutropha H16.
In step 2) or c) of the method of the present invention, preferably, the recombinant vector may be a plasmid vector incapable of replication in Eubacterium rolfsii, such as a suicide plasmid. Preferably, the backbone portion of the recombinant vector comprises a replicon capable of replicating in E.coli (e.g., S17-1) but incapable of replicating in Eubacterium rolfsii, preferably the replicon is one or more selected from the group consisting of a pMB1 replicon, a pUC replicon, a p15a replicon and a R6K γ replicon, more preferably the replicon is a pMB1 replicon. Preferably, the backbone portion of the recombinant vector further comprises a selectable marker gene, such as an antibiotic resistance gene; more preferably, the backbone portion of the recombinant vector further comprises an antibiotic resistance gene, particularly, the antibiotic resistance gene is one or more selected from the group consisting of a kanamycin resistance gene, a tetracycline resistance gene, a streptomycin resistance gene, and a spectinomycin resistance gene, and more particularly, the antibiotic resistance gene is a kanamycin resistance gene. More preferably, the plasmid vector may be derived from the plasmid pK18 mobsacB.
In step b) of the method of the present invention, preferably, the recombinant vector may be a plasmid vector capable of replicating in Eubacterium rolfsii. Preferably, the backbone portion of the recombinant vector comprises a replicon capable of replicating both in E.coli (e.g., S17-1) and in Eubacterium rolfsii, preferably the replicon is one or more selected from the group consisting of a pBBR1 replicon, an SC101 replicon, and a RK2 replicon, more preferably the replicon is a pBBR1 replicon. Preferably, the backbone portion of the recombinant vector further comprises a selectable marker gene, such as an antibiotic resistance gene; more preferably, the backbone portion of the recombinant vector further comprises an antibiotic resistance gene, preferably, the antibiotic resistance gene is one or more selected from the group consisting of kanamycin resistance gene, tetracycline resistance gene, streptomycin resistance gene, and spectinomycin resistance gene, and more preferably, the antibiotic resistance gene is kanamycin and spectinomycin resistance gene. More preferably, the plasmid vector may be derived from plasmid pBBR1MCS 2.
In step 1) or a) of the method of the present invention, preferably, the sequence of attB site corresponding to the site specific recombinase Bxb1 is shown as SEQ ID NO. 10.
In step 2) or c) of the method of the present invention, there are no particular requirements or restrictions on the exogenous sequence. For example, the length of the foreign sequence may be 1,000,000bp or less, preferably 100,000bp or less.
In step 2) or c) of the method of the present invention, preferably, the amino acid sequence of the site-specific recombinase Bxb1 gene is shown as SEQ ID NO. 20.
In step 2) or c) of the method of the present invention, preferably, the nucleotide sequence of the site-specific recombinase Bxb1 gene is shown as SEQ ID NO. 21.
In step 2) or c) of the method of the present invention, preferably, the attP sequence corresponding to the site-specific recombinase Bxb1 is shown as SEQ ID NO. 22.
In step b) of the method of the present invention, preferably, the amino acid sequence of the VCre recombinase is shown in SEQ ID NO 42.
In step b) of the method of the present invention, preferably, the nucleotide sequence of the VCre recombinase is represented by SEQ ID NO 41.
In step c) of the method of the present invention, preferably, said VloxP sequence is represented by SEQ ID NO: 44.
In step 3) of the method of the present invention, preferably, the recombinant vector is transferred into escherichia coli (e.g., S17-1), and then transferred into recombinant rhodobacter rolfsii by a conjugative transformation method, and the recombinant rhodobacter rolfsii having the recombinant vector integrated on its genome is selected by using a selection marker, using the property that the suicide plasmid cannot replicate in the host bacterium.
Further preferably, step 1) or a) of the method of the invention can be carried out using methods known in the art (Xiong, B., Li, Z., Liu, L., ZHao, D., Zhang, X., Bi, C.,2018.Genome editing of Ralstonia eutropha usage an electrophoresis-based CRISPR-case 9technique. Biotechnol. Biofuels.11: 172). For example, a suicide plasmid in which attB site is located between two homologous fragments and cannot be replicated in a Roche mycorrhizal fungi is constructed, the suicide plasmid is transferred into the Roche mycorrhizal fungi, and a recombinant Roche mycorrhizal fungi integrated with attB sequence is obtained by screening by utilizing the characteristic that the suicide plasmid cannot be replicated in a host bacterium. In particular, step 1 or a) of the process of the invention comprises the following steps: carrying out PCR amplification by using SEQ ID NO 1 and SEQ ID NO 2 as primers and a Ralstonia eutropha H16 genome as a template to obtain homologous fragments H1 and H2, carrying out PCR amplification by using SEQ ID NO 3 and SEQ ID NO 4 as primers and a plasmid pK18mobsacB as a template to obtain a carrier fragment, carrying out amplification by using SEQ ID NO 7 and SEQ ID NO 8 as primers and a SEQ ID NO 9 as a template to obtain a fragment containing an attB sequence corresponding to Bxb1, and connecting the H1, H2 and attB sequence with the carrier fragment by a Gibson Assemby method, wherein the attB site is positioned between the two homologous fragments H1 and H2 to obtain a recombinant plasmid pK18mobsacB-Bxb 1; transferring the recombinant plasmid pK18mobsacB-Bxb1 into escherichia coli S17-1, transferring the recombinant plasmid into Ralstonia eutropha H16 by a joint transformation method, screening a positive clone by using an LB (Langmuir-Blodgett) plate simultaneously containing kanamycin and apramycin by utilizing the characteristic that a suicide plasmid cannot be copied in host bacteria, and integrating the recombinant plasmid with a homologous fragment in the positive clone into specific positions of H1 and H2 on a genome to obtain a first homologous recombinant bacterium; the first homologous recombinant strain is subjected to single clone culture on an LB plate containing cane sugar, clones without kanamycin resistance are screened from the single clones, and a recombinant strain with an attB sequence of Bxb1 integrated into a genome is identified, wherein the obtained recombinant strain is Ralstonia eutropha Bxb 1-attB.
Further preferably, step 2) of the process of the invention comprises the following steps: PCR amplification is carried out by taking SEQ ID NO 5 and SEQ ID NO 6 as primers and plasmid pK18mobsacB as a template to obtain a vector fragment, amplification is carried out by taking SEQ ID NO 9and SEQ ID NO 10 as primers and SEQ ID NO 19 as a template to obtain a fragment containing Bxb1 recombinase gene and corresponding attP sequence, and the fragment is connected with the vector fragment by a Gibson Assembly method to obtain recombinant plasmid pBxb 1-attP.
Further preferably, step 3) of the method of the invention comprises the following steps: transferring the recombinant plasmid pBxb1-attP into escherichia coli (such as S17-1), transferring the recombinant plasmid pBxb1-attP into Ralstonia eutropha Bxb1-attB by a conjugative transformation method, and screening by using a screening marker to obtain the recombinant eubacterium rolfsii with the recombinant vector integrated on a genome by utilizing the characteristic that a suicide plasmid cannot be replicated in host bacteria.
Further preferably, step b) of the process of the invention comprises the following steps: PCR amplification is carried out by using SEQ ID NO. 36 and SEQ ID NO. 37 as primers and plasmid pBBR1MCS2 as a template to obtain a replicon fragment; amplifying by using SEQ ID NO 38 and SEQ ID NO 39 as primers and SEQ ID NO 40 as a template to obtain a DNA fragment, wherein the DNA fragment contains a VCre recombinase gene, a kanamycin resistance gene and a spectinomycin resistance gene; the fragment was ligated to the replicon fragment by the Gibson Assembly method to obtain a recombinant plasmid pVCre.
Further preferably, step c) of the process of the invention comprises the following steps: PCR amplification is carried out by using SEQ ID NO. 5 and SEQ ID NO. 6 as primers and plasmid pK18mobsacB as a template to obtain a vector fragment; obtaining a fragment containing Bxb1 recombinase gene and corresponding attP sequence, a foreign gene to be integrated and 2 VloxP sequences which can be specifically recognized by VCre recombinase, and connecting the fragment with a vector fragment by a Gibson Assembly method to obtain a recombinant plasmid. Specifically, for example, the exogenous gene is GFP, the step c) of the method of the present invention comprises the following steps: PCR amplification is carried out by using SEQ ID NO. 5 and SEQ ID NO. 6 as primers and plasmid pK18mobsacB as a template to obtain a vector fragment; amplifying by using SEQ ID NO. 17 and SEQ ID NO. 18 as primers and SEQ ID NO. 43 as a template to obtain a DNA fragment containing Bxb1 recombinase gene and corresponding attP sequence, a foreign Gene (GFP) to be integrated and 2 VloxP sequences capable of being specifically recognized by VCre recombinase; the fragments were ligated to the vector fragment by the Gibson Assembly method to give the recombinant plasmid pBxb 1-attP-VCre.
Further preferably, step d) of the process according to the invention comprises the following steps: transferring the recombinant plasmid in the step c), such as pBxb1-attP-VCre, into Escherichia coli S17-1, transferring the recombinant plasmid into Ralstonia eutropha Bxb1-attB by a conjugative transformation method, and screening by a screening marker to obtain the recombinant eubacterium rolfsii with the recombinant vector integrated on the genome.
Further preferably, step e) of the process of the invention comprises the steps of: transferring the recombinant plasmid pVCre obtained in the step b) into Escherichia coli S17-1, transferring the recombinant strain obtained in the step d) by a joint transformation method, and screening by a screening marker to obtain a recombinant strain (such as Ralstonia eutropha Bxb1-GFP) with an exogenous gene integrated into a genome.
Preferably, step e) of the process of the invention further comprises: and (3) culturing the recombinant bacteria with the exogenous genes integrated into the genome on a non-resistant plate so that the recombinant bacteria lose the recombinant vector containing the VCre recombinase gene.
In the gene insertion method based on the site-specific recombinase applicable to the eubacterium rolfsii, as shown in figure 1: firstly, inserting an attB site corresponding to a site-specific recombinase Bxb1 into the genome of the Eubacterium rolfsii to construct a recombinant Eubacterium rolfsii with an attB sequence integrated on the genome; constructing a recombinant vector containing a VCre recombinase gene; constructing a recombinant vector containing a foreign sequence, a site-specific recombinase Bxb1 gene, an attP sequence corresponding to the site-specific recombinase Bxb1, and 2 VloxP sequences specifically recognized by the VCre recombinase, wherein said exogenous sequence and said attP sequence are between said 2 VloxP sequences, the gene of the site specific recombinase Bxb1 is not between the 2 VloxP sequences (as shown in FIG. 2), transferring the recombinant vector into the recombinant Roche bacterium integrated with attB sequence on the constructed genome, mediating recombination between attB and attP sequences using the site-specific recombinase Bxb1, thereby integrating the recombinant vector onto the genome of the recombinant Rogowski Eubacterium, wherein, the recombinase mediates recombination between two sequences attP and attB, the process inserts phage DNA into a host bacterium chromosome, and the original attP and attB sequences form two new sequences 'attL' and 'attR' on the chromosome; subsequently, the recombinant vector containing the VCre recombinase gene constructed as described above is transferred into a recombinant bacterium having the recombinant vector integrated into its genome, and the backbone portion of the recombinant vector is deleted from the genome.
In another aspect, the present invention provides a recombinant vector (suicide plasmid) comprising an exogenous sequence, a gene of site-specific recombinase Bxb1, and an attP sequence corresponding to site-specific recombinase Bxb 1. Preferably, said recombinant vector further comprises 2 VloxP sequences capable of being specifically recognized by VCre recombinase, wherein said exogenous sequence and said attP sequence are between said 2 VloxP sequences, and said site-specific recombinase Bxb1 gene is not between said 2 VloxP sequences. Preferably, the backbone portion of the recombinant vector comprises a replicon capable of replicating in E.coli (e.g., S17-1) but incapable of replicating in Eubacterium rolfsii, preferably the replicon is one or more selected from the group consisting of a pMB1 replicon, a pUC replicon, a p15a replicon and a R6K γ replicon, more preferably the replicon is a pMB1 replicon. The backbone portion of the recombinant vector further comprises an antibiotic resistance gene, preferably one or more of a kanamycin resistance gene, a tetracycline resistance gene, a streptomycin resistance gene, and a spectinomycin resistance gene, and more preferably, the antibiotic resistance gene is a kanamycin resistance gene. Preferably, the amino acid sequence of the site-specific recombinase Bxb1 gene is shown in SEQ ID NO: 20. More preferably, the nucleotide sequence of the site-specific recombinase Bxb1 gene is shown in SEQ ID NO: 21. Preferably, the attP sequence corresponding to the site-specific recombinase Bxb1 is shown as SEQ ID NO 22. Preferably, the VloxP sequence is shown in SEQ ID NO: 44.
In yet another aspect, the present invention provides a recombinant vector comprising a VCre recombinase gene. Preferably, the backbone portion of the recombinant vector comprises a replicon capable of replicating both in E.coli (e.g., S17-1) and in Eubacterium rolfsii, preferably the replicon is one or more selected from the group consisting of a pBBR1 replicon, an SC101 replicon and a RK2 replicon, more preferably the replicon is a pBBR1 replicon. The backbone portion of the recombinant vector further comprises an antibiotic resistance gene, preferably one or more of a kanamycin resistance gene, a tetracycline resistance gene, a streptomycin resistance gene, and a spectinomycin resistance gene, and more preferably, the antibiotic resistance gene is a kanamycin and spectinomycin resistance gene. Preferably, the amino acid sequence of the VCre recombinase is shown as SEQ ID NO 42. More preferably, the nucleotide sequence of the VCre recombinase is shown in SEQ ID NO 41.
The invention develops a site-specific recombinase tool available in Ralstonia eutropha, and can realize the high-efficiency integration of an exogenous sequence into a genome.
Drawings
FIG. 1 is a schematic diagram of the process of the present invention for integrating a gene mediated by a site-specific recombinase.
FIG. 2 is a schematic diagram showing the structure of a vector containing a foreign sequence, a recombinase and an attP site according to the present invention.
FIG. 3 is a diagram showing the results of PCR for verifying the integration of the vector into the genome mediated by recombinase Bxb1 in example 3 of the present invention.
FIG. 4 is a graph showing the PCR results for verifying deletion of the vector backbone in example 4 of the present invention.
Detailed Description
Hereinafter, the present invention will be described in detail by examples. However, the examples provided herein are for illustrative purposes only and are not intended to limit the present invention.
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The enzymatic reagents used were purchased from ThermoFisher and New England Biolabs (NEB), the kit for plasmid extraction was purchased from Tiangen Biotechnology technology (Beijing) Ltd, the kit for DNA fragment recovery was purchased from omega USA, the corresponding procedures were performed strictly according to the product instructions, and all media were prepared with deionized water if no special instructions were given.
The formula of the culture medium is as follows:
LB culture medium: 5g/L yeast extract (from OXID, U.K., catalog No. LP0021), 10g/L peptone (from OXID, U.K., catalog No. LP0042),10g/L NaCl, and the balance water. Adjusting pH to 7.0-7.2, and sterilizing with high pressure steam.
In the actual culture process, antibiotics at a certain concentration, such as 200. mu.g/mL kanamycin, 100. mu.g/mL apramycin or 500. mu.g/mL spectinomycin, can be added to the above medium to maintain the stability of the plasmid.
Example 1: construction of recombinant Eubacterium rolfstromia bacterium Ralstonia eutropha Bxb1-attB incorporating attB sequence
PCR amplification was performed using Ralstonia eutropha H16 (purchased from China general microbiological culture Collection center, CGMCC 1.7092) genome as template to obtain homologous fragments H1 and H2, and plasmid pK18mobsacB (Orita, I., Iwazawa, R., Nakamura, S., Fukui, T.2012)An Identification of mutation sites in the replication of nucleic acid and amplification of cleavage activity in the wild strain H16 for polyhydroxyalkanoate production.J.biosci.Bioeng.113,63-69) as a template to obtain a vector fragment, and a fragment containing the attB sequence corresponding to Bxb1 was obtained by amplification using the primer as a template, according to the commercial kit (Gibson @) (Gibson @ cleavage-cleavage
Figure BDA0002403014230000092
Master Mix, purchased from New England Biolabs (NEB) Inc.) ligated H1, H2 and attB sequences to the vector fragment by the Gibson Assembly method to yield recombinant plasmid pK18mobsacB-Bxb 1. The primers used are as follows:
Figure BDA0002403014230000091
Figure BDA0002403014230000101
the sequence of synthetic fragment 01 was:
GGCAGAGAGACAATCAAATCTCTAGGGCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCCAGGAAACAGCTATGACGGTTCGGCCGGCTTGTCGACGACGGCGGTCTCCGTCGTCAGGATCATCCGGGCACTGGCCGTCGTTTTACAACCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAGCCTGCCGGCCTGGTTCAAC(SEQ ID NO:9)
wherein the corresponding attB sequence of Bxb1 is as follows:
TCGGCCGGCTTGTCGACGACGGCGGTCTCCGTCGTCAGGATCATCCGGGC(SEQ ID NO:10)
the recombinant plasmid pK18mobsacB-Bxb1 was transformed into E.coli S17-1(ATCC No. 47055, available from American Type Culture Collection) and then into Ralstonia eutropha H16 by the conjugative transformation method, and positive clones were selected using LB plates containing both 200. mu.g/ml kanamycin and 100. mu.g/ml apramycin, taking advantage of the inability of suicide plasmids to replicate in host bacteria. The recombinant plasmid with homologous fragment in the positive clone is integrated into the genome at the specific positions of H1 and H2, and is the first homologous recombinant bacterium.
The first homologous recombinant strain is subjected to single colony culture on an LB plate containing 100mg/ml of sucrose, clones without kanamycin resistance are screened out from the single colonies, and a recombinant strain with an attB sequence of Bxb1 integrated into a genome is identified by PCR (polymerase chain reaction) by using primers primer 7 and primer8, and the obtained recombinant strain is Ralstonia eutropha Bxb 1-attB.
Comparative example 1: construction of recombinant Eubacterium rolfsii Ralstonia eutropha PhiC31-attB incorporating attB sequence
Carrying out PCR amplification by taking Ralstonia eutropha H16 genome as a template to obtain homologous fragments H1 and H2, carrying out PCR amplification by taking plasmid pK18mobsacB as a template to obtain a vector fragment, carrying out PCR amplification by taking a synthetic fragment 02 as a template by using primers to obtain a fragment containing an attB sequence corresponding to PhiC31, and carrying out PCR amplification according to a commercial kit (Gibson)
Figure BDA0002403014230000102
Master Mix, purchased from New England Biolabs (NEB) Inc.) ligated H1, H2 and attB sequences to the vector fragment by the Gibson Assembly method to give recombinant plasmid pK18mobsacB-PhiC 31. The primers used are as follows:
Figure BDA0002403014230000111
the sequence of synthetic fragment 02 was:
GGCAGAGAGACAATCAAATCTCTAGGGCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCCAGGAAACAGCTATGACGGTCGCGCCCGGGGAGCCCAAGGGCACGCCCTGGCACACTGGCCGTCGTTTTACAACCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAGCCTGCCGGCCTGGTTCAAC(SEQ ID NO:11)
wherein the corresponding attB sequence of PhiC31 is as follows:
CGCGCCCGGGGAGCCCAAGGGCACGCCCTGGCAC(SEQ ID NO:12)
the recombinant plasmid pK18mobsacB-PhiC31 is transferred into Escherichia coli S17-1, and then transferred into Ralstonia eutropha H16 by a conjugation transformation method, and positive clones are screened by using an LB plate simultaneously containing 200 mug/ml kanamycin and 100 mug/ml apramycin by utilizing the characteristic that the suicide plasmid cannot replicate in host bacteria. The recombinant plasmid with homologous fragment in the positive clone is integrated into the genome at the specific positions of H1 and H2, and is the first homologous recombinant bacterium.
The first homologous recombinant strain is subjected to single colony culture on an LB plate containing 100mg/ml of sucrose, clones without kanamycin resistance are screened out from the single colonies, and a recombinant strain with the integrated genome of the attB sequence of PhiC31 is identified by PCR through primers primer 7 and primer8, and the obtained recombinant strain is Ralstonia eutropha PhiC 31-attB.
Comparative example 2: construction of recombinant Ralstonia eutropha TP901-attB integrating attB sequence
Carrying out PCR amplification by taking a Ralstonia eutropha H16 genome as a template to obtain homologous fragments H1 and H2, carrying out PCR amplification by taking a plasmid pK18mobsacB as a template to obtain a vector fragment, carrying out PCR amplification by taking a synthetic fragment 03 as a template to obtain a fragment containing an attB sequence corresponding to TP901 by using a primer, and carrying out PCR amplification according to a commercial kit (Gibson)
Figure BDA0002403014230000122
Master Mix, purchased from New England Biolabs (NEB) Inc.) ligated H1, H2 and attB sequences to the vector fragment by the Gibson Assembly method to give recombinant plasmid pK18mobsacB-TP 901. The primers used are as follows:
Figure BDA0002403014230000121
the sequence of synthetic fragment 03 was:
GGCAGAGAGACAATCAAATCTCTAGGGCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCCAGGAAACAGCTATGACGGTTATGCCAACACAATTAACATCTCAATCAAGGTAAATGCTTTTTGCTTTTTTTGACTGGCCGTCGTTTTACAACCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAGCCTGCCGGCCTGGTTCAAC(SEQ ID NO:13)
wherein, the attB sequence corresponding to TP901 is:
TATGCCAACACAATTAACATCTCAATCAAGGTAAATGCTTTTTGCTTTTTTTG(SEQ ID NO:14)
the recombinant plasmid pK18mobsacB-TP901 is transferred into Escherichia coli S17-1, then transferred into Ralstonia eutropha H16 by a conjugative transformation method, and positive clones are screened by using an LB plate simultaneously containing 200 mug/ml kanamycin and 100 mug/ml apramycin by utilizing the characteristic that the suicide plasmid cannot be replicated in host bacteria. The recombinant plasmid with homologous fragment in the positive clone is integrated into the genome at the specific positions of H1 and H2, and is the first homologous recombinant bacterium.
The first homologous recombinant strain is subjected to single colony culture on an LB plate containing 100mg/ml of sucrose, clones without kanamycin resistance are screened out from the single colonies, primers 7 and 8 are used for carrying out PCR (polymerase chain reaction) to identify a recombinant strain with an attB sequence of TP901 integrated into a genome, and the obtained recombinant strain is Ralstonia eutropha TP 901-attB.
Comparative example 3: construction of recombinant Eubacterium rolfstonia eutropha P22-attB incorporating attB sequence
Carrying out PCR amplification by taking Ralstonia eutropha H16 genome as a template to obtain homologous fragments H1 and H2, carrying out PCR amplification by taking plasmid pK18mobsacB as a template to obtain a vector fragment, carrying out PCR amplification by taking a synthetic fragment 04 as a template to obtain a fragment containing an attB sequence corresponding to P22, and carrying out PCR amplification according to a commercial kit (Gibson)
Figure BDA0002403014230000132
Master Mix, purchased from New England Biolabs (NEB) Inc.) ligated H1, H2 and attB sequences to the vector fragment by the Gibson Assembly method to give recombinant plasmid pK18 mobsacB-P22. The primers used are as follows:
Figure BDA0002403014230000131
the sequence of synthetic fragment 04 is:
GGCAGAGAGACAATCAAATCTCTAGGGCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCCAGGAAACAGCTATGACGGTACGACCTTCGCATTACGAATGCGCTGCACTGGCCGTCGTTTTACAACCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAGCCTGCCGGCCTGGTTCAAC(SEQ ID NO:15)
wherein the attB sequence corresponding to P22 is:
ACGACCTTCGCATTACGAATGCGCTGC(SEQ ID NO:16)
the recombinant plasmid pK18mobsacB-P22 is transferred into Escherichia coli S17-1, then transferred into Ralstonia eutropha H16 by a conjugative transformation method, and positive clones are screened by using an LB plate simultaneously containing 200 mug/ml kanamycin and 100 mug/ml apramycin by utilizing the characteristic that the suicide plasmid cannot be replicated in host bacteria. The recombinant plasmid with homologous fragment in the positive clone is integrated into the genome at the specific positions of H1 and H2, and is the first homologous recombinant bacterium.
The first homologous recombinant strain is subjected to single colony culture on an LB plate containing 100mg/ml of sucrose, clones without kanamycin resistance are screened out from the single colonies, and a recombinant strain with the attB sequence of P22 integrated into the genome is identified by PCR (polymerase chain reaction) by using primers primer 7 and primer8, and the obtained recombinant strain is Ralstonia eutropha P22-attB.
Example 2: construction of a recombinant plasmid pBxb1-attP containing the recombinase and the corresponding attP sequence
Carrying out PCR amplification by taking the plasmid pK18mobsacB as a template to obtain a vector fragment, carrying out amplification by taking the synthetic fragment 05 as a template by using a primer to obtain a fragment containing the Bxb1 recombinase gene and the corresponding attP sequence thereof, and carrying out PCR amplification by using a commercial kit (Gibson)
Figure BDA0002403014230000142
Master Mix, purchased from New England Biolabs (NEB) Inc.) and the fragments were ligated to the vector fragments by the Gibson Assembly method to obtain the recombinant plasmid pBxb 1-attP. The primers used are as follows:
Figure BDA0002403014230000141
the sequence of synthetic fragment 05 was:
CACACAGGAAACAGCTATGACCTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCTACGACATCCCGGTGTGTAGCCGTTCGACCACGCTGCCGAGCCTGAGATGCTGCTCGTACTCTTGCAGATCCCCGAAGTCGATCGTGCGAGTCAGCCCGCCGCGGACGTCGAACGTCAGCCGAACGTTCATCGACCGAAGCCAGGTGTTCTTTGCCGCGGTGTCCTGCTCCCGCCACCAGTCCCCGAACCGCTGCCCGGTCTCGCGCCACTCCCAGCCAGACGGGCGAGCCTCTAGGCCCTCCAGCTCCTCTTGCCGCGCGGCCAGCGCCGCAATACGGGCATCCAGTGCTTCTCGCTGCGGAGAGCCGGCCCGGTAGGCCGGGGAGCCGATCAGCGACGTCAGGTCCACCAGCTCCGCGTTCACCTCCGCGAGTTCGACCGCGGAGTCCGAGCCGGCTACCCAGACTTTCTCCAGACGCTCCGCGTCCCCGAGCAGATCCAGCACCTGCTCCTCGCAGAACGCGTCCCACTCGGCCATCGCCACCGTGCCGTTCCCGCAGTGCTTCGGGAACCCCATCGAGCGGCAGCGGTAGCGCGGGTGCTTACGTCCTCCCCCGGCGAACTTGTACGCGGGCTCCCCGCACACCGCGCAGAACAACACCCGCAGCAGCAGCGACGGGGTAGACACCGCGGGCTTCGCCCGGGAGGTCTTCACGAGCTCGGCGCGCAGCGCCTCCAGCTGCTCACGGGTCAGGATCGGCTCAGCCCGCACCAGCGGGGCTCCGTCGTCGTCTCGGACGGTCTTACCGTTCAGAGTCGCGTACCCGAGCATCGCCTCGGAGATCATCGATCGCTTCAGCGCGGTAGCCGACCACTCCCGGCCCTGCGGCTCGCGGCCTTGCAGCTGCGCGAAGTAGTCCTTCGGCGACAGGACACCACGCCGGTTCAGGTCGTGGGCCACCAGGTGCAGCGGCTCGTGGTTGTCGACGACGCGGTGATACACCTCGAGGATGCGCTCTCGCTGCACAGGGTCCGGCACCAGCCGCCACTCCCCGTCCACGCGCGTAGGCAGGTATCCCCACGGCGGCAGGGATCCTCGGTATTTCCCGGCGCGGATATTGAAATGCGCAGCCGAACGGTTCCGCTCTTTGATCGCTTCTAATTCCATCTGCGCCACCGTTCCCATAAGCGCGATGACGACCGCCGCAAACGGCGTCGTCGTATCGAAGTGCGCTTCGGTCGCGGAGACGACCAGCTTCTTGTGGTCCTCGGCCCAGTGGACCAGCTGTTGCAGATGCCGGATCGATCGGGTCAACCGGTCTACCCGGTACGCCACGATCACGTCGAACGGTTGCTCCTCGAACGCTAGCCACCGGGCCAGGTTCGGTCTGCGCTTCCGGTCGAACGGATCGACCGCCCCGGAGACGTCCAGATCCTCCGCTACCCCGACGACGTCCCAGCCGCGCTGGGCGCAGAGCTGCTGGCAAGACTCCAGCTGACGCTCCGGTGAAGTCGTAGCATCGGTGACGCGGGACAGGCGGATGACTACCAGGGCTCTCATCTAGTATTTCTCCTCTTTCTCTAGTATTAAACAAAATTATTTGTAGAGGCTGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACAGCTTGCTCGCAGGTCAAAGGGTATACTGGGATTCCAGTGAACGCAAGGGTTTGTACCGTACACCACTGAGACCGCGGTGGTTGACCAGACAAACCACGAACTGGCCGTCGTTTTACAAC(SEQ ID NO:19)
wherein the gene sequence of Bxb1 recombinase is as follows:
ATGAGAGCCCTGGTAGTCATCCGCCTGTCCCGCGTCACCGATGCTACGACTTCACCGGAGCGTCAGCTGGAGTCTTGCCAGCAGCTCTGCGCCCAGCGCGGCTGGGACGTCGTCGGGGTAGCGGAGGATCTGGACGTCTCCGGGGCGGTCGATCCGTTCGACCGGAAGCGCAGACCGAACCTGGCCCGGTGGCTAGCGTTCGAGGAGCAACCGTTCGACGTGATCGTGGCGTACCGGGTAGACCGGTTGACCCGATCGATCCGGCATCTGCAACAGCTGGTCCACTGGGCCGAGGACCACAAGAAGCTGGTCGTCTCCGCGACCGAAGCGCACTTCGATACGACGACGCCGTTTGCGGCGGTCGTCATCGCGCTTATGGGAACGGTGGCGCAGATGGAATTAGAAGCGATCAAAGAGCGGAACCGTTCGGCTGCGCATTTCAATATCCGCGCCGGGAAATACCGAGGATCCCTGCCGCCGTGGGGATACCTGCCTACGCGCGTGGACGGGGAGTGGCGGCTGGTGCCGGACCCTGTGCAGCGAGAGCGCATCCTCGAGGTGTATCACCGCGTCGTCGACAACCACGAGCCGCTGCACCTGGTGGCCCACGACCTGAACCGGCGTGGTGTCCTGTCGCCGAAGGACTACTTCGCGCAGCTGCAAGGCCGCGAGCCGCAGGGCCGGGAGTGGTCGGCTACCGCGCTGAAGCGATCGATGATCTCCGAGGCGATGCTCGGGTACGCGACTCTGAACGGTAAGACCGTCCGAGACGACGACGGAGCCCCGCTGGTGCGGGCTGAGCCGATCCTGACCCGTGAGCAGCTGGAGGCGCTGCGCGCCGAGCTCGTGAAGACCTCCCGGGCGAAGCCCGCGGTGTCTACCCCGTCGCTGCTGCTGCGGGTGTTGTTCTGCGCGGTGTGCGGGGAGCCCGCGTACAAGTTCGCCGGGGGAGGACGTAAGCACCCGCGCTACCGCTGCCGCTCGATGGGGTTCCCGAAGCACTGCGGGAACGGCACGGTGGCGATGGCCGAGTGGGACGCGTTCTGCGAGGAGCAGGTGCTGGATCTGCTCGGGGACGCGGAGCGTCTGGAGAAAGTCTGGGTAGCCGGCTCGGACTCCGCGGTCGAACTCGCGGAGGTGAACGCGGAGCTGGTGGACCTGACGTCGCTGATCGGCTCCCCGGCCTACCGGGCCGGCTCTCCGCAGCGAGAAGCACTGGATGCCCGTATTGCGGCGCTGGCCGCGCGGCAAGAGGAGCTGGAGGGCCTAGAGGCTCGCCCGTCTGGCTGGGAGTGGCGCGAGACCGGGCAGCGGTTCGGGGACTGGTGGCGGGAGCAGGACACCGCGGCAAAGAACACCTGGCTTCGGTCGATGAACGTTCGGCTGACGTTCGACGTCCGCGGCGGGCTGACTCGCACGATCGACTTCGGGGATCTGCAAGAGTACGAGCAGCATCTCAGGCTCGGCAGCGTGGTCGAACGGCTACACACCGGGATGTCGTAG(SEQ ID NO:20)
the amino acid sequence of the Bxb1 recombinase is as follows:
MRALVVIRLSRVTDATTSPERQLESCQQLCAQRGWDVVGVAEDLDVSGAVDPFDRKRRPNLARWLAFEEQPFDVIVAYRVDRLTRSIRHLQQLVHWAEDHKKLVVSATEAHFDTTTPFAAVVIALMGTVAQMELEAIKERNRSAAHFNIRAGKYRGSLPPWGYLPTRVDGEWRLVPDPVQRERILEVYHRVVDNHEPLHLVAHDLNRRGVLSPKDYFAQLQGREPQGREWSATALKRSMISEAMLGYATLNGKTVRDDDGAPLVRAEPILTREQLEALRAELVKTSRAKPAVSTPSLLLRVLFCAVCGEPAYKFAGGGRKHPRYRCRSMGFPKHCGNGTVAMAEWDAFCEEQVLDLLGDAERLEKVWVAGSDSAVELAEVNAELVDLTSLIGSPAYRAGSPQREALDARIAALAARQEELEGLEARPSGWEWRETGQRFGDWWREQDTAAKNTWLRSMNVRLTFDVRGGLTRTIDFGDLQEYEQHLRLGSVVERLHTGMS(SEQ ID NO:21)
the corresponding attP sequence of Bxb1 is:
TCGTGGTTTGTCTGGTCAACCACCGCGGTCTCAGTGGTGTACGGTACAAACCC (SEQ ID NO:22) comparative example 4: construction of a recombinant plasmid pPhiC31-attP containing the recombinase and the corresponding attP sequence
Carrying out PCR amplification by taking the plasmid pK18mobsacB as a template to obtain a vector fragment, carrying out amplification by taking the synthetic fragment 06 as a template by using a primer to obtain a fragment containing the PhiC31 recombinase gene and the corresponding attP sequence thereof, and carrying out PCR amplification by using a commercial kit (Gibson)
Figure BDA0002403014230000162
Master Mix, purchased from New England Biolabs (NEB) Inc.) and the fragments were ligated to the vector fragments by the Gibson Assembly method to obtain the recombinant plasmid pPhiC 31-attP. The primers used are as follows:
Figure BDA0002403014230000161
the sequence of synthetic fragment 06 was:
CACACAGGAAACAGCTATGACCTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCTACGCCGCTACGTCTTCCGTGCCGTCCTGGGCGTCGTCTTCGTCGTCGTCGGTCGGCGGCTTCGCCCACGTGATCGAAGCGCGCTTCTCGATGGGCGTTCCCTGCCCCCTGCCCGTAGTCGACTTCGTGACAACGATCTTGTCTACGAAGAGCCCGACGAACACGCGCTTGTCGTCTACTGACGCGCGCCCCCACCACGACTTAGGGCCGGTCGGGTCAGCGTCGGCGTCTTCGGGGAACCATTGGTCAAGGGGAAGCTTCGGGGCTTCGGCGGCTTCAAGTTCGGCAAGCCGCTCTTCCGCCCCTTGCTGCCGGAGCGTCAGCGCTGCCTGTTGCTTCCGGAAGTGCTTCCTGCCAACGGGTCCGTCGTACGCGCCTGCCGCGCGGTCTTCGTACAGCTCTTCAAGGGCGTTCAGGGCGTCGGCGCGCTCCGCAACAAGGTTCGCCCGTTCGCCGCTCTTCTCAGGCGCCTCAGTGAGCTTGCCGAAGCGTCGGGCGGCTTCCCACAGAAGCGCCAACGTCTCTTCGTCGCCTTCGGCGTGCCTGATCTTGTTGAAGATGCGTTCCGCAACGAACTTGTCGAGTGCCGCCATGCTGACGTTGCACGTGCCTTCGTGCTGCCCAGGTGCGGACGGGTCGACCACCTTCCGGCGACGGCAGCGGTAAGAGTCCTTGATCGATTCTTCCCCGCGCTTCGAAGTCATGACGGCGCCACACTCGCAGTACAGCTTGTCCATGGCGGACAGAATGGCTTGCCCCCGGGAAAGCCCCTTGCCGCGCCCCCTGCCGTCCAACCACGCCTGAAGCTCATACCACTCAGCGGGCTCGATGATCGGTCCGCAATCAAGCTCGACCGGCCGGAGCGTGATCGGGTCGCGCTGAATGCGGTAACCCTCAATCTTCGTGGTCGGCGTGCCGTCCGGCTTCTTCTTGTAGATCACCTCAGCGGCGAAGCCCGCAATACGCGGGTCCCGAAGGATTCGCATAACGGTTGCCGGGTCCCAGGCGCTTGAAGCGGTCTTCTTCCCAATCGTCTCGCCCCGGGTCGGCACGGCGTCAGCGTCCATGCGCTTACAAAGCCCCGTGATGCTGCCCGGGTGAATGGCGGCTTGACTGCCCGGCTTGAAGGGAAGGTGTTTGTGCGTCTTGATCTCACGCCACCACCACCGGATTACGTCGGGCTCGAACTCGAAGGGTCCGGTAAGGGGAGTGGTCGAGTGCGCAAGCTTGTTGATGACGACATTGACCATTCGGCCGTTGCGCGTGATCTCCTTCGTCTCCGAAACAAGCTCGAAGCCGTAAGGCGCCTTCCCGCCGACGTACCCGCCCAATTCGCGCTGAAGGTTCTTCGTGTCGAGAATCTTCGCCGACTTCAGCGAAGATTCTTTGTGCGACGCGTCGAGCCGCATAATCAGGTGAATCAGGTCCATGACGTTTCCCTGCCGGAAGACGCCTTCCTGAGTGGAAACAATCGTCACGCCCAGGGCGAGCAATTCCGAGACAATCGGAATCGCGTCCATGACCTTCAGGCGCGAGAAGCGCGACACGTCATAGACAATGATCATGTTGAGCCGCCCGGCGCGGCATTCGTTCAGGATGCGTTCGAACTCCGGGCGCTCCGCCGTCCCGAACGCCGACGTGCCCGGCGCTTCGCTGAAATGCCCGACGAACCTGAACCGGCCCCCGTCGCGCTCGACTTCGCGCTGAAGGTCGGCCGCCTTGTCTTCGTTGGCGCTACGCTGTGTCGCTGGGCTTGCTGCGCTCGAATTCTCGCGCTCGCGCGACTGACGGTCGTAAGCACCCGCGTACGTGTCCATCTAGTATTTCTCCTCTTTCTCTAGTATTAAACAAAATTATTTGTAGAGGCTGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACAGCTTGCTCGCAGGTCAAAGGGTATACTGGGATTCCAGTGAACGCAACCCCAACTGGGGTAACCTTTGAGTTCTCTCAGTTGGGGGACTGGCCGTCGTTTTACAAC(SEQ ID NO:23)
wherein the gene sequence of the PhiC31 recombinase is as follows:
ATGGACACGTACGCGGGTGCTTACGACCGTCAGTCGCGCGAGCGCGAGAATTCGAGCGCAGCAAGCCCAGCGACACAGCGTAGCGCCAACGAAGACAAGGCGGCCGACCTTCAGCGCGAAGTCGAGCGCGACGGGGGCCGGTTCAGGTTCGTCGGGCATTTCAGCGAAGCGCCGGGCACGTCGGCGTTCGGGACGGCGGAGCGCCCGGAGTTCGAACGCATCCTGAACGAATGCCGCGCCGGGCGGCTCAACATGATCATTGTCTATGACGTGTCGCGCTTCTCGCGCCTGAAGGTCATGGACGCGATTCCGATTGTCTCGGAATTGCTCGCCCTGGGCGTGACGATTGTTTCCACTCAGGAAGGCGTCTTCCGGCAGGGAAACGTCATGGACCTGATTCACCTGATTATGCGGCTCGACGCGTCGCACAAAGAATCTTCGCTGAAGTCGGCGAAGATTCTCGACACGAAGAACCTTCAGCGCGAATTGGGCGGGTACGTCGGCGGGAAGGCGCCTTACGGCTTCGAGCTTGTTTCGGAGACGAAGGAGATCACGCGCAACGGCCGAATGGTCAATGTCGTCATCAACAAGCTTGCGCACTCGACCACTCCCCTTACCGGACCCTTCGAGTTCGAGCCCGACGTAATCCGGTGGTGGTGGCGTGAGATCAAGACGCACAAACACCTTCCCTTCAAGCCGGGCAGTCAAGCCGCCATTCACCCGGGCAGCATCACGGGGCTTTGTAAGCGCATGGACGCTGACGCCGTGCCGACCCGGGGCGAGACGATTGGGAAGAAGACCGCTTCAAGCGCCTGGGACCCGGCAACCGTTATGCGAATCCTTCGGGACCCGCGTATTGCGGGCTTCGCCGCTGAGGTGATCTACAAGAAGAAGCCGGACGGCACGCCGACCACGAAGATTGAGGGTTACCGCATTCAGCGCGACCCGATCACGCTCCGGCCGGTCGAGCTTGATTGCGGACCGATCATCGAGCCCGCTGAGTGGTATGAGCTTCAGGCGTGGTTGGACGGCAGGGGGCGCGGCAAGGGGCTTTCCCGGGGGCAAGCCATTCTGTCCGCCATGGACAAGCTGTACTGCGAGTGTGGCGCCGTCATGACTTCGAAGCGCGGGGAAGAATCGATCAAGGACTCTTACCGCTGCCGTCGCCGGAAGGTGGTCGACCCGTCCGCACCTGGGCAGCACGAAGGCACGTGCAACGTCAGCATGGCGGCACTCGACAAGTTCGTTGCGGAACGCATCTTCAACAAGATCAGGCACGCCGAAGGCGACGAAGAGACGTTGGCGCTTCTGTGGGAAGCCGCCCGACGCTTCGGCAAGCTCACTGAGGCGCCTGAGAAGAGCGGCGAACGGGCGAACCTTGTTGCGGAGCGCGCCGACGCCCTGAACGCCCTTGAAGAGCTGTACGAAGACCGCGCGGCAGGCGCGTACGACGGACCCGTTGGCAGGAAGCACTTCCGGAAGCAACAGGCAGCGCTGACGCTCCGGCAGCAAGGGGCGGAAGAGCGGCTTGCCGAACTTGAAGCCGCCGAAGCCCCGAAGCTTCCCCTTGACCAATGGTTCCCCGAAGACGCCGACGCTGACCCGACCGGCCCTAAGTCGTGGTGGGGGCGCGCGTCAGTAGACGACAAGCGCGTGTTCGTCGGGCTCTTCGTAGACAAGATCGTTGTCACGAAGTCGACTACGGGCAGGGGGCAGGGAACGCCCATCGAGAAGCGCGCTTCGATCACGTGGGCGAAGCCGCCGACCGACGACGACGAAGACGACGCCCAGGACGGCACGGAAGACGTAGCGGCGTAG(SEQ ID NO:24)
the amino acid sequence of the PhiC31 recombinase is as follows:
MDTYAGAYDRQSRERENSSAASPATQRSANEDKAADLQREVERDGGRFRFVGHFSEAPGTSAFGTAERPEFERILNECRAGRLNMIIVYDVSRFSRLKVMDAIPIVSELLALGVTIVSTQEGVFRQGNVMDLIHLIMRLDASHKESSLKSAKILDTKNLQRELGGYVGGKAPYGFELVSETKEITRNGRMVNVVINKLAHSTTPLTGPFEFEPDVIRWWWREIKTHKHLPFKPGSQAAIHPGSITGLCKRMDADAVPTRGETIGKKTASSAWDPATVMRILRDPRIAGFAAEVIYKKKPDGTPTTKIEGYRIQRDPITLRPVELDCGPIIEPAEWYELQAWLDGRGRGKGLSRGQAILSAMDKLYCECGAVMTSKRGEESIKDSYRCRRRKVVDPSAPGQHEGTCNVSMAALDKFVAERIFNKIRHAEGDEETLALLWEAARRFGKLTEAPEKSGERANLVAERADALNALEELYEDRAAGAYDGPVGRKHFRKQQAALTLRQQGAEERLAELEAAEAPKLPLDQWFPEDADADPTGPKSWWGRASVDDKRVFVGLFVDKIVVTKSTTGRGQGTPIEKRASITWAKPPTDDDEDDAQDGTEDVAA(SEQ ID NO:25)
the corresponding attP sequence of PhiC31 is:
CCCCCAACTGAGAGAACTCAAAGGTTACCCCAGTTGGGG(SEQ ID NO:26)
comparative example 5: construction of recombinant plasmid pTP901-attP containing recombinase and corresponding attP sequence
Carrying out PCR amplification by taking plasmid pK18mobsacB as a template to obtain a vector fragment, carrying out amplification by taking a synthetic fragment 07 as a template by using a primer to obtain a fragment containing a TP901 recombinase gene and an attP sequence corresponding to the TP recombinase gene, and carrying out PCR amplification by using a commercial kit (Gibson)
Figure BDA0002403014230000182
Master Mix, purchased from New England Biolabs (NEB) Inc.) and the fragments were ligated to the vector fragment by the Gibson Assembly method to obtain the recombinant plasmid pTP 901-attP. The primers used are as follows:
Figure BDA0002403014230000181
the sequence of synthetic fragment 07 is:
CACACAGGAAACAGCTATGACCTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGTTAAGCAGCCAGAGCGTAGTTTTCGTCCTTAGCAGCACCGGTAGCGAGTTGGAATTTAAATATGATATCTACATTATCAGCAGTAACATCAACCTTTGATACAAGGTTGTTGACGATTTTCTTTTTATTATCATATGATAGTTCATTAATCGGAATTGAGCCCAACTGAGTTTTAACTAACTCAAAAACATCAGTAGAGTCATTAAATTTATTTTCGCTAATCTTAGCTTTAAGCAGCTTTTTCTCAGCCTGAAGGGAATCAGTACGATCTTTCAACTCATCCATAGTGATAAAATCATTTAGGTACAAATCAGAGTTCTTTTGTATTTTTTTATCGATCTGTGAAATTTGCTTTTTAAATGACGAAGTATCAAGAATAGGTTGGTTGTTGCCATTGATAATTTTCAATAAGGAGTCATTATTTTCTTGAAATCCAATCAGGTTGTCAATAACAGTATTTTCTAAATTACTTAAATCATAAGTTCCTGAATCACACTTTTTATTGTCATTATATACTGTAATTCCTTTTGTTTTTCGAGGAAATCTATTTGCACAGTGATATTTCATAGTGCGGCTTCCATCTTTTCTTTTGTGGCCAAGAACAATTTTTAAAGGTGCTCCACAGTAACCGCACCTTGCCATCCCTGACAGCATATATTTAGCTTGGAAAGGTCTAGGGTTGTTATTTCTTTCATAAGTCTGCTGTTGTCTTTCTTCTAGCTCTTTTTGAACTTTTAAATAAGTCTCATAAGGGATAATTGGTTTGTGCATACCTTCAAATAGGCTGTCCTTAAATTTGATATAACCACAGTAAACTGGATTATCAAGTGTTTGTCTTAGGGTACGATAAGACCACGGTATATCTTTACCGATGTGTCCAGATTCATTGAGTTTATCTCTTAATTTTGTAAGTGATATTCCTGATAAATAATCAGTGAATATTTGTTCAACTATTGTAGCTTGTAAAGGAACAATTTCTAATATACCTGTCTTTCTGTTGTGGTAATACCCAAAAGCTGTCTTAGTCCACATCATAGACTTACCAGATTTCGCTCGCCCTAGTTTACCCATAGTCATGCGTTCTTTTATATTCTCTCTTTCAAACTCATTAATTGCAGAAAGAATAGTGAGAAACAAGCTACCCATAGCAGAAGAAGTATCAATACTTTCATTAAGCGAGATAAAGTCTATTTTATTTTTTGTGAACACATCCTTAACAAGATAAAGAGTATCTCTTACACTACGTGAAAGGCGGTCTAGCTTATATACAAGAACTGTATCAAAAGCTTTATTCTCGATATCGTTGATTAATCTTTGCATTGCTGGGCGTTCAAGTTTGGCCCCTGAAAAACCAGCATCAGTATAAGTATCAGATACTTGCCACCCCATTGCTTCAGCATATTTTGTTAAACGGTCAATTTGCTCATCAATTGAGAAGCCTTCCTCTGCTTGGTTAGTAGTGGATACTCGTGTATAGATTGCTACTTTCTTAGTGCCGGCCTGGTGGTGATGGTGATGATGTTTCATCTAGTATTTCTCCTCTTTCTCTAGTATTAAACAAAATTATTTGTAGAGGCTGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACAGCTTGCTCGCAGGTCAAAGGGTATACTGGGATTCCAGTGAACGCAAAAAAGGAGTTTTTTAGTTACCTTAATTGAAATAAACGAAATAAAAACTCGACTGGCCGTCGTTTTACAAC(SEQ ID NO:27)
wherein the gene sequence of the TP901 recombinase is as follows:
ATGAAACATCATCACCATCACCACCAGGCCGGCACTAAGAAAGTAGCAATCTATACACGAGTATCCACTACTAACCAAGCAGAGGAAGGCTTCTCAATTGATGAGCAAATTGACCGTTTAACAAAATATGCTGAAGCAATGGGGTGGCAAGTATCTGATACTTATACTGATGCTGGTTTTTCAGGGGCCAAACTTGAACGCCCAGCAATGCAAAGATTAATCAACGATATCGAGAATAAAGCTTTTGATACAGTTCTTGTATATAAGCTAGACCGCCTTTCACGTAGTGTAAGAGATACTCTTTATCTTGTTAAGGATGTGTTCACAAAAAATAAAATAGACTTTATCTCGCTTAATGAAAGTATTGATACTTCTTCTGCTATGGGTAGCTTGTTTCTCACTATTCTTTCTGCAATTAATGAGTTTGAAAGAGAGAATATAAAAGAACGCATGACTATGGGTAAACTAGGGCGAGCGAAATCTGGTAAGTCTATGATGTGGACTAAGACAGCTTTTGGGTATTACCACAACAGAAAGACAGGTATATTAGAAATTGTTCCTTTACAAGCTACAATAGTTGAACAAATATTCACTGATTATTTATCAGGAATATCACTTACAAAATTAAGAGATAAACTCAATGAATCTGGACACATCGGTAAAGATATACCGTGGTCTTATCGTACCCTAAGACAAACACTTGATAATCCAGTTTACTGTGGTTATATCAAATTTAAGGACAGCCTATTTGAAGGTATGCACAAACCAATTATCCCTTATGAGACTTATTTAAAAGTTCAAAAAGAGCTAGAAGAAAGACAACAGCAGACTTATGAAAGAAATAACAACCCTAGACCTTTCCAAGCTAAATATATGCTGTCAGGGATGGCAAGGTGCGGTTACTGTGGAGCACCTTTAAAAATTGTTCTTGGCCACAAAAGAAAAGATGGAAGCCGCACTATGAAATATCACTGTGCAAATAGATTTCCTCGAAAAACAAAAGGAATTACAGTATATAATGACAATAAAAAGTGTGATTCAGGAACTTATGATTTAAGTAATTTAGAAAATACTGTTATTGACAACCTGATTGGATTTCAAGAAAATAATGACTCCTTATTGAAAATTATCAATGGCAACAACCAACCTATTCTTGATACTTCGTCATTTAAAAAGCAAATTTCACAGATCGATAAAAAAATACAAAAGAACTCTGATTTGTACCTAAATGATTTTATCACTATGGATGAGTTGAAAGATCGTACTGATTCCCTTCAGGCTGAGAAAAAGCTGCTTAAAGCTAAGATTAGCGAAAATAAATTTAATGACTCTACTGATGTTTTTGAGTTAGTTAAAACTCAGTTGGGCTCAATTCCGATTAATGAACTATCATATGATAATAAAAAGAAAATCGTCAACAACCTTGTATCAAAGGTTGATGTTACTGCTGATAATGTAGATATCATATTTAAATTCCAACTCGCTACCGGTGCTGCTAAGGACGAAAACTACGCTCTGGCTGCTTAA(SEQ ID NO:28)
the amino acid sequence of the TP901 recombinase is as follows:
MKHHHHHHQAGTKKVAIYTRVSTTNQAEEGFSIDEQIDRLTKYAEAMGWQVSDTYTDAGFSGAKLERPAMQRLINDIENKAFDTVLVYKLDRLSRSVRDTLYLVKDVFTKNKIDFISLNESIDTSSAMGSLFLTILSAINEFERENIKERMTMGKLGRAKSGKSMMWTKTAFGYYHNRKTGILEIVPLQATIVEQIFTDYLSGISLTKLRDKLNESGHIGKDIPWSYRTLRQTLDNPVYCGYIKFKDSLFEGMHKPIIPYETYLKVQKELEERQQQTYERNNNPRPFQAKYMLSGMARCGYCGAPLKIVLGHKRKDGSRTMKYHCANRFPRKTKGITVYNDNKKCDSGTYDLSNLENTVIDNLIGFQENNDSLLKIINGNNQPILDTSSFKKQISQIDKKIQKNSDLYLNDFITMDELKDRTDSLQAEKKLLKAKISENKFNDSTDVFELVKTQLGSIPINELSYDNKKKIVNNLVSKVDVTADNVDIIFKFQLATGAAKDENYALAA(SEQ ID NO:29)
the attP sequence corresponding to TP901 is:
CGAGTTTTTATTTCGTTTATTTCAATTAAGGTAACTAAAAAACTCCTTTT (SEQ ID NO:30) comparative example 6: construction of a recombinant plasmid pP22-attP containing the recombinase and the corresponding attP sequence
Similarly, a vector fragment was obtained by PCR amplification using plasmid pK18mobsacB as a template, a fragment containing the P22 recombinase gene and its corresponding attP sequence was obtained by amplification using primers and synthetic fragment 08 as a template, according to a commercial kit (Gibson)
Figure BDA0002403014230000202
Master Mix, purchased from New England Biolabs (NEB) Inc.) and the fragments were ligated to the vector fragments by the Gibson Assembly method to obtain the recombinant plasmid pP 22-attP. Make itThe primers used are as follows:
Figure BDA0002403014230000201
the sequence of synthetic fragment 08 is:
CACACAGGAAACAGCTATGACCTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCTACGTATTATTCGTGCCTTCCTTATTTTTACTGTGGGACATATTTGGGACAGAAGTACCAAAAATCGAGTCAATTTGTCGAGCATGTTCAGTCAGGTGATTTGGTGCCAGATGAGCATATCGGCGAACCATTTCGATAGACTCCCAGCCACCCATTTCCTGCAATACCGAAATCGGAACGCCAGCCTGAACTAACCAACTTGCCCACGTGTGCCTCAGGTCATGAAAACGGAAGTCTTCAATGCCCGCTCGTTTTAATGCTGCCCTCCATGCAGTATTAGCGTCATAGCGCATCTTCCTCACTACAGGTGATTTAGTTCCGTCTGGTTTGGTGCTGCTTTCCTTGTAGACGAACACCCATTTGTGATGATTGCCGATTTGCTTTTTCAGCACCCGGCAAGCGGTATCATTCAGCGCCACTCCAATGGCATGATTAGACTTGCTTTGTTCCGGGTGTATCCATGCCACCTTTCGTTGCATGTCTATCTGCTGCCACTCCAGATTGATAATGTTAGACCGCCTTAAGCCAGTAGAAAGCGCAAACTCTACGACTGACTTTAGCGGTTCCTGGCATTCATCAATCAACCTTTTTGCCTCGTGAGGCTCAAGCCAGCGGATACGCTTATTTTTCGGCTGAGGAACTTTGATGATCGGAGCCTTATCCAGCATCTTCCATTCGCGTTCAGCAGCCCGGAGGAGTGCCTTAATGAATGAAAGGTGAGTTGCTTTTGTAGCTACTGCTGCCGGCTTAGGCTTGAATACCGGAGGCTGCTTCCCATTCTTCCTGCATGCTTCATCCATTAACTTCCAGTTTTCCTCATGCCGCCGATTAGTTATCTTCTGGATGGCGGAGTAAATCTTCGTCTCGGTAATATCCTTCAACTGCATTCCTGCAAAATGCTGGAGCCAGAATCCTATCCGACTCTTGTCATCATCCAGCGACTTCTTATGCGCCTTCTCCTCTAACCACCTGACACAGGCCCCCTCAAAAGTCATGTCAGGCGTCTCTCCTAATTTACTTACCCTCCATGCTTCTGCCTTCAGCTTGTCATGAAGCTCTGTGGCCTGCCTTTTGTCCTTTGTCCCAAGAGACTGCTTAAATCTTTTGCCGTTCGGCAATGTGAAACTGGCGTACCAGGTTTCACCTCTGCGGAATAGTGACATCTAGTATTTCTCCTCTTTCTCTAGTATTAAACAAAATTATTTGTAGAGGCTGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACAGCTTGCTCGCAGGTCAAAGGGTATACTGGGATTCCAGTGAACGCAACTAAGTGGTTTGGGACAAAAATGGGACATACAAATCTTTGCATCGGTTTGCAAGGCTTTGCATGTCTTTCGAAGATGGGACGTGTGAGCGCAGGTATGACGTGGTATGTTGTTGACTTAAAAGGTAGTTCTTATAATTCGTAATGCGAAGGTCGTAGGTTCGACTCCTATTATCGGCACCAGTTAAATCAAATACTTACGTATTATTCGTGCCTTCCTTATTTTTACTGTGGGACATATTTGGGACAGAAGTACCAAAAAACTGGCCGTCGTTTTACAAC(SEQ ID NO:31)
wherein the gene sequence of the P22 recombinase is as follows:
ATGTCACTATTCCGCAGAGGTGAAACCTGGTACGCCAGTTTCACATTGCCGAACGGCAAAAGATTTAAGCAGTCTCTTGGGACAAAGGACAAAAGGCAGGCCACAGAGCTTCATGACAAGCTGAAGGCAGAAGCATGGAGGGTAAGTAAATTAGGAGAGACGCCTGACATGACTTTTGAGGGGGCCTGTGTCAGGTGGTTAGAGGAGAAGGCGCATAAGAAGTCGCTGGATGATGACAAGAGTCGGATAGGATTCTGGCTCCAGCATTTTGCAGGAATGCAGTTGAAGGATATTACCGAGACGAAGATTTACTCCGCCATCCAGAAGATAACTAATCGGCGGCATGAGGAAAACTGGAAGTTAATGGATGAAGCATGCAGGAAGAATGGGAAGCAGCCTCCGGTATTCAAGCCTAAGCCGGCAGCAGTAGCTACAAAAGCAACTCACCTTTCATTCATTAAGGCACTCCTCCGGGCTGCTGAACGCGAATGGAAGATGCTGGATAAGGCTCCGATCATCAAAGTTCCTCAGCCGAAAAATAAGCGTATCCGCTGGCTTGAGCCTCACGAGGCAAAAAGGTTGATTGATGAATGCCAGGAACCGCTAAAGTCAGTCGTAGAGTTTGCGCTTTCTACTGGCTTAAGGCGGTCTAACATTATCAATCTGGAGTGGCAGCAGATAGACATGCAACGAAAGGTGGCATGGATACACCCGGAACAAAGCAAGTCTAATCATGCCATTGGAGTGGCGCTGAATGATACCGCTTGCCGGGTGCTGAAAAAGCAAATCGGCAATCATCACAAATGGGTGTTCGTCTACAAGGAAAGCAGCACCAAACCAGACGGAACTAAATCACCTGTAGTGAGGAAGATGCGCTATGACGCTAATACTGCATGGAGGGCAGCATTAAAACGAGCGGGCATTGAAGACTTCCGTTTTCATGACCTGAGGCACACGTGGGCAAGTTGGTTAGTTCAGGCTGGCGTTCCGATTTCGGTATTGCAGGAAATGGGTGGCTGGGAGTCTATCGAAATGGTTCGCCGATATGCTCATCTGGCACCAAATCACCTGACTGAACATGCTCGACAAATTGACTCGATTTTTGGTACTTCTGTCCCAAATATGTCCCACAGTAAAAATAAGGAAGGCACGAATAATACGTAG(SEQ ID NO:32)
the amino acid sequence of the P22 recombinase is:
MSLFRRGETWYASFTLPNGKRFKQSLGTKDKRQATELHDKLKAEAWRVSKLGETPDMTFEGACVRWLEEKAHKKSLDDDKSRIGFWLQHFAGMQLKDITETKIYSAIQKITNRRHEENWKLMDEACRKNGKQPPVFKPKPAAVATKATHLSFIKALLRAAEREWKMLDKAPIIKVPQPKNKRIRWLEPHEAKRLIDECQEPLKSVVEFALSTGLRRSNIINLEWQQIDMQRKVAWIHPEQSKSNHAIGVALNDTACRVLKKQIGNHHKWVFVYKESSTKPDGTKSPVVRKMRYDANTAWRAALKRAGIEDFRFHDLRHTWASWLVQAGVPISVLQEMGGWESIEMVRRYAHLAPNHLTEHARQIDSIFGTSVPNMSHSKNKEGTNNT(SEQ ID NO:33)
the attP sequence for P22 is:
TTTTTGGTACTTCTGTCCCAAATATGTCCCACAGTAAAAATAAGGAAGGCACGAATAATACGTAAGTATTTGATTTAACTGGTGCCGATAATAGGAGTCGAACCTACGACCTTCGCATTACGAATTATAAGAACTACCTTTTAAGTCAACAACATACCACGTCATACCTGCGCTCACACGTCCCATCTTCGAAAGACATGCAAAGCCTTGCAAACCGATGCAAAGATTTGTATGTCCCATTTTTGTCCCAAACCACTTAG(SEQ ID NO:34)
example 3: recombinase-mediated attB-attP recombination
The recombinant plasmid pBxb1-attP is transferred into Escherichia coli S17-1, and then transferred into Ralstonia eutropha Bxb1-attB by a conjugative transformation method, and by utilizing the characteristic that suicide plasmid can not be replicated in host bacteria, an LB plate sieve containing 200 mug/ml kanamycin and 100 mug/ml apramycin is used. If recombinase Bxb1 is functional, recombination between attB and attP sequences will be mediated, resulting in integration of plasmid pBxb1-attP into the genome.
Comparative example 7: recombinase-mediated attB-attP recombination
The recombinant plasmid pPhiC31-attP is transferred into Escherichia coli S17-1, and then transferred into Ralstonia eutropha PhiC31-attB by a conjugative transformation method, and an LB plate sieve containing 200 mug/ml kanamycin and 100 mug/ml apramycin is used by utilizing the characteristic that the suicide plasmid cannot replicate in host bacteria. If the recombinase PhiC31 is functional, recombination between attB and attP sequences will be mediated, thereby integrating the plasmid pPhiC1-attP into the genome.
Comparative example 8: recombinase-mediated attB-attP recombination
The recombinant plasmid pTP901-attP is transferred into Escherichia coli S17-1, and then transferred into Ralstonia eutropha TP901-attB by a conjugation transformation method, and LB plate sieve containing 200 mug/ml kanamycin and 100 mug/ml apramycin is used by utilizing the characteristic that suicide plasmid can not be replicated in host bacteria. If recombinase TP901 is functional, recombination between attB and attP sequences will be mediated, resulting in integration of plasmid pTP901-attP into the genome.
Comparative example 9: recombinase-mediated attB-attP recombination
The recombinant plasmid pP22-attP is transferred into Escherichia coli S17-1, and then transferred into Ralstonia eutropha P22-attB by a conjugative transformation method, and an LB plate sieve containing 200 mug/ml kanamycin and 100 mug/ml apramycin at the same time is used by utilizing the characteristic that the suicide plasmid cannot replicate in host bacteria. If recombinase P22 is functional, recombination between attB and attP sequences will be mediated, resulting in integration of plasmid pP22-attP into the genome.
Experimental example 1: verification of vector integration into genome
After the plasmids of 4 recombinases were transferred to the corresponding Ralstonia eutropha, 8 clones were randomly picked up and verified by PCR using primers gcgcatggcgtctccatg (SEQ ID NO:35) and gtggaccagctgttgcag (SEQ ID NO:36), and the results are shown in the following table:
Figure BDA0002403014230000221
Figure BDA0002403014230000231
the above table shows that recombination mediated by the recombinase Bxb1 with attB and attP all gave the expected 862bp band, demonstrating integration of plasmid pBxb1-attP into the genome (FIG. 3), whereas recombination mediated by the recombinases PhiC31, TP901 and P22 with attB and attP was unsuccessful.
It follows that it is not necessary or foreseeable that a recombinase that has proven useful in some host microorganisms will function in another microorganism. Only Bxb1 in 4 recombinant enzymes tested by the invention has the function in Ralstonia eutropha, and can be applied to the integration of exogenous sequences; however, none of the other 3 recombinases had a function and were not suitable for use in Ralstonia eutropha strains.
Example 4: deletion of vector backbone with helper plasmid
The above examples demonstrate that recombinase Bxb1 has function in Ralstonia eutropha, and DNA fragments to be integrated can be integrated on a vector containing Bxb1 gene and corresponding attP sequence together with the vector to the genome of recombinant bacteria Ralstonia eutropha Bxb 1-attB. In practice, however, it is more preferable that the vector portion other than the DNA fragment to be integrated be deleted. This example uses another set of recombinases to achieve this goal.
In the form of plasmid pBBR1MCS2(Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM.,1995.Four new derivatives of the broad-host-range cloning vector pBBR1MCS, cloning differential anti-genetic cassettes. Gene.166,175-176) as template for PCR amplification to obtain replicon fragments; amplifying by using a primer and taking the synthesized segment 09 as a template to obtain a DNA segment, wherein the segment contains a VCre recombinase gene, a kanamycin resistance gene and a spectinomycin resistance gene; according to commercial kits (Gibson)
Figure BDA0002403014230000233
Master Mix, purchased from New England Biolabs (NEB) Inc.) and the fragments were ligated to the replicon fragments by the Gibson Assembly method to obtain recombinant plasmid pVCre. The primers used are as follows:
Figure BDA0002403014230000232
Figure BDA0002403014230000241
the sequence of synthetic fragment 09 was:
GAGCCAGCCGGTGGCCGCCTACATGGCTCTGCTGTAGTTCACCCTTGGCGTCCAACCAGCGGCACCAGCGGCGCCTGAGAGGGGCGCGCCCAGCTGTCTAGGGCGGCGGATTTGTCCTACTCAGGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCGTTTTATTTGATGCCTTTAATTAAAGCGGATAACAATTTCACACAGGACAACTGAGACCGGAATTGGTCTCAACGTACGTCTCATTTTCGCCAGATATCGACGTCTTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAATCCGCATATGATCAATTCAAGGCCGAATAAGAAGGCTGGCTCTGCACCTTGGTGATCAAATAATTCGATAGCTTGTCGTAATAATGGCGGCATACTATCAGTAGTAGGTGTTTCCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAATACGCAACCTAAAGTAAAATGCCCCACAGCGCTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTTGGCATAAAAAGGCTAATTGATTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTACCTAAATGTACTTTTGCTCCATCGCGATGACTTAGTAAAGCACATCTAAAACTTTTAGCGTTATTACGTAAAAAATCTTGCCAGCTTTCCCCTTCTAAAGGGCAAAAGTGAGTATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGAGCAAAGCCCGCTTATTTTTTACATGCCAATACAATGTAGGCTGCTCTACACCTAGCTTCTGGGCGAGTTTACGGGTTGTTAAACCTTCGATTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACTTTACTTTTATCTAATCTAGACATCATTAATTCCTAATTTTTGTTGACACTCTATCGTTGATAGAGTTATTTTACCACTCCCTATCAGTGATAGAGAAAAGAATTCAAGCTGTCACCGGATGTGCTTTCCGGTCTGATGAGTCCGTGAGGACGAAACAGCCTCTACAAATAATTTTGTTTAATACTAGAGAAAGAGGAGAAATACTAGATGATCGAGAACCAGCTGAGCCTGCTGGGTGATTTCAGCGGCGTGCGTCCGGACGATGTTAAGACCGCGATCCAGGCGGCGCAAAAGAAAGGTATTAACGTTGCGGAGAACGAACAATTCAAAGCGGCGTTTGAGCACCTGCTGAACGAGTTCAAGAAACGTGAGGAACGTTACAGCCCGAACACCCTGCGTCGTCTGGAAAGCGCGTGGACCTGCTTTGTGGATTGGTGCCTGGCGAACCATCGTCACAGCCTGCCGGCGACCCCGGACACCGTTGAGGCGTTCTTTATCGAACGTGCGGAGGAACTGCACCGTAACACCCTGAGCGTGTACCGTTGGGCGATTAGCCGTGTTCATCGTGTTGCGGGTTGCCCGGACCCGTGCCTGGATATCTATGTGGAGGATCGTCTGAAGGCGATTGCGCGTAAGAAAGTGCGTGAGGGCGAAGCGGTTAAACAGGCGAGCCCGTTTAACGAACAACACCTGCTGAAGCTGACCAGCCTGTGGTACCGTAGCGACAAACTGCTGCTGCGTCGTAACCTGGCGCTGCTGGCGGTGGCGTATGAGAGCATGCTGCGTGCGAGCGAACTGGCGAACATCCGTGTTAGCGACATGGAGCTGGCGGGTGATGGCACCGCGATTCTGACCATCCCGATTACCAAGACCAACCACAGCGGCGAGCCGGACACCTGCATTCTGAGCCAGGATGTGGTTAGCCTGCTGATGGACTACACCGAAGCGGGCAAGCTGGACATGAGCAGCGATGGTTTCCTGTTTGTGGGCGTTAGCAAACACAACACCTGCATCAAGCCGAAGAAAGATAAACAGACCGGTGAAGTTCTGCACAAGCCGATTACCACCAAAACCGTGGAGGGCGTTTTCTATAGCGCGTGGGAAACCCTGGATCTGGGTCGTCAAGGCGTGAAGCCGTTTACCGCGCACAGCGCGCGTGTTGGTGCGGCGCAGGACCTGCTGAAGAAAGGCTACAACACCCTGCAAATCCAGCAAAGCGGTCGTTGGAGCAGCGGCGCGATGGTTGCGCGTTATGGTCGTGCGATCCTGGCGCGTGACGGCGCGATGGCGCACAGCCGTGTGAAAACCCGTAGCGCGCCGATGCAATGGGGCAAGGACGAGAAAGATTAATGATAAGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCTGCGTTTATATACTAGAGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGATTACTAGAGGTCATGCTTGCCATCTGTTTTCTTGCAAGATTACTAGTAGCGGCCGCTGCAGGTCGTGACTGGGAAAACCCTGGCGACTAGTCTTGGACTCCTGTTGATAGATCCAGTAATGACCTCAGAACTCCATCTGGATTTGTTCAGAACGCTCGGTTGCCGCCGGGCGTTTTTTATTGGTGAGAATCCAGACGTTGTGTCTCAAAATCTCTGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGGTTAATTGGTTGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAGATCACGCATCTTCCCGACAACGCAGACCGTTCCGTGGCAAAGCAAAAGTTCAAAATCACCAACTGGTCCACCTACAACAAAGCTCTCATCAACCGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGCGCTATTCTGACCTTGCCATCACGACTGTGCTGGTCATTAAACGCGTATTCAGGCTGACCCTGCGCGCTGCGCAGGGCTTTATTGATTCCATTTTTACACTGATGAATGTTCCGTTGCGCTGCCCGGATTACAGCCGGATCCTCTAGAGTCGACCTGCAGGCATGCTGATCGGCACGTAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAATGCGCTCACGCAACTGGTCCAGAACCTTGACCGAACGCAGCGGTGGTAACGGCGCAGTGGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTGGGGTACAGTCTATGCCTCGGGCATCCAAGCAGCAAGCGCGTTACGCCGTGGGTCGATGTTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAAACATCATGAGGGAAGCGGTGATCGCCGAAGTATCGACTCAACTATCAGAGGTAGTTGGCGTCATCGAGCGCCATCTCGAACCGACGTTGCTGGCCGTACATTTGTACGGCTCCGCAGTGGATGGCGGCCTGAAGCCACACAGTGATATTGATTTGCTGGTTACGGTGACCGTAAGGCTTGATGAAACAACGCGGCGAGCTTTGATCAACGACCTTTTGGAAACTTCGGCTTCCCCTGGAGAGAGCGAGATTCTCCGCGCTGTAGAAGTCACCATTGTTGTGCACGACGACATCATTCCGTGGCGTTATCCAGCTAAGCGCGAACTGCAATTTGGAGAATGGCAGCGCAATGACATTCTTGCAGGTATCTTCGAGCCAGCCACGATCGACATTGATCTGGCTATCTTGCTGACAAAAGCAAGAGAACATAGCGTTGCCTTGGTAGGTCCAGCGGCGGAGGAACTCTTTGATCCGGTTCCTGAACAGGATCTATTTGAGGCGCTAAATGAAACCTTAACGCTATGGAACTCGCCGCCCGACTGGGCTGGCGATGAGCGAAATGTAGTGCTTACGTTGTCCCGCATTTGGTACAGCGCAGTAACCGGCAAAATCGCGCCGAAGGATGTCGCTGCCGACTGGGCAATGGAGCGCCTGCCGGCCCAGTATCAGCCCGTCATACTTGAAGCTAGACAGGCTTATCTTGGACAAGAAGAAGATCGCTTGGCCTCGCGCGCAGATCAGTTGGAAGAATTTGTCCACTACGTGAAAGGCGAGATCACCAAGGTAGTCGGCAAATAAACTAGTAAATAATAAAAAAGCCGGATTAATAATCTGGCTTTTTATATTCTCTGCATAACCCTGCTTCGGGGTCATTATAGCGATTTTTTCGGTATATCCATCCTTTTTCGCACGATATACAGGATTTTGCCAAAGGGTTCGTGTAGACTTTCCTTGGTGTATCCAACGGCGTCAGCCGGGCAGGATAGGTGAAGTAGGCCCACCCGCGAGCGGGTGTTCCTTCTTCACTGTCCCTTATTCGCACCTGGCGGTGCTCAACGGGAATCCTGCTCTGCGAGGCTGGCCGTAGGCCGGCCGCGATGCAGGTGGCTGCTGAACCCCCAGCCGGAACTGACCCCACAAGGCCCTACCGGCGCGGCAGCG(SEQ ID NO:41)
wherein the gene sequence of the VCre recombinase is as follows:
ATGATCGAGAACCAGCTGAGCCTGCTGGGTGATTTCAGCGGCGTGCGTCCGGACGATGTTAAGACCGCGATCCAGGCGGCGCAAAAGAAAGGTATTAACGTTGCGGAGAACGAACAATTCAAAGCGGCGTTTGAGCACCTGCTGAACGAGTTCAAGAAACGTGAGGAACGTTACAGCCCGAACACCCTGCGTCGTCTGGAAAGCGCGTGGACCTGCTTTGTGGATTGGTGCCTGGCGAACCATCGTCACAGCCTGCCGGCGACCCCGGACACCGTTGAGGCGTTCTTTATCGAACGTGCGGAGGAACTGCACCGTAACACCCTGAGCGTGTACCGTTGGGCGATTAGCCGTGTTCATCGTGTTGCGGGTTGCCCGGACCCGTGCCTGGATATCTATGTGGAGGATCGTCTGAAGGCGATTGCGCGTAAGAAAGTGCGTGAGGGCGAAGCGGTTAAACAGGCGAGCCCGTTTAACGAACAACACCTGCTGAAGCTGACCAGCCTGTGGTACCGTAGCGACAAACTGCTGCTGCGTCGTAACCTGGCGCTGCTGGCGGTGGCGTATGAGAGCATGCTGCGTGCGAGCGAACTGGCGAACATCCGTGTTAGCGACATGGAGCTGGCGGGTGATGGCACCGCGATTCTGACCATCCCGATTACCAAGACCAACCACAGCGGCGAGCCGGACACCTGCATTCTGAGCCAGGATGTGGTTAGCCTGCTGATGGACTACACCGAAGCGGGCAAGCTGGACATGAGCAGCGATGGTTTCCTGTTTGTGGGCGTTAGCAAACACAACACCTGCATCAAGCCGAAGAAAGATAAACAGACCGGTGAAGTTCTGCACAAGCCGATTACCACCAAAACCGTGGAGGGCGTTTTCTATAGCGCGTGGGAAACCCTGGATCTGGGTCGTCAAGGCGTGAAGCCGTTTACCGCGCACAGCGCGCGTGTTGGTGCGGCGCAGGACCTGCTGAAGAAAGGCTACAACACCCTGCAAATCCAGCAAAGCGGTCGTTGGAGCAGCGGCGCGATGGTTGCGCGTTATGGTCGTGCGATCCTGGCGCGTGACGGCGCGATGGCGCACAGCCGTGTGAAAACCCGTAGCGCGCCGATGCAATGGGGCAAGGACGAGAAAGATTAA(SEQ ID NO:42)
the amino acid sequence of the VCre recombinase is:
MIENQLSLLGDFSGVRPDDVKTAIQAAQKKGINVAENEQFKAAFEHLLNEFKKREERYSPNTLRRLESAWTCFVDWCLANHRHSLPATPDTVEAFFIERAEELHRNTLSVYRWAISRVHRVAGCPDPCLDIYVEDRLKAIARKKVREGEAVKQASPFNEQHLLKLTSLWYRSDKLLLRRNLALLAVAYESMLRASELANIRVSDMELAGDGTAILTIPITKTNHSGEPDTCILSQDVVSLLMDYTEAGKLDMSSDGFLFVGVSKHNTCIKPKKDKQTGEVLHKPITTKTVEGVFYSAWETLDLGRQGVKPFTAHSARVGAAQDLLKKGYNTLQIQQSGRWSSGAMVARYGRAILARDGAMAHSRVKTRSAPMQWGKDEKD(SEQ ID NO:43)
carrying out PCR amplification by taking the plasmid pK18mobsacB as a template to obtain a vector fragment; amplifying by using a primer and taking the synthesized fragment 10 as a template to obtain a DNA fragment, wherein the fragment contains Bxb1 recombinase gene and an attP sequence corresponding to the recombinase gene, an exogenous gene to be integrated (green fluorescent protein gene GFP in the embodiment) and 2 VloxP sequences specifically recognized by VCre recombinase; according to commercial kits (Gibson)
Figure BDA0002403014230000262
Master Mix, purchased from New England Biolabs (NEB) Inc.) and the fragments were ligated to the vector fragments by the Gibson Assembly method to obtain the recombinant plasmid pBxb 1-attP-VCre. The primers used are as follows:
Figure BDA0002403014230000261
the sequence of synthetic fragment 10 was:
CACACAGGAAACAGCTATGACCTGGATTCTCACCAATAAAAAACGCCCGGCGGCAACCGAGCGTTCTGAACAAATCCAGATGGAGTTCTGAGGTCATTACTGGATCTATCAACAGGAGTCCAAGCTACGACATCCCGGTGTGTAGCCGTTCGACCACGCTGCCGAGCCTGAGATGCTGCTCGTACTCTTGCAGATCCCCGAAGTCGATCGTGCGAGTCAGCCCGCCGCGGACGTCGAACGTCAGCCGAACGTTCATCGACCGAAGCCAGGTGTTCTTTGCCGCGGTGTCCTGCTCCCGCCACCAGTCCCCGAACCGCTGCCCGGTCTCGCGCCACTCCCAGCCAGACGGGCGAGCCTCTAGGCCCTCCAGCTCCTCTTGCCGCGCGGCCAGCGCCGCAATACGGGCATCCAGTGCTTCTCGCTGCGGAGAGCCGGCCCGGTAGGCCGGGGAGCCGATCAGCGACGTCAGGTCCACCAGCTCCGCGTTCACCTCCGCGAGTTCGACCGCGGAGTCCGAGCCGGCTACCCAGACTTTCTCCAGACGCTCCGCGTCCCCGAGCAGATCCAGCACCTGCTCCTCGCAGAACGCGTCCCACTCGGCCATCGCCACCGTGCCGTTCCCGCAGTGCTTCGGGAACCCCATCGAGCGGCAGCGGTAGCGCGGGTGCTTACGTCCTCCCCCGGCGAACTTGTACGCGGGCTCCCCGCACACCGCGCAGAACAACACCCGCAGCAGCAGCGACGGGGTAGACACCGCGGGCTTCGCCCGGGAGGTCTTCACGAGCTCGGCGCGCAGCGCCTCCAGCTGCTCACGGGTCAGGATCGGCTCAGCCCGCACCAGCGGGGCTCCGTCGTCGTCTCGGACGGTCTTACCGTTCAGAGTCGCGTACCCGAGCATCGCCTCGGAGATCATCGATCGCTTCAGCGCGGTAGCCGACCACTCCCGGCCCTGCGGCTCGCGGCCTTGCAGCTGCGCGAAGTAGTCCTTCGGCGACAGGACACCACGCCGGTTCAGGTCGTGGGCCACCAGGTGCAGCGGCTCGTGGTTGTCGACGACGCGGTGATACACCTCGAGGATGCGCTCTCGCTGCACAGGGTCCGGCACCAGCCGCCACTCCCCGTCCACGCGCGTAGGCAGGTATCCCCACGGCGGCAGGGATCCTCGGTATTTCCCGGCGCGGATATTGAAATGCGCAGCCGAACGGTTCCGCTCTTTGATCGCTTCTAATTCCATCTGCGCCACCGTTCCCATAAGCGCGATGACGACCGCCGCAAACGGCGTCGTCGTATCGAAGTGCGCTTCGGTCGCGGAGACGACCAGCTTCTTGTGGTCCTCGGCCCAGTGGACCAGCTGTTGCAGATGCCGGATCGATCGGGTCAACCGGTCTACCCGGTACGCCACGATCACGTCGAACGGTTGCTCCTCGAACGCTAGCCACCGGGCCAGGTTCGGTCTGCGCTTCCGGTCGAACGGATCGACCGCCCCGGAGACGTCCAGATCCTCCGCTACCCCGACGACGTCCCAGCCGCGCTGGGCGCAGAGCTGCTGGCAAGACTCCAGCTGACGCTCCGGTGAAGTCGTAGCATCGGTGACGCGGGACAGGCGGATGACTACCAGGGCTCTCATCTAGTATTTCTCCTCTTTCTCTAGTATTAAACAAAATTATTTGTAGAGGCTGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACAGCTTGCTCGCAGGTCAAAGGGTATACTGGGATTCCAGTGAACGCAATCAATTTCTGAGAACTGTCATTCTCGGAAATTGAGGGTTTGTACCGTACACCACTGAGACCGCGGTGGTTGACCAGACAAACCACGAGGGAGACCAGAAACAAAAAAAGGCCCCCCGTTAGGGAGGCCTTCAATAATTGGTTATCATTTGTACAGTTCATCCATACCATGCGTGATGCCCGCTGCGGTTACGAACTCCAGCAGAACCATATGATCGCGTTTCTCGTTCGGATCTTTAGACAGAACGCTTTGCGTGCTCAGATAGTGATTGTCTGGCAGCAGAACAGGACCATCACCGATTGGAGTGTTTTGCTGGTAGTGATCAGCCAGCTGCACGCTGCCATCCTCCACGTTGTGGCGAATTTTAAAATTCGCTTTAATGCCATTTTTTTGTTTATCGGCGGTGATGTAAACATTGTGGCTGTTAAAATTGTATTCCAGCTTATGGCCCAGGATATTGCCGTCTTCTTTAAAGTCAATGCCTTTCAGCTCAATGCGGTTTACCAGGGTATCGCCTTCAAATTTCACTTCCGCACGCGTTTTGTACGTGCCGTCATCCTTAAAGGAAATCGTGCGTTCCTGCACATAGCCTTCCGGCATGGCGGACTTGAAGAAGTCATGCTGCTTCATATGGTCCGGATAACGAGCAAAGCACTGAACACCATAAGTCAGCGTCGTTACCAGAGTCGGCCAAGGTACCGGCAGTTTACCAGTAGTACAGATGAACTTCAGCGTCAGTTTACCATTAGTTGCGTCACCTTCACCCTCGCCACGCACGGAAAACTTATGACCGTTGACATCACCATCCAGTTCCACCAGAATAGGGACGACACCAGTGAACAGCTCTTCGCCTTTACGCATCTAGTATTTCTCCTCTTTCTCTAGTAACTCTTAAACAAAATTATTTGTAGAGGCTGTTTCGTCCTCACGGACTCATCAGACCGGAAAGCACATCCGGTGACAGCTTGCTCGCAGGTCAAAATATATACTGGGATTCCAGTGAACGCAACAGGATGTGACGAGCGGTGTGGTCAATTTCTGAGAACTGTCATTCTCGGAAATTGAACTGGCCGTCGTTTTACAAC(SEQ ID NO:44)
wherein the sequence of VloxP is:
TCAATTTCCGAGAATGACAGTTCTCAGAAATTGA(SEQ ID NO:45)
transferring the recombinant plasmid pBxb1-attP-VCre into Escherichia coli S17-1, transferring the recombinant plasmid into Ralstonia eutropha Bxb1-attB by a conjugative transformation method, and screening positive clones by using an LB plate simultaneously containing 200 mu g/ml kanamycin and 100 mu g/ml apramycin to obtain the recombinant bacteria with plasmids integrated on genomes. Then the recombinant plasmid pVCre is transferred into Escherichia coli S17-1, the recombinant strain is transferred by a joint transformation method, LB plates simultaneously containing 250 mug/ml spectinomycin and 100 mug/ml apramycin are used for randomly picking 8 growing clones, PCR verification is carried out by primers tcggcggcggccgggcgtg (SEQ ID NO:46) and caccgattggagtgttttgc (SEQ ID NO:47), all expected 1547bp bands are obtained, and VCre is proved to delete the vector skeleton (figure 4). And finally, culturing the positive clone on a non-resistance plate to obtain lost pVCre plasmid, namely obtaining recombinant bacteria Ralstonia eutropha Bxb1-GFP with exogenous gene GFP integrated into the genome.
Sequence listing
<110> Shenzhen Lanjing Biotech Ltd
<120> a method for integrating exogenous sequences into genome
<130> DI20-0220-XC37
<160> 47
<170> SIPOSequenceListing 1.0
<210> 1
<211> 40
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> H1-primer 1
<400> 1
acacaggaaa cagctatgac tggtacccgg ccaagtctgc 40
<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> H1-primer 2
<400> 2
gatttgattg tctctctgcc 20
<210> 3
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> H2-primer 3
<400> 3
cctgccggcc tggttcaac 19
<210> 4
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> H2-primer 4
<400> 4
gttgtaaaac gacggccagt aaagcctcta ccgctcgc 38
<210> 5
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 5
<400> 5
gtcatagctg tttcctgtgt g 21
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 6
<400> 6
actggccgtc gttttacaac 20
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 7
<400> 7
ggcagagaga caatcaaatc 20
<210> 8
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 8
<400> 8
gttgaaccag gccggcagg 19
<210> 9
<211> 337
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 01
<400> 9
ggcagagaga caatcaaatc tctagggcgg cggatttgtc ctactcagga gagcgttcac 60
cgacaaacaa cagataaaac gaaaggccca gtctttcgac tgagcctttc gttttatttg 120
atgcccagga aacagctatg acggttcggc cggcttgtcg acgacggcgg tctccgtcgt 180
caggatcatc cgggcactgg ccgtcgtttt acaaccttgg actcctgttg atagatccag 240
taatgacctc agaactccat ctggatttgt tcagaacgct cggttgccgc cgggcgtttt 300
ttattggtga gaatccagcc tgccggcctg gttcaac 347
<210> 10
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attB sequence corresponding to Bxb1
<400> 10
tcggccggct tgtcgacgac ggcggtctcc gtcgtcagga tcatccgggc 50
<210> 11
<211> 321
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 02
<400> 11
ggcagagaga caatcaaatc tctagggcgg cggatttgtc ctactcagga gagcgttcac 60
cgacaaacaa cagataaaac gaaaggccca gtctttcgac tgagcctttc gttttatttg 120
atgcccagga aacagctatg acggtcgcgc ccggggagcc caagggcacg ccctggcaca 180
ctggccgtcg ttttacaacc ttggactcct gttgatagat ccagtaatga cctcagaact 240
ccatctggat ttgttcagaa cgctcggttg ccgccgggcg ttttttattg gtgagaatcc 300
agcctgccgg cctggttcaa c 331
<210> 12
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attB sequence corresponding to PhiC31
<400> 12
cgcgcccggg gagcccaagg gcacgccctg gcac 34
<210> 13
<211> 340
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 03
<400> 13
ggcagagaga caatcaaatc tctagggcgg cggatttgtc ctactcagga gagcgttcac 60
cgacaaacaa cagataaaac gaaaggccca gtctttcgac tgagcctttc gttttatttg 120
atgcccagga aacagctatg acggttatgc caacacaatt aacatctcaa tcaaggtaaa 180
tgctttttgc tttttttgac tggccgtcgt tttacaacct tggactcctg ttgatagatc 240
cagtaatgac ctcagaactc catctggatt tgttcagaac gctcggttgc cgccgggcgt 300
tttttattgg tgagaatcca gcctgccggc ctggttcaac 350
<210> 14
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attB sequence corresponding to TP901
<400> 14
tatgccaaca caattaacat ctcaatcaag gtaaatgctt tttgcttttt ttg 53
<210> 15
<211> 314
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 04
<400> 15
ggcagagaga caatcaaatc tctagggcgg cggatttgtc ctactcagga gagcgttcac 60
cgacaaacaa cagataaaac gaaaggccca gtctttcgac tgagcctttc gttttatttg 120
atgcccagga aacagctatg acggtacgac cttcgcatta cgaatgcgct gcactggccg 180
tcgttttaca accttggact cctgttgata gatccagtaa tgacctcaga actccatctg 240
gatttgttca gaacgctcgg ttgccgccgg gcgtttttta ttggtgagaa tccagcctgc 300
cggcctggtt caac 324
<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attB sequence corresponding to P22
<400> 16
acgaccttcg cattacgaat gcgctgc 27
<210> 17
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 9
<400> 17
cacacaggaa acagctatga c 21
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 10
<400> 18
gttgtaaaac gacggccagt 20
<210> 19
<211> 1844
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 05
<400> 19
cacacaggaa acagctatga cctggattct caccaataaa aaacgcccgg cggcaaccga 60
gcgttctgaa caaatccaga tggagttctg aggtcattac tggatctatc aacaggagtc 120
caagctacga catcccggtg tgtagccgtt cgaccacgct gccgagcctg agatgctgct 180
cgtactcttg cagatccccg aagtcgatcg tgcgagtcag cccgccgcgg acgtcgaacg 240
tcagccgaac gttcatcgac cgaagccagg tgttctttgc cgcggtgtcc tgctcccgcc 300
accagtcccc gaaccgctgc ccggtctcgc gccactccca gccagacggg cgagcctcta 360
ggccctccag ctcctcttgc cgcgcggcca gcgccgcaat acgggcatcc agtgcttctc 420
gctgcggaga gccggcccgg taggccgggg agccgatcag cgacgtcagg tccaccagct 480
ccgcgttcac ctccgcgagt tcgaccgcgg agtccgagcc ggctacccag actttctcca 540
gacgctccgc gtccccgagc agatccagca cctgctcctc gcagaacgcg tcccactcgg 600
ccatcgccac cgtgccgttc ccgcagtgct tcgggaaccc catcgagcgg cagcggtagc 660
gcgggtgctt acgtcctccc ccggcgaact tgtacgcggg ctccccgcac accgcgcaga 720
acaacacccg cagcagcagc gacggggtag acaccgcggg cttcgcccgg gaggtcttca 780
cgagctcggc gcgcagcgcc tccagctgct cacgggtcag gatcggctca gcccgcacca 840
gcggggctcc gtcgtcgtct cggacggtct taccgttcag agtcgcgtac ccgagcatcg 900
cctcggagat catcgatcgc ttcagcgcgg tagccgacca ctcccggccc tgcggctcgc 960
ggccttgcag ctgcgcgaag tagtccttcg gcgacaggac accacgccgg ttcaggtcgt 1020
gggccaccag gtgcagcggc tcgtggttgt cgacgacgcg gtgatacacc tcgaggatgc 1080
gctctcgctg cacagggtcc ggcaccagcc gccactcccc gtccacgcgc gtaggcaggt 1140
atccccacgg cggcagggat cctcggtatt tcccggcgcg gatattgaaa tgcgcagccg 1200
aacggttccg ctctttgatc gcttctaatt ccatctgcgc caccgttccc ataagcgcga 1260
tgacgaccgc cgcaaacggc gtcgtcgtat cgaagtgcgc ttcggtcgcg gagacgacca 1320
gcttcttgtg gtcctcggcc cagtggacca gctgttgcag atgccggatc gatcgggtca 1380
accggtctac ccggtacgcc acgatcacgt cgaacggttg ctcctcgaac gctagccacc 1440
gggccaggtt cggtctgcgc ttccggtcga acggatcgac cgccccggag acgtccagat 1500
cctccgctac cccgacgacg tcccagccgc gctgggcgca gagctgctgg caagactcca 1560
gctgacgctc cggtgaagtc gtagcatcgg tgacgcggga caggcggatg actaccaggg 1620
ctctcatcta gtatttctcc tctttctcta gtattaaaca aaattatttg tagaggctgt 1680
ttcgtcctca cggactcatc agaccggaaa gcacatccgg tgacagcttg ctcgcaggtc 1740
aaagggtata ctgggattcc agtgaacgca agggtttgta ccgtacacca ctgagaccgc 1800
ggtggttgac cagacaaacc acgaactggc cgtcgtttta caac 1904
<210> 20
<211> 1503
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> gene sequence of Bxb1 recombinase
<400> 20
atgagagccc tggtagtcat ccgcctgtcc cgcgtcaccg atgctacgac ttcaccggag 60
cgtcagctgg agtcttgcca gcagctctgc gcccagcgcg gctgggacgt cgtcggggta 120
gcggaggatc tggacgtctc cggggcggtc gatccgttcg accggaagcg cagaccgaac 180
ctggcccggt ggctagcgtt cgaggagcaa ccgttcgacg tgatcgtggc gtaccgggta 240
gaccggttga cccgatcgat ccggcatctg caacagctgg tccactgggc cgaggaccac 300
aagaagctgg tcgtctccgc gaccgaagcg cacttcgata cgacgacgcc gtttgcggcg 360
gtcgtcatcg cgcttatggg aacggtggcg cagatggaat tagaagcgat caaagagcgg 420
aaccgttcgg ctgcgcattt caatatccgc gccgggaaat accgaggatc cctgccgccg 480
tggggatacc tgcctacgcg cgtggacggg gagtggcggc tggtgccgga ccctgtgcag 540
cgagagcgca tcctcgaggt gtatcaccgc gtcgtcgaca accacgagcc gctgcacctg 600
gtggcccacg acctgaaccg gcgtggtgtc ctgtcgccga aggactactt cgcgcagctg 660
caaggccgcg agccgcaggg ccgggagtgg tcggctaccg cgctgaagcg atcgatgatc 720
tccgaggcga tgctcgggta cgcgactctg aacggtaaga ccgtccgaga cgacgacgga 780
gccccgctgg tgcgggctga gccgatcctg acccgtgagc agctggaggc gctgcgcgcc 840
gagctcgtga agacctcccg ggcgaagccc gcggtgtcta ccccgtcgct gctgctgcgg 900
gtgttgttct gcgcggtgtg cggggagccc gcgtacaagt tcgccggggg aggacgtaag 960
cacccgcgct accgctgccg ctcgatgggg ttcccgaagc actgcgggaa cggcacggtg 1020
gcgatggccg agtgggacgc gttctgcgag gagcaggtgc tggatctgct cggggacgcg 1080
gagcgtctgg agaaagtctg ggtagccggc tcggactccg cggtcgaact cgcggaggtg 1140
aacgcggagc tggtggacct gacgtcgctg atcggctccc cggcctaccg ggccggctct 1200
ccgcagcgag aagcactgga tgcccgtatt gcggcgctgg ccgcgcggca agaggagctg 1260
gagggcctag aggctcgccc gtctggctgg gagtggcgcg agaccgggca gcggttcggg 1320
gactggtggc gggagcagga caccgcggca aagaacacct ggcttcggtc gatgaacgtt 1380
cggctgacgt tcgacgtccg cggcgggctg actcgcacga tcgacttcgg ggatctgcaa 1440
gagtacgagc agcatctcag gctcggcagc gtggtcgaac ggctacacac cgggatgtcg 1500
tag 1553
<210> 21
<211> 500
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Bxb1 recombinase
<400> 21
Met Arg Ala Leu Val Val Ile Arg Leu Ser Arg Val Thr Asp Ala Thr
1 5 10 15
Thr Ser Pro Glu Arg Gln Leu Glu Ser Cys Gln Gln Leu Cys Ala Gln
20 25 30
Arg Gly Trp Asp Val Val Gly Val Ala Glu Asp Leu Asp Val Ser Gly
35 40 45
Ala Val Asp Pro Phe Asp Arg Lys Arg Arg Pro Asn Leu Ala Arg Trp
50 55 60
Leu Ala Phe Glu Glu Gln Pro Phe Asp Val Ile Val Ala Tyr Arg Val
65 70 75 80
Asp Arg Leu Thr Arg Ser Ile Arg His Leu Gln Gln Leu Val His Trp
85 90 95
Ala Glu Asp His Lys Lys Leu Val Val Ser Ala Thr Glu Ala His Phe
100 105 110
Asp Thr Thr Thr Pro Phe Ala Ala Val Val Ile Ala Leu Met Gly Thr
115 120 125
Val Ala Gln Met Glu Leu Glu Ala Ile Lys Glu Arg Asn Arg Ser Ala
130 135 140
Ala His Phe Asn Ile Arg Ala Gly Lys Tyr Arg Gly Ser Leu Pro Pro
145 150 155 160
Trp Gly Tyr Leu Pro Thr Arg Val Asp Gly Glu Trp Arg Leu Val Pro
165 170 175
Asp Pro Val Gln Arg Glu Arg Ile Leu Glu Val Tyr His Arg Val Val
180 185 190
Asp Asn His Glu Pro Leu His Leu Val Ala His Asp Leu Asn Arg Arg
195 200 205
Gly Val Leu Ser Pro Lys Asp Tyr Phe Ala Gln Leu Gln Gly Arg Glu
210 215 220
Pro Gln Gly Arg Glu Trp Ser Ala Thr Ala Leu Lys Arg Ser Met Ile
225 230 235 240
Ser Glu Ala Met Leu Gly Tyr Ala Thr Leu Asn Gly Lys Thr Val Arg
245 250 255
Asp Asp Asp Gly Ala Pro Leu Val Arg Ala Glu Pro Ile Leu Thr Arg
260 265 270
Glu Gln Leu Glu Ala Leu Arg Ala Glu Leu Val Lys Thr Ser Arg Ala
275 280 285
Lys Pro Ala Val Ser Thr Pro Ser Leu Leu Leu Arg Val Leu Phe Cys
290 295 300
Ala Val Cys Gly Glu Pro Ala Tyr Lys Phe Ala Gly Gly Gly Arg Lys
305 310 315 320
His Pro Arg Tyr Arg Cys Arg Ser Met Gly Phe Pro Lys His Cys Gly
325 330 335
Asn Gly Thr Val Ala Met Ala Glu Trp Asp Ala Phe Cys Glu Glu Gln
340 345 350
Val Leu Asp Leu Leu Gly Asp Ala Glu Arg Leu Glu Lys Val Trp Val
355 360 365
Ala Gly Ser Asp Ser Ala Val Glu Leu Ala Glu Val Asn Ala Glu Leu
370 375 380
Val Asp Leu Thr Ser Leu Ile Gly Ser Pro Ala Tyr Arg Ala Gly Ser
385 390 395 400
Pro Gln Arg Glu Ala Leu Asp Ala Arg Ile Ala Ala Leu Ala Ala Arg
405 410 415
Gln Glu Glu Leu Glu Gly Leu Glu Ala Arg Pro Ser Gly Trp Glu Trp
420 425 430
Arg Glu Thr Gly Gln Arg Phe Gly Asp Trp Trp Arg Glu Gln Asp Thr
435 440 445
Ala Ala Lys Asn Thr Trp Leu Arg Ser Met Asn Val Arg Leu Thr Phe
450 455 460
Asp Val Arg Gly Gly Leu Thr Arg Thr Ile Asp Phe Gly Asp Leu Gln
465 470 475 480
Glu Tyr Glu Gln His Leu Arg Leu Gly Ser Val Val Glu Arg Leu His
485 490 495
Thr Gly Met Ser
500
<210> 22
<211> 53
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attP sequence corresponding to Bxb1
<400> 22
tcgtggtttg tctggtcaac caccgcggtc tcagtggtgt acggtacaaa ccc 53
<210> 23
<211> 2145
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 06
<400> 23
cacacaggaa acagctatga cctggattct caccaataaa aaacgcccgg cggcaaccga 60
gcgttctgaa caaatccaga tggagttctg aggtcattac tggatctatc aacaggagtc 120
caagctacgc cgctacgtct tccgtgccgt cctgggcgtc gtcttcgtcg tcgtcggtcg 180
gcggcttcgc ccacgtgatc gaagcgcgct tctcgatggg cgttccctgc cccctgcccg 240
tagtcgactt cgtgacaacg atcttgtcta cgaagagccc gacgaacacg cgcttgtcgt 300
ctactgacgc gcgcccccac cacgacttag ggccggtcgg gtcagcgtcg gcgtcttcgg 360
ggaaccattg gtcaagggga agcttcgggg cttcggcggc ttcaagttcg gcaagccgct 420
cttccgcccc ttgctgccgg agcgtcagcg ctgcctgttg cttccggaag tgcttcctgc 480
caacgggtcc gtcgtacgcg cctgccgcgc ggtcttcgta cagctcttca agggcgttca 540
gggcgtcggc gcgctccgca acaaggttcg cccgttcgcc gctcttctca ggcgcctcag 600
tgagcttgcc gaagcgtcgg gcggcttccc acagaagcgc caacgtctct tcgtcgcctt 660
cggcgtgcct gatcttgttg aagatgcgtt ccgcaacgaa cttgtcgagt gccgccatgc 720
tgacgttgca cgtgccttcg tgctgcccag gtgcggacgg gtcgaccacc ttccggcgac 780
ggcagcggta agagtccttg atcgattctt ccccgcgctt cgaagtcatg acggcgccac 840
actcgcagta cagcttgtcc atggcggaca gaatggcttg cccccgggaa agccccttgc 900
cgcgccccct gccgtccaac cacgcctgaa gctcatacca ctcagcgggc tcgatgatcg 960
gtccgcaatc aagctcgacc ggccggagcg tgatcgggtc gcgctgaatg cggtaaccct 1020
caatcttcgt ggtcggcgtg ccgtccggct tcttcttgta gatcacctca gcggcgaagc 1080
ccgcaatacg cgggtcccga aggattcgca taacggttgc cgggtcccag gcgcttgaag 1140
cggtcttctt cccaatcgtc tcgccccggg tcggcacggc gtcagcgtcc atgcgcttac 1200
aaagccccgt gatgctgccc gggtgaatgg cggcttgact gcccggcttg aagggaaggt 1260
gtttgtgcgt cttgatctca cgccaccacc accggattac gtcgggctcg aactcgaagg 1320
gtccggtaag gggagtggtc gagtgcgcaa gcttgttgat gacgacattg accattcggc 1380
cgttgcgcgt gatctccttc gtctccgaaa caagctcgaa gccgtaaggc gccttcccgc 1440
cgacgtaccc gcccaattcg cgctgaaggt tcttcgtgtc gagaatcttc gccgacttca 1500
gcgaagattc tttgtgcgac gcgtcgagcc gcataatcag gtgaatcagg tccatgacgt 1560
ttccctgccg gaagacgcct tcctgagtgg aaacaatcgt cacgcccagg gcgagcaatt 1620
ccgagacaat cggaatcgcg tccatgacct tcaggcgcga gaagcgcgac acgtcataga 1680
caatgatcat gttgagccgc ccggcgcggc attcgttcag gatgcgttcg aactccgggc 1740
gctccgccgt cccgaacgcc gacgtgcccg gcgcttcgct gaaatgcccg acgaacctga 1800
accggccccc gtcgcgctcg acttcgcgct gaaggtcggc cgccttgtct tcgttggcgc 1860
tacgctgtgt cgctgggctt gctgcgctcg aattctcgcg ctcgcgcgac tgacggtcgt 1920
aagcacccgc gtacgtgtcc atctagtatt tctcctcttt ctctagtatt aaacaaaatt 1980
atttgtagag gctgtttcgt cctcacggac tcatcagacc ggaaagcaca tccggtgaca 2040
gcttgctcgc aggtcaaagg gtatactggg attccagtga acgcaacccc aactggggta 2100
acctttgagt tctctcagtt gggggactgg ccgtcgtttt acaac 2215
<210> 24
<211> 1818
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Gene sequence of PhiC31 recombinase
<400> 24
atggacacgt acgcgggtgc ttacgaccgt cagtcgcgcg agcgcgagaa ttcgagcgca 60
gcaagcccag cgacacagcg tagcgccaac gaagacaagg cggccgacct tcagcgcgaa 120
gtcgagcgcg acgggggccg gttcaggttc gtcgggcatt tcagcgaagc gccgggcacg 180
tcggcgttcg ggacggcgga gcgcccggag ttcgaacgca tcctgaacga atgccgcgcc 240
gggcggctca acatgatcat tgtctatgac gtgtcgcgct tctcgcgcct gaaggtcatg 300
gacgcgattc cgattgtctc ggaattgctc gccctgggcg tgacgattgt ttccactcag 360
gaaggcgtct tccggcaggg aaacgtcatg gacctgattc acctgattat gcggctcgac 420
gcgtcgcaca aagaatcttc gctgaagtcg gcgaagattc tcgacacgaa gaaccttcag 480
cgcgaattgg gcgggtacgt cggcgggaag gcgccttacg gcttcgagct tgtttcggag 540
acgaaggaga tcacgcgcaa cggccgaatg gtcaatgtcg tcatcaacaa gcttgcgcac 600
tcgaccactc cccttaccgg acccttcgag ttcgagcccg acgtaatccg gtggtggtgg 660
cgtgagatca agacgcacaa acaccttccc ttcaagccgg gcagtcaagc cgccattcac 720
ccgggcagca tcacggggct ttgtaagcgc atggacgctg acgccgtgcc gacccggggc 780
gagacgattg ggaagaagac cgcttcaagc gcctgggacc cggcaaccgt tatgcgaatc 840
cttcgggacc cgcgtattgc gggcttcgcc gctgaggtga tctacaagaa gaagccggac 900
ggcacgccga ccacgaagat tgagggttac cgcattcagc gcgacccgat cacgctccgg 960
ccggtcgagc ttgattgcgg accgatcatc gagcccgctg agtggtatga gcttcaggcg 1020
tggttggacg gcagggggcg cggcaagggg ctttcccggg ggcaagccat tctgtccgcc 1080
atggacaagc tgtactgcga gtgtggcgcc gtcatgactt cgaagcgcgg ggaagaatcg 1140
atcaaggact cttaccgctg ccgtcgccgg aaggtggtcg acccgtccgc acctgggcag 1200
cacgaaggca cgtgcaacgt cagcatggcg gcactcgaca agttcgttgc ggaacgcatc 1260
ttcaacaaga tcaggcacgc cgaaggcgac gaagagacgt tggcgcttct gtgggaagcc 1320
gcccgacgct tcggcaagct cactgaggcg cctgagaaga gcggcgaacg ggcgaacctt 1380
gttgcggagc gcgccgacgc cctgaacgcc cttgaagagc tgtacgaaga ccgcgcggca 1440
ggcgcgtacg acggacccgt tggcaggaag cacttccgga agcaacaggc agcgctgacg 1500
ctccggcagc aaggggcgga agagcggctt gccgaacttg aagccgccga agccccgaag 1560
cttccccttg accaatggtt ccccgaagac gccgacgctg acccgaccgg ccctaagtcg 1620
tggtgggggc gcgcgtcagt agacgacaag cgcgtgttcg tcgggctctt cgtagacaag 1680
atcgttgtca cgaagtcgac tacgggcagg gggcagggaa cgcccatcga gaagcgcgct 1740
tcgatcacgt gggcgaagcc gccgaccgac gacgacgaag acgacgccca ggacggcacg 1800
gaagacgtag cggcgtag 1878
<210> 25
<211> 605
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> PhiC31 recombinase
<400> 25
Met Asp Thr Tyr Ala Gly Ala Tyr Asp Arg Gln Ser Arg Glu Arg Glu
1 5 10 15
Asn Ser Ser Ala Ala Ser Pro Ala Thr Gln Arg Ser Ala Asn Glu Asp
20 25 30
Lys Ala Ala Asp Leu Gln Arg Glu Val Glu Arg Asp Gly Gly Arg Phe
35 40 45
Arg Phe Val Gly His Phe Ser Glu Ala Pro Gly Thr Ser Ala Phe Gly
50 55 60
Thr Ala Glu Arg Pro Glu Phe Glu Arg Ile Leu Asn Glu Cys Arg Ala
65 70 75 80
Gly Arg Leu Asn Met Ile Ile Val Tyr Asp Val Ser Arg Phe Ser Arg
85 90 95
Leu Lys Val Met Asp Ala Ile Pro Ile Val Ser Glu Leu Leu Ala Leu
100 105 110
Gly Val Thr Ile Val Ser Thr Gln Glu Gly Val Phe Arg Gln Gly Asn
115 120 125
Val Met Asp Leu Ile His Leu Ile Met Arg Leu Asp Ala Ser His Lys
130 135 140
Glu Ser Ser Leu Lys Ser Ala Lys Ile Leu Asp Thr Lys Asn Leu Gln
145 150 155 160
Arg Glu Leu Gly Gly Tyr Val Gly Gly Lys Ala Pro Tyr Gly Phe Glu
165 170 175
Leu Val Ser Glu Thr Lys Glu Ile Thr Arg Asn Gly Arg Met Val Asn
180 185 190
Val Val Ile Asn Lys Leu Ala His Ser Thr Thr Pro Leu Thr Gly Pro
195 200 205
Phe Glu Phe Glu Pro Asp Val Ile Arg Trp Trp Trp Arg Glu Ile Lys
210 215 220
Thr His Lys His Leu Pro Phe Lys Pro Gly Ser Gln Ala Ala Ile His
225 230 235 240
Pro Gly Ser Ile Thr Gly Leu Cys Lys Arg Met Asp Ala Asp Ala Val
245 250 255
Pro Thr Arg Gly Glu Thr Ile Gly Lys Lys Thr Ala Ser Ser Ala Trp
260 265 270
Asp Pro Ala Thr Val Met Arg Ile Leu Arg Asp Pro Arg Ile Ala Gly
275 280 285
Phe Ala Ala Glu Val Ile Tyr Lys Lys Lys Pro Asp Gly Thr Pro Thr
290 295 300
Thr Lys Ile Glu Gly Tyr Arg Ile Gln Arg Asp Pro Ile Thr Leu Arg
305 310 315 320
Pro Val Glu Leu Asp Cys Gly Pro Ile Ile Glu Pro Ala Glu Trp Tyr
325 330 335
Glu Leu Gln Ala Trp Leu Asp Gly Arg Gly Arg Gly Lys Gly Leu Ser
340 345 350
Arg Gly Gln Ala Ile Leu Ser Ala Met Asp Lys Leu Tyr Cys Glu Cys
355 360 365
Gly Ala Val Met Thr Ser Lys Arg Gly Glu Glu Ser Ile Lys Asp Ser
370 375 380
Tyr Arg Cys Arg Arg Arg Lys Val Val Asp Pro Ser Ala Pro Gly Gln
385 390 395 400
His Glu Gly Thr Cys Asn Val Ser Met Ala Ala Leu Asp Lys Phe Val
405 410 415
Ala Glu Arg Ile Phe Asn Lys Ile Arg His Ala Glu Gly Asp Glu Glu
420 425 430
Thr Leu Ala Leu Leu Trp Glu Ala Ala Arg Arg Phe Gly Lys Leu Thr
435 440 445
Glu Ala Pro Glu Lys Ser Gly Glu Arg Ala Asn Leu Val Ala Glu Arg
450 455 460
Ala Asp Ala Leu Asn Ala Leu Glu Glu Leu Tyr Glu Asp Arg Ala Ala
465 470 475 480
Gly Ala Tyr Asp Gly Pro Val Gly Arg Lys His Phe Arg Lys Gln Gln
485 490 495
Ala Ala Leu Thr Leu Arg Gln Gln Gly Ala Glu Glu Arg Leu Ala Glu
500 505 510
Leu Glu Ala Ala Glu Ala Pro Lys Leu Pro Leu Asp Gln Trp Phe Pro
515 520 525
Glu Asp Ala Asp Ala Asp Pro Thr Gly Pro Lys Ser Trp Trp Gly Arg
530 535 540
Ala Ser Val Asp Asp Lys Arg Val Phe Val Gly Leu Phe Val Asp Lys
545 550 555 560
Ile Val Val Thr Lys Ser Thr Thr Gly Arg Gly Gln Gly Thr Pro Ile
565 570 575
Glu Lys Arg Ala Ser Ile Thr Trp Ala Lys Pro Pro Thr Asp Asp Asp
580 585 590
Glu Asp Asp Ala Gln Asp Gly Thr Glu Asp Val Ala Ala
595 600 605
<210> 26
<211> 39
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attP sequence corresponding to PhiC31
<400> 26
cccccaactg agagaactca aaggttaccc cagttgggg 39
<210> 27
<211> 1865
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 07
<400> 27
cacacaggaa acagctatga cctggattct caccaataaa aaacgcccgg cggcaaccga 60
gcgttctgaa caaatccaga tggagttctg aggtcattac tggatctatc aacaggagtc 120
caagttaagc agccagagcg tagttttcgt ccttagcagc accggtagcg agttggaatt 180
taaatatgat atctacatta tcagcagtaa catcaacctt tgatacaagg ttgttgacga 240
ttttcttttt attatcatat gatagttcat taatcggaat tgagcccaac tgagttttaa 300
ctaactcaaa aacatcagta gagtcattaa atttattttc gctaatctta gctttaagca 360
gctttttctc agcctgaagg gaatcagtac gatctttcaa ctcatccata gtgataaaat 420
catttaggta caaatcagag ttcttttgta tttttttatc gatctgtgaa atttgctttt 480
taaatgacga agtatcaaga ataggttggt tgttgccatt gataattttc aataaggagt 540
cattattttc ttgaaatcca atcaggttgt caataacagt attttctaaa ttacttaaat 600
cataagttcc tgaatcacac tttttattgt cattatatac tgtaattcct tttgtttttc 660
gaggaaatct atttgcacag tgatatttca tagtgcggct tccatctttt cttttgtggc 720
caagaacaat ttttaaaggt gctccacagt aaccgcacct tgccatccct gacagcatat 780
atttagcttg gaaaggtcta gggttgttat ttctttcata agtctgctgt tgtctttctt 840
ctagctcttt ttgaactttt aaataagtct cataagggat aattggtttg tgcatacctt 900
caaataggct gtccttaaat ttgatataac cacagtaaac tggattatca agtgtttgtc 960
ttagggtacg ataagaccac ggtatatctt taccgatgtg tccagattca ttgagtttat 1020
ctcttaattt tgtaagtgat attcctgata aataatcagt gaatatttgt tcaactattg 1080
tagcttgtaa aggaacaatt tctaatatac ctgtctttct gttgtggtaa tacccaaaag 1140
ctgtcttagt ccacatcata gacttaccag atttcgctcg ccctagttta cccatagtca 1200
tgcgttcttt tatattctct ctttcaaact cattaattgc agaaagaata gtgagaaaca 1260
agctacccat agcagaagaa gtatcaatac tttcattaag cgagataaag tctattttat 1320
tttttgtgaa cacatcctta acaagataaa gagtatctct tacactacgt gaaaggcggt 1380
ctagcttata tacaagaact gtatcaaaag ctttattctc gatatcgttg attaatcttt 1440
gcattgctgg gcgttcaagt ttggcccctg aaaaaccagc atcagtataa gtatcagata 1500
cttgccaccc cattgcttca gcatattttg ttaaacggtc aatttgctca tcaattgaga 1560
agccttcctc tgcttggtta gtagtggata ctcgtgtata gattgctact ttcttagtgc 1620
cggcctggtg gtgatggtga tgatgtttca tctagtattt ctcctctttc tctagtatta 1680
aacaaaatta tttgtagagg ctgtttcgtc ctcacggact catcagaccg gaaagcacat 1740
ccggtgacag cttgctcgca ggtcaaaggg tatactggga ttccagtgaa cgcaaaaaag 1800
gagtttttta gttaccttaa ttgaaataaa cgaaataaaa actcgactgg ccgtcgtttt 1860
acaac 1927
<210> 28
<211> 1527
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Gene sequence of TP901 recombinase
<400> 28
atgaaacatc atcaccatca ccaccaggcc ggcactaaga aagtagcaat ctatacacga 60
gtatccacta ctaaccaagc agaggaaggc ttctcaattg atgagcaaat tgaccgttta 120
acaaaatatg ctgaagcaat ggggtggcaa gtatctgata cttatactga tgctggtttt 180
tcaggggcca aacttgaacg cccagcaatg caaagattaa tcaacgatat cgagaataaa 240
gcttttgata cagttcttgt atataagcta gaccgccttt cacgtagtgt aagagatact 300
ctttatcttg ttaaggatgt gttcacaaaa aataaaatag actttatctc gcttaatgaa 360
agtattgata cttcttctgc tatgggtagc ttgtttctca ctattctttc tgcaattaat 420
gagtttgaaa gagagaatat aaaagaacgc atgactatgg gtaaactagg gcgagcgaaa 480
tctggtaagt ctatgatgtg gactaagaca gcttttgggt attaccacaa cagaaagaca 540
ggtatattag aaattgttcc tttacaagct acaatagttg aacaaatatt cactgattat 600
ttatcaggaa tatcacttac aaaattaaga gataaactca atgaatctgg acacatcggt 660
aaagatatac cgtggtctta tcgtacccta agacaaacac ttgataatcc agtttactgt 720
ggttatatca aatttaagga cagcctattt gaaggtatgc acaaaccaat tatcccttat 780
gagacttatt taaaagttca aaaagagcta gaagaaagac aacagcagac ttatgaaaga 840
aataacaacc ctagaccttt ccaagctaaa tatatgctgt cagggatggc aaggtgcggt 900
tactgtggag cacctttaaa aattgttctt ggccacaaaa gaaaagatgg aagccgcact 960
atgaaatatc actgtgcaaa tagatttcct cgaaaaacaa aaggaattac agtatataat 1020
gacaataaaa agtgtgattc aggaacttat gatttaagta atttagaaaa tactgttatt 1080
gacaacctga ttggatttca agaaaataat gactccttat tgaaaattat caatggcaac 1140
aaccaaccta ttcttgatac ttcgtcattt aaaaagcaaa tttcacagat cgataaaaaa 1200
atacaaaaga actctgattt gtacctaaat gattttatca ctatggatga gttgaaagat 1260
cgtactgatt cccttcaggc tgagaaaaag ctgcttaaag ctaagattag cgaaaataaa 1320
tttaatgact ctactgatgt ttttgagtta gttaaaactc agttgggctc aattccgatt 1380
aatgaactat catatgataa taaaaagaaa atcgtcaaca accttgtatc aaaggttgat 1440
gttactgctg ataatgtaga tatcatattt aaattccaac tcgctaccgg tgctgctaag 1500
gacgaaaact acgctctggc tgcttaa 1577
<210> 29
<211> 508
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> TP901 recombinase
<400> 29
Met Lys His His His His His His Gln Ala Gly Thr Lys Lys Val Ala
1 5 10 15
Ile Tyr Thr Arg Val Ser Thr Thr Asn Gln Ala Glu Glu Gly Phe Ser
20 25 30
Ile Asp Glu Gln Ile Asp Arg Leu Thr Lys Tyr Ala Glu Ala Met Gly
35 40 45
Trp Gln Val Ser Asp Thr Tyr Thr Asp Ala Gly Phe Ser Gly Ala Lys
50 55 60
Leu Glu Arg Pro Ala Met Gln Arg Leu Ile Asn Asp Ile Glu Asn Lys
65 70 75 80
Ala Phe Asp Thr Val Leu Val Tyr Lys Leu Asp Arg Leu Ser Arg Ser
85 90 95
Val Arg Asp Thr Leu Tyr Leu Val Lys Asp Val Phe Thr Lys Asn Lys
100 105 110
Ile Asp Phe Ile Ser Leu Asn Glu Ser Ile Asp Thr Ser Ser Ala Met
115 120 125
Gly Ser Leu Phe Leu Thr Ile Leu Ser Ala Ile Asn Glu Phe Glu Arg
130 135 140
Glu Asn Ile Lys Glu Arg Met Thr Met Gly Lys Leu Gly Arg Ala Lys
145 150 155 160
Ser Gly Lys Ser Met Met Trp Thr Lys Thr Ala Phe Gly Tyr Tyr His
165 170 175
Asn Arg Lys Thr Gly Ile Leu Glu Ile Val Pro Leu Gln Ala Thr Ile
180 185 190
Val Glu Gln Ile Phe Thr Asp Tyr Leu Ser Gly Ile Ser Leu Thr Lys
195 200 205
Leu Arg Asp Lys Leu Asn Glu Ser Gly His Ile Gly Lys Asp Ile Pro
210 215 220
Trp Ser Tyr Arg Thr Leu Arg Gln Thr Leu Asp Asn Pro Val Tyr Cys
225 230 235 240
Gly Tyr Ile Lys Phe Lys Asp Ser Leu Phe Glu Gly Met His Lys Pro
245 250 255
Ile Ile Pro Tyr Glu Thr Tyr Leu Lys Val Gln Lys Glu Leu Glu Glu
260 265 270
Arg Gln Gln Gln Thr Tyr Glu Arg Asn Asn Asn Pro Arg Pro Phe Gln
275 280 285
Ala Lys Tyr Met Leu Ser Gly Met Ala Arg Cys Gly Tyr Cys Gly Ala
290 295 300
Pro Leu Lys Ile Val Leu Gly His Lys Arg Lys Asp Gly Ser Arg Thr
305 310 315 320
Met Lys Tyr His Cys Ala Asn Arg Phe Pro Arg Lys Thr Lys Gly Ile
325 330 335
Thr Val Tyr Asn Asp Asn Lys Lys Cys Asp Ser Gly Thr Tyr Asp Leu
340 345 350
Ser Asn Leu Glu Asn Thr Val Ile Asp Asn Leu Ile Gly Phe Gln Glu
355 360 365
Asn Asn Asp Ser Leu Leu Lys Ile Ile Asn Gly Asn Asn Gln Pro Ile
370 375 380
Leu Asp Thr Ser Ser Phe Lys Lys Gln Ile Ser Gln Ile Asp Lys Lys
385 390 395 400
Ile Gln Lys Asn Ser Asp Leu Tyr Leu Asn Asp Phe Ile Thr Met Asp
405 410 415
Glu Leu Lys Asp Arg Thr Asp Ser Leu Gln Ala Glu Lys Lys Leu Leu
420 425 430
Lys Ala Lys Ile Ser Glu Asn Lys Phe Asn Asp Ser Thr Asp Val Phe
435 440 445
Glu Leu Val Lys Thr Gln Leu Gly Ser Ile Pro Ile Asn Glu Leu Ser
450 455 460
Tyr Asp Asn Lys Lys Lys Ile Val Asn Asn Leu Val Ser Lys Val Asp
465 470 475 480
Val Thr Ala Asp Asn Val Asp Ile Ile Phe Lys Phe Gln Leu Ala Thr
485 490 495
Gly Ala Ala Lys Asp Glu Asn Tyr Ala Leu Ala Ala
500 505
<210> 30
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attP sequence corresponding to TP901
<400> 30
cgagttttta tttcgtttat ttcaattaag gtaactaaaa aactcctttt 50
<210> 31
<211> 1712
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 08
<400> 31
cacacaggaa acagctatga cctggattct caccaataaa aaacgcccgg cggcaaccga 60
gcgttctgaa caaatccaga tggagttctg aggtcattac tggatctatc aacaggagtc 120
caagctacgt attattcgtg ccttccttat ttttactgtg ggacatattt gggacagaag 180
taccaaaaat cgagtcaatt tgtcgagcat gttcagtcag gtgatttggt gccagatgag 240
catatcggcg aaccatttcg atagactccc agccacccat ttcctgcaat accgaaatcg 300
gaacgccagc ctgaactaac caacttgccc acgtgtgcct caggtcatga aaacggaagt 360
cttcaatgcc cgctcgtttt aatgctgccc tccatgcagt attagcgtca tagcgcatct 420
tcctcactac aggtgattta gttccgtctg gtttggtgct gctttccttg tagacgaaca 480
cccatttgtg atgattgccg atttgctttt tcagcacccg gcaagcggta tcattcagcg 540
ccactccaat ggcatgatta gacttgcttt gttccgggtg tatccatgcc acctttcgtt 600
gcatgtctat ctgctgccac tccagattga taatgttaga ccgccttaag ccagtagaaa 660
gcgcaaactc tacgactgac tttagcggtt cctggcattc atcaatcaac ctttttgcct 720
cgtgaggctc aagccagcgg atacgcttat ttttcggctg aggaactttg atgatcggag 780
ccttatccag catcttccat tcgcgttcag cagcccggag gagtgcctta atgaatgaaa 840
ggtgagttgc ttttgtagct actgctgccg gcttaggctt gaataccgga ggctgcttcc 900
cattcttcct gcatgcttca tccattaact tccagttttc ctcatgccgc cgattagtta 960
tcttctggat ggcggagtaa atcttcgtct cggtaatatc cttcaactgc attcctgcaa 1020
aatgctggag ccagaatcct atccgactct tgtcatcatc cagcgacttc ttatgcgcct 1080
tctcctctaa ccacctgaca caggccccct caaaagtcat gtcaggcgtc tctcctaatt 1140
tacttaccct ccatgcttct gccttcagct tgtcatgaag ctctgtggcc tgccttttgt 1200
cctttgtccc aagagactgc ttaaatcttt tgccgttcgg caatgtgaaa ctggcgtacc 1260
aggtttcacc tctgcggaat agtgacatct agtatttctc ctctttctct agtattaaac 1320
aaaattattt gtagaggctg tttcgtcctc acggactcat cagaccggaa agcacatccg 1380
gtgacagctt gctcgcaggt caaagggtat actgggattc cagtgaacgc aactaagtgg 1440
tttgggacaa aaatgggaca tacaaatctt tgcatcggtt tgcaaggctt tgcatgtctt 1500
tcgaagatgg gacgtgtgag cgcaggtatg acgtggtatg ttgttgactt aaaaggtagt 1560
tcttataatt cgtaatgcga aggtcgtagg ttcgactcct attatcggca ccagttaaat 1620
caaatactta cgtattattc gtgccttcct tatttttact gtgggacata tttgggacag 1680
aagtaccaaa aaactggccg tcgttttaca ac 1768
<210> 32
<211> 1164
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> gene sequence of P22 recombinase
<400> 32
atgtcactat tccgcagagg tgaaacctgg tacgccagtt tcacattgcc gaacggcaaa 60
agatttaagc agtctcttgg gacaaaggac aaaaggcagg ccacagagct tcatgacaag 120
ctgaaggcag aagcatggag ggtaagtaaa ttaggagaga cgcctgacat gacttttgag 180
ggggcctgtg tcaggtggtt agaggagaag gcgcataaga agtcgctgga tgatgacaag 240
agtcggatag gattctggct ccagcatttt gcaggaatgc agttgaagga tattaccgag 300
acgaagattt actccgccat ccagaagata actaatcggc ggcatgagga aaactggaag 360
ttaatggatg aagcatgcag gaagaatggg aagcagcctc cggtattcaa gcctaagccg 420
gcagcagtag ctacaaaagc aactcacctt tcattcatta aggcactcct ccgggctgct 480
gaacgcgaat ggaagatgct ggataaggct ccgatcatca aagttcctca gccgaaaaat 540
aagcgtatcc gctggcttga gcctcacgag gcaaaaaggt tgattgatga atgccaggaa 600
ccgctaaagt cagtcgtaga gtttgcgctt tctactggct taaggcggtc taacattatc 660
aatctggagt ggcagcagat agacatgcaa cgaaaggtgg catggataca cccggaacaa 720
agcaagtcta atcatgccat tggagtggcg ctgaatgata ccgcttgccg ggtgctgaaa 780
aagcaaatcg gcaatcatca caaatgggtg ttcgtctaca aggaaagcag caccaaacca 840
gacggaacta aatcacctgt agtgaggaag atgcgctatg acgctaatac tgcatggagg 900
gcagcattaa aacgagcggg cattgaagac ttccgttttc atgacctgag gcacacgtgg 960
gcaagttggt tagttcaggc tggcgttccg atttcggtat tgcaggaaat gggtggctgg 1020
gagtctatcg aaatggttcg ccgatatgct catctggcac caaatcacct gactgaacat 1080
gctcgacaaa ttgactcgat ttttggtact tctgtcccaa atatgtccca cagtaaaaat 1140
aaggaaggca cgaataatac gtag 1202
<210> 33
<211> 387
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> P22 recombinase
<400> 33
Met Ser Leu Phe Arg Arg Gly Glu Thr Trp Tyr Ala Ser Phe Thr Leu
1 5 10 15
Pro Asn Gly Lys Arg Phe Lys Gln Ser Leu Gly Thr Lys Asp Lys Arg
20 25 30
Gln Ala Thr Glu Leu His Asp Lys Leu Lys Ala Glu Ala Trp Arg Val
35 40 45
Ser Lys Leu Gly Glu Thr Pro Asp Met Thr Phe Glu Gly Ala Cys Val
50 55 60
Arg Trp Leu Glu Glu Lys Ala His Lys Lys Ser Leu Asp Asp Asp Lys
65 70 75 80
Ser Arg Ile Gly Phe Trp Leu Gln His Phe Ala Gly Met Gln Leu Lys
85 90 95
Asp Ile Thr Glu Thr Lys Ile Tyr Ser Ala Ile Gln Lys Ile Thr Asn
100 105 110
Arg Arg His Glu Glu Asn Trp Lys Leu Met Asp Glu Ala Cys Arg Lys
115 120 125
Asn Gly Lys Gln Pro Pro Val Phe Lys Pro Lys Pro Ala Ala Val Ala
130 135 140
Thr Lys Ala Thr His Leu Ser Phe Ile Lys Ala Leu Leu Arg Ala Ala
145 150 155 160
Glu Arg Glu Trp Lys Met Leu Asp Lys Ala Pro Ile Ile Lys Val Pro
165 170 175
Gln Pro Lys Asn Lys Arg Ile Arg Trp Leu Glu Pro His Glu Ala Lys
180 185 190
Arg Leu Ile Asp Glu Cys Gln Glu Pro Leu Lys Ser Val Val Glu Phe
195 200 205
Ala Leu Ser Thr Gly Leu Arg Arg Ser Asn Ile Ile Asn Leu Glu Trp
210 215 220
Gln Gln Ile Asp Met Gln Arg Lys Val Ala Trp Ile His Pro Glu Gln
225 230 235 240
Ser Lys Ser Asn His Ala Ile Gly Val Ala Leu Asn Asp Thr Ala Cys
245 250 255
Arg Val Leu Lys Lys Gln Ile Gly Asn His His Lys Trp Val Phe Val
260 265 270
Tyr Lys Glu Ser Ser Thr Lys Pro Asp Gly Thr Lys Ser Pro Val Val
275 280 285
Arg Lys Met Arg Tyr Asp Ala Asn Thr Ala Trp Arg Ala Ala Leu Lys
290 295 300
Arg Ala Gly Ile Glu Asp Phe Arg Phe His Asp Leu Arg His Thr Trp
305 310 315 320
Ala Ser Trp Leu Val Gln Ala Gly Val Pro Ile Ser Val Leu Gln Glu
325 330 335
Met Gly Gly Trp Glu Ser Ile Glu Met Val Arg Arg Tyr Ala His Leu
340 345 350
Ala Pro Asn His Leu Thr Glu His Ala Arg Gln Ile Asp Ser Ile Phe
355 360 365
Gly Thr Ser Val Pro Asn Met Ser His Ser Lys Asn Lys Glu Gly Thr
370 375 380
Asn Asn Thr
385
<210> 34
<211> 260
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> attP sequence corresponding to P22
<400> 34
tttttggtac ttctgtccca aatatgtccc acagtaaaaa taaggaaggc acgaataata 60
cgtaagtatt tgatttaact ggtgccgata ataggagtcg aacctacgac cttcgcatta 120
cgaattataa gaactacctt ttaagtcaac aacataccac gtcatacctg cgctcacacg 180
tcccatcttc gaaagacatg caaagccttg caaaccgatg caaagatttg tatgtcccat 240
ttttgtccca aaccacttag 268
<210> 35
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> primer
<400> 35
gcgcatggcg tctccatg 18
<210> 36
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> primer
<400> 36
gtggaccagc tgttgcag 18
<210> 37
<211> 17
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 11
<400> 37
ctaccggcgc ggcagcg 17
<210> 38
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 12
<400> 38
gcggccaccg gctggctc 18
<210> 39
<211> 17
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 13
<400> 39
cgctgccgcg ccggtag 17
<210> 40
<211> 18
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Primer 14
<400> 40
gagccagccg gtggccgc 18
<210> 41
<211> 5555
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 09
<400> 41
gagccagccg gtggccgcct acatggctct gctgtagttc acccttggcg tccaaccagc 60
ggcaccagcg gcgcctgaga ggggcgcgcc cagctgtcta gggcggcgga tttgtcctac 120
tcaggagagc gttcaccgac aaacaacaga taaaacgaaa ggcccagtct ttcgactgag 180
cctttcgttt tatttgatgc ctttaattaa agcggataac aatttcacac aggacaactg 240
agaccggaat tggtctcaac gtacgtctca ttttcgccag atatcgacgt cttaagaccc 300
actttcacat ttaagttgtt tttctaatcc gcatatgatc aattcaaggc cgaataagaa 360
ggctggctct gcaccttggt gatcaaataa ttcgatagct tgtcgtaata atggcggcat 420
actatcagta gtaggtgttt ccctttcttc tttagcgact tgatgctctt gatcttccaa 480
tacgcaacct aaagtaaaat gccccacagc gctgagtgca tataatgcat tctctagtga 540
aaaaccttgt tggcataaaa aggctaattg attttcgaga gtttcatact gtttttctgt 600
aggccgtgta cctaaatgta cttttgctcc atcgcgatga cttagtaaag cacatctaaa 660
acttttagcg ttattacgta aaaaatcttg ccagctttcc ccttctaaag ggcaaaagtg 720
agtatggtgc ctatctaaca tctcaatggc taaggcgtcg agcaaagccc gcttattttt 780
tacatgccaa tacaatgtag gctgctctac acctagcttc tgggcgagtt tacgggttgt 840
taaaccttcg attccgacct cattaagcag ctctaatgcg ctgttaatca ctttactttt 900
atctaatcta gacatcatta attcctaatt tttgttgaca ctctatcgtt gatagagtta 960
ttttaccact ccctatcagt gatagagaaa agaattcaag ctgtcaccgg atgtgctttc 1020
cggtctgatg agtccgtgag gacgaaacag cctctacaaa taattttgtt taatactaga 1080
gaaagaggag aaatactaga tgatcgagaa ccagctgagc ctgctgggtg atttcagcgg 1140
cgtgcgtccg gacgatgtta agaccgcgat ccaggcggcg caaaagaaag gtattaacgt 1200
tgcggagaac gaacaattca aagcggcgtt tgagcacctg ctgaacgagt tcaagaaacg 1260
tgaggaacgt tacagcccga acaccctgcg tcgtctggaa agcgcgtgga cctgctttgt 1320
ggattggtgc ctggcgaacc atcgtcacag cctgccggcg accccggaca ccgttgaggc 1380
gttctttatc gaacgtgcgg aggaactgca ccgtaacacc ctgagcgtgt accgttgggc 1440
gattagccgt gttcatcgtg ttgcgggttg cccggacccg tgcctggata tctatgtgga 1500
ggatcgtctg aaggcgattg cgcgtaagaa agtgcgtgag ggcgaagcgg ttaaacaggc 1560
gagcccgttt aacgaacaac acctgctgaa gctgaccagc ctgtggtacc gtagcgacaa 1620
actgctgctg cgtcgtaacc tggcgctgct ggcggtggcg tatgagagca tgctgcgtgc 1680
gagcgaactg gcgaacatcc gtgttagcga catggagctg gcgggtgatg gcaccgcgat 1740
tctgaccatc ccgattacca agaccaacca cagcggcgag ccggacacct gcattctgag 1800
ccaggatgtg gttagcctgc tgatggacta caccgaagcg ggcaagctgg acatgagcag 1860
cgatggtttc ctgtttgtgg gcgttagcaa acacaacacc tgcatcaagc cgaagaaaga 1920
taaacagacc ggtgaagttc tgcacaagcc gattaccacc aaaaccgtgg agggcgtttt 1980
ctatagcgcg tgggaaaccc tggatctggg tcgtcaaggc gtgaagccgt ttaccgcgca 2040
cagcgcgcgt gttggtgcgg cgcaggacct gctgaagaaa ggctacaaca ccctgcaaat 2100
ccagcaaagc ggtcgttgga gcagcggcgc gatggttgcg cgttatggtc gtgcgatcct 2160
ggcgcgtgac ggcgcgatgg cgcacagccg tgtgaaaacc cgtagcgcgc cgatgcaatg 2220
gggcaaggac gagaaagatt aatgataagc caggcatcaa ataaaacgaa aggctcagtc 2280
gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aacgctctct actagagtca 2340
cactggctca ccttcgggtg ggcctttctg cgtttatata ctagagctgc taacaaagcc 2400
cgaaaggaag ctgagttggc tgctgccacc gctgagcaat aactagcata accccttggg 2460
gcctctaaac gggtcttgag gggttttttg ctgaaaggag gaactatatc cggattacta 2520
gaggtcatgc ttgccatctg ttttcttgca agattactag tagcggccgc tgcaggtcgt 2580
gactgggaaa accctggcga ctagtcttgg actcctgttg atagatccag taatgacctc 2640
agaactccat ctggatttgt tcagaacgct cggttgccgc cgggcgtttt ttattggtga 2700
gaatccagac gttgtgtctc aaaatctctg atgttacatt gcacaagata aaaatatatc 2760
atcatgaaca ataaaactgt ctgcttacat aaacagtaat acaaggggtg ttatgagcca 2820
tattcaacgg gaaacgtctt gctcgaggcc gcgattaaat tccaacatgg atgctgattt 2880
atatgggtat aaatgggctc gcgataatgt cgggcaatca ggtgcgacaa tctatcgatt 2940
gtatgggaag cccgatgcgc cagagttgtt tctgaaacat ggcaaaggta gcgttgccaa 3000
tgatgttaca gatgagatgg tcagactaaa ctggctgacg gaatttatgc ctcttccgac 3060
catcaagcat tttatccgta ctcctgatga tgcatggtta ctcaccactg cgatccccgg 3120
gaaaacagca ttccaggtat tagaagaata tcctgattca ggtgaaaata ttgttgatgc 3180
gctggcagtg ttcctgcgcc ggttgcattc gattcctgtt tgtaattgtc cttttaacag 3240
cgatcgcgta tttcgtctcg ctcaggcgca atcacgaatg aataacggtt tggttgatgc 3300
gagtgatttt gatgacgagc gtaatggctg gcctgttgaa caagtctgga aagaaatgca 3360
taagcttttg ccattctcac cggattcagt cgtcactcat ggtgatttct cacttgataa 3420
ccttattttt gacgagggga aattaatagg ttgtattgat gttggacgag tcggaatcgc 3480
agaccgatac caggatcttg ccatcctatg gaactgcctc ggtgagtttt ctccttcatt 3540
acagaaacgg ctttttcaaa aatatggtat tgataatcct gatatgaata aattgcagtt 3600
tcatttgatg ctcgatgagt ttttctaatc agaattggtt aattggttgt aacactggca 3660
gagcattacg ctgacttgac gggacggcgg ctttgttgaa taaatcgaac ttttgctgag 3720
ttgaaggatc agatcacgca tcttcccgac aacgcagacc gttccgtggc aaagcaaaag 3780
ttcaaaatca ccaactggtc cacctacaac aaagctctca tcaaccgtgg ctccctcact 3840
ttctggctgg atgatggggc gattcaggcc tggtatgagt cagcaacacc ttcttcacga 3900
ggcagacctc agcgctattc tgaccttgcc atcacgactg tgctggtcat taaacgcgta 3960
ttcaggctga ccctgcgcgc tgcgcagggc tttattgatt ccatttttac actgatgaat 4020
gttccgttgc gctgcccgga ttacagccgg atcctctaga gtcgacctgc aggcatgctg 4080
atcggcacgt aagaggttcc aactttcacc ataatgaaat aagatcacta ccgggcgtat 4140
tttttgagtt atcgagattt tcaggagcta aggaagctaa aatgcgctca cgcaactggt 4200
ccagaacctt gaccgaacgc agcggtggta acggcgcagt ggcggttttc atggcttgtt 4260
atgactgttt ttttggggta cagtctatgc ctcgggcatc caagcagcaa gcgcgttacg 4320
ccgtgggtcg atgtttgatg ttatggagca gcaacgatgt tacgcagcag ggcagtcgcc 4380
ctaaaacaaa gttaaacatc atgagggaag cggtgatcgc cgaagtatcg actcaactat 4440
cagaggtagt tggcgtcatc gagcgccatc tcgaaccgac gttgctggcc gtacatttgt 4500
acggctccgc agtggatggc ggcctgaagc cacacagtga tattgatttg ctggttacgg 4560
tgaccgtaag gcttgatgaa acaacgcggc gagctttgat caacgacctt ttggaaactt 4620
cggcttcccc tggagagagc gagattctcc gcgctgtaga agtcaccatt gttgtgcacg 4680
acgacatcat tccgtggcgt tatccagcta agcgcgaact gcaatttgga gaatggcagc 4740
gcaatgacat tcttgcaggt atcttcgagc cagccacgat cgacattgat ctggctatct 4800
tgctgacaaa agcaagagaa catagcgttg ccttggtagg tccagcggcg gaggaactct 4860
ttgatccggt tcctgaacag gatctatttg aggcgctaaa tgaaacctta acgctatgga 4920
actcgccgcc cgactgggct ggcgatgagc gaaatgtagt gcttacgttg tcccgcattt 4980
ggtacagcgc agtaaccggc aaaatcgcgc cgaaggatgt cgctgccgac tgggcaatgg 5040
agcgcctgcc ggcccagtat cagcccgtca tacttgaagc tagacaggct tatcttggac 5100
aagaagaaga tcgcttggcc tcgcgcgcag atcagttgga agaatttgtc cactacgtga 5160
aaggcgagat caccaaggta gtcggcaaat aaactagtaa ataataaaaa agccggatta 5220
ataatctggc tttttatatt ctctgcataa ccctgcttcg gggtcattat agcgattttt 5280
tcggtatatc catccttttt cgcacgatat acaggatttt gccaaagggt tcgtgtagac 5340
tttccttggt gtatccaacg gcgtcagccg ggcaggatag gtgaagtagg cccacccgcg 5400
agcgggtgtt ccttcttcac tgtcccttat tcgcacctgg cggtgctcaa cgggaatcct 5460
gctctgcgag gctggccgta ggccggccgc gatgcaggtg gctgctgaac ccccagccgg 5520
aactgacccc acaaggccct accggcgcgg cagcg 5739
<210> 42
<211> 1143
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> gene sequence of VCre recombinase
<400> 42
atgatcgaga accagctgag cctgctgggt gatttcagcg gcgtgcgtcc ggacgatgtt 60
aagaccgcga tccaggcggc gcaaaagaaa ggtattaacg ttgcggagaa cgaacaattc 120
aaagcggcgt ttgagcacct gctgaacgag ttcaagaaac gtgaggaacg ttacagcccg 180
aacaccctgc gtcgtctgga aagcgcgtgg acctgctttg tggattggtg cctggcgaac 240
catcgtcaca gcctgccggc gaccccggac accgttgagg cgttctttat cgaacgtgcg 300
gaggaactgc accgtaacac cctgagcgtg taccgttggg cgattagccg tgttcatcgt 360
gttgcgggtt gcccggaccc gtgcctggat atctatgtgg aggatcgtct gaaggcgatt 420
gcgcgtaaga aagtgcgtga gggcgaagcg gttaaacagg cgagcccgtt taacgaacaa 480
cacctgctga agctgaccag cctgtggtac cgtagcgaca aactgctgct gcgtcgtaac 540
ctggcgctgc tggcggtggc gtatgagagc atgctgcgtg cgagcgaact ggcgaacatc 600
cgtgttagcg acatggagct ggcgggtgat ggcaccgcga ttctgaccat cccgattacc 660
aagaccaacc acagcggcga gccggacacc tgcattctga gccaggatgt ggttagcctg 720
ctgatggact acaccgaagc gggcaagctg gacatgagca gcgatggttt cctgtttgtg 780
ggcgttagca aacacaacac ctgcatcaag ccgaagaaag ataaacagac cggtgaagtt 840
ctgcacaagc cgattaccac caaaaccgtg gagggcgttt tctatagcgc gtgggaaacc 900
ctggatctgg gtcgtcaagg cgtgaagccg tttaccgcgc acagcgcgcg tgttggtgcg 960
gcgcaggacc tgctgaagaa aggctacaac accctgcaaa tccagcaaag cggtcgttgg 1020
agcagcggcg cgatggttgc gcgttatggt cgtgcgatcc tggcgcgtga cggcgcgatg 1080
gcgcacagcc gtgtgaaaac ccgtagcgcg ccgatgcaat ggggcaagga cgagaaagat 1140
taa 1181
<210> 43
<211> 380
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> VCre recombinase
<400> 43
Met Ile Glu Asn Gln Leu Ser Leu Leu Gly Asp Phe Ser Gly Val Arg
1 5 10 15
Pro Asp Asp Val Lys Thr Ala Ile Gln Ala Ala Gln Lys Lys Gly Ile
20 25 30
Asn Val Ala Glu Asn Glu Gln Phe Lys Ala Ala Phe Glu His Leu Leu
35 40 45
Asn Glu Phe Lys Lys Arg Glu Glu Arg Tyr Ser Pro Asn Thr Leu Arg
50 55 60
Arg Leu Glu Ser Ala Trp Thr Cys Phe Val Asp Trp Cys Leu Ala Asn
65 70 75 80
His Arg His Ser Leu Pro Ala Thr Pro Asp Thr Val Glu Ala Phe Phe
85 90 95
Ile Glu Arg Ala Glu Glu Leu His Arg Asn Thr Leu Ser Val Tyr Arg
100 105 110
Trp Ala Ile Ser Arg Val His Arg Val Ala Gly Cys Pro Asp Pro Cys
115 120 125
Leu Asp Ile Tyr Val Glu Asp Arg Leu Lys Ala Ile Ala Arg Lys Lys
130 135 140
Val Arg Glu Gly Glu Ala Val Lys Gln Ala Ser Pro Phe Asn Glu Gln
145 150 155 160
His Leu Leu Lys Leu Thr Ser Leu Trp Tyr Arg Ser Asp Lys Leu Leu
165 170 175
Leu Arg Arg Asn Leu Ala Leu Leu Ala Val Ala Tyr Glu Ser Met Leu
180 185 190
Arg Ala Ser Glu Leu Ala Asn Ile Arg Val Ser Asp Met Glu Leu Ala
195 200 205
Gly Asp Gly Thr Ala Ile Leu Thr Ile Pro Ile Thr Lys Thr Asn His
210 215 220
Ser Gly Glu Pro Asp Thr Cys Ile Leu Ser Gln Asp Val Val Ser Leu
225 230 235 240
Leu Met Asp Tyr Thr Glu Ala Gly Lys Leu Asp Met Ser Ser Asp Gly
245 250 255
Phe Leu Phe Val Gly Val Ser Lys His Asn Thr Cys Ile Lys Pro Lys
260 265 270
Lys Asp Lys Gln Thr Gly Glu Val Leu His Lys Pro Ile Thr Thr Lys
275 280 285
Thr Val Glu Gly Val Phe Tyr Ser Ala Trp Glu Thr Leu Asp Leu Gly
290 295 300
Arg Gln Gly Val Lys Pro Phe Thr Ala His Ser Ala Arg Val Gly Ala
305 310 315 320
Ala Gln Asp Leu Leu Lys Lys Gly Tyr Asn Thr Leu Gln Ile Gln Gln
325 330 335
Ser Gly Arg Trp Ser Ser Gly Ala Met Val Ala Arg Tyr Gly Arg Ala
340 345 350
Ile Leu Ala Arg Asp Gly Ala Met Ala His Ser Arg Val Lys Thr Arg
355 360 365
Ser Ala Pro Met Gln Trp Gly Lys Asp Glu Lys Asp
370 375 380
<210> 44
<211> 2855
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> Synthesis of fragment 10
<400> 44
cacacaggaa acagctatga cctggattct caccaataaa aaacgcccgg cggcaaccga 60
gcgttctgaa caaatccaga tggagttctg aggtcattac tggatctatc aacaggagtc 120
caagctacga catcccggtg tgtagccgtt cgaccacgct gccgagcctg agatgctgct 180
cgtactcttg cagatccccg aagtcgatcg tgcgagtcag cccgccgcgg acgtcgaacg 240
tcagccgaac gttcatcgac cgaagccagg tgttctttgc cgcggtgtcc tgctcccgcc 300
accagtcccc gaaccgctgc ccggtctcgc gccactccca gccagacggg cgagcctcta 360
ggccctccag ctcctcttgc cgcgcggcca gcgccgcaat acgggcatcc agtgcttctc 420
gctgcggaga gccggcccgg taggccgggg agccgatcag cgacgtcagg tccaccagct 480
ccgcgttcac ctccgcgagt tcgaccgcgg agtccgagcc ggctacccag actttctcca 540
gacgctccgc gtccccgagc agatccagca cctgctcctc gcagaacgcg tcccactcgg 600
ccatcgccac cgtgccgttc ccgcagtgct tcgggaaccc catcgagcgg cagcggtagc 660
gcgggtgctt acgtcctccc ccggcgaact tgtacgcggg ctccccgcac accgcgcaga 720
acaacacccg cagcagcagc gacggggtag acaccgcggg cttcgcccgg gaggtcttca 780
cgagctcggc gcgcagcgcc tccagctgct cacgggtcag gatcggctca gcccgcacca 840
gcggggctcc gtcgtcgtct cggacggtct taccgttcag agtcgcgtac ccgagcatcg 900
cctcggagat catcgatcgc ttcagcgcgg tagccgacca ctcccggccc tgcggctcgc 960
ggccttgcag ctgcgcgaag tagtccttcg gcgacaggac accacgccgg ttcaggtcgt 1020
gggccaccag gtgcagcggc tcgtggttgt cgacgacgcg gtgatacacc tcgaggatgc 1080
gctctcgctg cacagggtcc ggcaccagcc gccactcccc gtccacgcgc gtaggcaggt 1140
atccccacgg cggcagggat cctcggtatt tcccggcgcg gatattgaaa tgcgcagccg 1200
aacggttccg ctctttgatc gcttctaatt ccatctgcgc caccgttccc ataagcgcga 1260
tgacgaccgc cgcaaacggc gtcgtcgtat cgaagtgcgc ttcggtcgcg gagacgacca 1320
gcttcttgtg gtcctcggcc cagtggacca gctgttgcag atgccggatc gatcgggtca 1380
accggtctac ccggtacgcc acgatcacgt cgaacggttg ctcctcgaac gctagccacc 1440
gggccaggtt cggtctgcgc ttccggtcga acggatcgac cgccccggag acgtccagat 1500
cctccgctac cccgacgacg tcccagccgc gctgggcgca gagctgctgg caagactcca 1560
gctgacgctc cggtgaagtc gtagcatcgg tgacgcggga caggcggatg actaccaggg 1620
ctctcatcta gtatttctcc tctttctcta gtattaaaca aaattatttg tagaggctgt 1680
ttcgtcctca cggactcatc agaccggaaa gcacatccgg tgacagcttg ctcgcaggtc 1740
aaagggtata ctgggattcc agtgaacgca atcaatttct gagaactgtc attctcggaa 1800
attgagggtt tgtaccgtac accactgaga ccgcggtggt tgaccagaca aaccacgagg 1860
gagaccagaa acaaaaaaag gccccccgtt agggaggcct tcaataattg gttatcattt 1920
gtacagttca tccataccat gcgtgatgcc cgctgcggtt acgaactcca gcagaaccat 1980
atgatcgcgt ttctcgttcg gatctttaga cagaacgctt tgcgtgctca gatagtgatt 2040
gtctggcagc agaacaggac catcaccgat tggagtgttt tgctggtagt gatcagccag 2100
ctgcacgctg ccatcctcca cgttgtggcg aattttaaaa ttcgctttaa tgccattttt 2160
ttgtttatcg gcggtgatgt aaacattgtg gctgttaaaa ttgtattcca gcttatggcc 2220
caggatattg ccgtcttctt taaagtcaat gcctttcagc tcaatgcggt ttaccagggt 2280
atcgccttca aatttcactt ccgcacgcgt tttgtacgtg ccgtcatcct taaaggaaat 2340
cgtgcgttcc tgcacatagc cttccggcat ggcggacttg aagaagtcat gctgcttcat 2400
atggtccgga taacgagcaa agcactgaac accataagtc agcgtcgtta ccagagtcgg 2460
ccaaggtacc ggcagtttac cagtagtaca gatgaacttc agcgtcagtt taccattagt 2520
tgcgtcacct tcaccctcgc cacgcacgga aaacttatga ccgttgacat caccatccag 2580
ttccaccaga atagggacga caccagtgaa cagctcttcg cctttacgca tctagtattt 2640
ctcctctttc tctagtaact cttaaacaaa attatttgta gaggctgttt cgtcctcacg 2700
gactcatcag accggaaagc acatccggtg acagcttgct cgcaggtcaa aatatatact 2760
gggattccag tgaacgcaac aggatgtgac gagcggtgtg gtcaatttct gagaactgtc 2820
attctcggaa attgaactgg ccgtcgtttt acaac 2949
<210> 45
<211> 34
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> sequence of VloxP
<400> 45
tcaatttccg agaatgacag ttctcagaaa ttga 34
<210> 46
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> primer
<400> 46
tcggcggcgg ccgggcgtg 19
<210> 47
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<220>
<223> primer
<400> 47
caccgattgg agtgttttgc 20

Claims (10)

1. A gene insertion method based on site-specific recombinase suitable for eubacterium rolfsii comprises the following steps:
1) inserting an attB site corresponding to a site-specific recombinase Bxb1 into the genome of the Eubacterium rolfsii to construct a recombinant Eubacterium rolfsii with an attB sequence integrated on the genome;
2) constructing a recombinant vector containing an exogenous sequence, a site-specific recombinase Bxb1 gene and an attP sequence corresponding to the site-specific recombinase Bxb 1;
3) transferring the recombinant vector constructed in the step 2) into the recombinant Rogowski eubacterium constructed in the step 1), and mediating recombination between attB and attP sequences by using the site-specific recombinase Bxb1, thereby integrating the recombinant vector into the genome of the recombinant Rogowski eubacterium.
2. The method for inserting a gene based on a site-specific recombinase suitable for Eubacterium rolfsii according to claim 1, comprising the steps of:
a) inserting an attB site corresponding to a site-specific recombinase Bxb1 into the genome of the Eubacterium rolfsii to construct a recombinant Eubacterium rolfsii with an attB sequence integrated on the genome;
b) constructing a recombinant vector containing a VCre recombinase gene;
c) constructing a recombinant vector containing an exogenous sequence, a site-specific recombinase Bxb1 gene, attP sequence corresponding to the site-specific recombinase Bxb1, and 2 VloxP sequences capable of being specifically recognized by VCre recombinase in step b), wherein the exogenous sequence and the attP sequence are between the 2 VloxP sequences, and the site-specific recombinase Bxb1 gene is not between the 2 VloxP sequences;
d) transferring the recombinant vector constructed in the step c) into the recombinant Rogowski bacterium constructed in the step a), and mediating recombination between attB and attP sequences by using the site-specific recombinase Bxb1, thereby integrating the recombinant vector into the genome of the recombinant Rogowski bacterium;
e) transferring the recombinant vector constructed in the step b) into the recombinant bacterium integrated with the recombinant vector on the genome obtained in the step d), so as to delete the skeleton part of the recombinant vector from the genome.
3. The method of claim 1 or 2, wherein the eubacterium rolfsii is Ralstonia eutropha H16.
4. The method according to claim 1 or 2, wherein in step 2) or c) the recombinant vector is a plasmid vector incapable of replication in eubacterium rolfsii; preferably, the backbone portion of the recombinant vector comprises a replicon capable of replicating in E.coli (e.g., S17-1) but incapable of replicating in Eubacterium rolfsii, preferably the replicon is selected from the group consisting of a pMB1 replicon, a pUC replicon, a p15a replicon and a R6K γ replicon, more preferably the replicon is a pMB1 replicon; preferably, the backbone portion of the recombinant vector further comprises a selectable marker gene; more preferably, the selection marker gene is an antibiotic resistance gene, particularly, the antibiotic resistance gene is selected from the group consisting of a kanamycin resistance gene, a tetracycline resistance gene, a streptomycin resistance gene, and a spectinomycin resistance gene, and more particularly, the antibiotic resistance gene is a kanamycin resistance gene.
5. The method according to claim 2, wherein in step b), preferably, the recombinant vector may be a plasmid vector capable of replicating in Eubacterium rolfsii; preferably, the backbone portion of the recombinant vector comprises a replicon capable of replicating both in E.coli and in Eubacterium rolfsii, preferably the replicon is selected from the group consisting of a pBBR1 replicon, an SC101 replicon, and a RK2 replicon, more preferably the replicon is a pBBR1 replicon; preferably, the backbone portion of the recombinant vector further comprises a selectable marker gene; more preferably, the selection marker gene is an antibiotic resistance gene, preferably, the antibiotic resistance gene is selected from the group consisting of kanamycin resistance gene, tetracycline resistance gene, streptomycin resistance gene and spectinomycin resistance gene, and more preferably, the antibiotic resistance gene is kanamycin and spectinomycin resistance gene.
6. The method of claim 1 or 2,
in the step 1) or a), the sequence of attB site corresponding to the site-specific recombinase Bxb1 is shown as SEQ ID NO. 10; and/or
In the step 2) or c), the amino acid sequence of the site-specific recombinase Bxb1 gene is shown as SEQ ID NO. 20; and/or
In the step 2) or c), the attP sequence corresponding to the site-specific recombinase Bxb1 is shown as SEQ ID NO. 22; and/or
In the step b), the amino acid sequence of the VCre recombinase is shown as SEQ ID NO 42; and/or
In step c), preferably, the VloxP sequence is shown in SEQ ID NO: 44.
7. The method according to claim 1 or 2, wherein in step 2) or c), the nucleotide sequence of the site-specific recombinase Bxb1 gene is shown as SEQ ID NO 21; and/or, in the step b), the nucleotide sequence of the VCre recombinase is shown as SEQ ID NO 41.
8. A recombinant vector comprising an exogenous sequence, a site specific recombinase Bxb1 gene, an attP sequence corresponding to site specific recombinase Bxb 1.
9. The recombinant vector according to claim 8, wherein said recombinant vector further comprises 2 VloxP sequences capable of being specifically recognized by VCre recombinase, wherein said exogenous sequence and said attP sequence are between said 2 VloxP sequences, and said site-specific recombinase Bxb1 gene is not between said 2 VloxP sequences.
10. A recombinant vector comprising a VCre recombinase gene.
CN202010152728.1A 2020-03-06 2020-03-06 Method for integrating exogenous sequences in genome Active CN113355345B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010152728.1A CN113355345B (en) 2020-03-06 2020-03-06 Method for integrating exogenous sequences in genome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010152728.1A CN113355345B (en) 2020-03-06 2020-03-06 Method for integrating exogenous sequences in genome

Publications (2)

Publication Number Publication Date
CN113355345A true CN113355345A (en) 2021-09-07
CN113355345B CN113355345B (en) 2023-05-23

Family

ID=77524121

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010152728.1A Active CN113355345B (en) 2020-03-06 2020-03-06 Method for integrating exogenous sequences in genome

Country Status (1)

Country Link
CN (1) CN113355345B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381415A (en) * 2022-03-22 2022-04-22 深圳蓝晶生物科技有限公司 Gene recombination strain for high-yield PHA and construction method thereof
CN116121219A (en) * 2022-04-06 2023-05-16 深圳蓝晶生物科技有限公司 Engineered microorganisms expressing acetoacetyl-CoA reductase variants and methods of increasing PHA production

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194018A (en) * 2005-02-02 2008-06-04 英特拉克森公司 Site-specific serine recombinases and methods of their use
KR20110122434A (en) * 2010-05-04 2011-11-10 한국과학기술원 Method for inactivating a target gene in the genus ralstonia
KR20140117733A (en) * 2013-03-26 2014-10-08 건국대학교 산학협력단 A method for producing poly hydroxybutyrate-co-hydroxyvalerate with high 3-hydroxy valerate content using propionyl-coa transferase gene from ralstonia eutropha
US20150176012A1 (en) * 2012-07-24 2015-06-25 Technische Universität Dresden Protein with recombinase activity for site-specific DNA-recombination
CN105144204A (en) * 2012-12-13 2015-12-09 麻省理工学院 Recombinase-based logic and memory systems
US20190225674A1 (en) * 2016-07-11 2019-07-25 Massachusetts Institute Of Technology Tools for next generation komagataella (pichia) engineering
AU2019216699A1 (en) * 2012-11-16 2019-09-19 Transposagen Biopharmaceuticals, Inc. Site-Specific Enzymes and Methods of Use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194018A (en) * 2005-02-02 2008-06-04 英特拉克森公司 Site-specific serine recombinases and methods of their use
KR20110122434A (en) * 2010-05-04 2011-11-10 한국과학기술원 Method for inactivating a target gene in the genus ralstonia
US20150176012A1 (en) * 2012-07-24 2015-06-25 Technische Universität Dresden Protein with recombinase activity for site-specific DNA-recombination
AU2019216699A1 (en) * 2012-11-16 2019-09-19 Transposagen Biopharmaceuticals, Inc. Site-Specific Enzymes and Methods of Use
CN105144204A (en) * 2012-12-13 2015-12-09 麻省理工学院 Recombinase-based logic and memory systems
KR20140117733A (en) * 2013-03-26 2014-10-08 건국대학교 산학협력단 A method for producing poly hydroxybutyrate-co-hydroxyvalerate with high 3-hydroxy valerate content using propionyl-coa transferase gene from ralstonia eutropha
US20190225674A1 (en) * 2016-07-11 2019-07-25 Massachusetts Institute Of Technology Tools for next generation komagataella (pichia) engineering

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EMIKO SUZUKI,MANABU NAKAYAMA: "VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering", 《NUCLEIC ACIDS RES》 *
VLADIMIR SENTCHILO ET AL.: "Intracellular excision and reintegration dynamics of the ICEclc genomic island of Pseudomonas knackmussii sp. strain B13", 《MOLECULAR MICROBIOLOGY》 *
XIANWEI WANG ET AL.: "Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly", 《ACTA BIOCHIM BIOPHYS SIN》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381415A (en) * 2022-03-22 2022-04-22 深圳蓝晶生物科技有限公司 Gene recombination strain for high-yield PHA and construction method thereof
CN116121219A (en) * 2022-04-06 2023-05-16 深圳蓝晶生物科技有限公司 Engineered microorganisms expressing acetoacetyl-CoA reductase variants and methods of increasing PHA production
CN116121219B (en) * 2022-04-06 2023-11-28 深圳蓝晶生物科技有限公司 Engineered microorganisms expressing acetoacetyl-CoA reductase variants and methods of increasing PHA production

Also Published As

Publication number Publication date
CN113355345B (en) 2023-05-23

Similar Documents

Publication Publication Date Title
Niu et al. Expanding the potential of CRISPR-Cpf1-based genome editing technology in the cyanobacterium Anabaena PCC 7120
Hoang et al. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants
CA2312474C (en) Novel dna cloning method
US20240117330A1 (en) Enzymes with ruvc domains
US10982200B2 (en) Enzymes with RuvC domains
JP2019205478A (en) Crispr enabled multiplexed genome engineering
Zhang et al. Direct cloning and heterologous expression of natural product biosynthetic gene clusters by transformation-associated recombination
JP2004524031A (en) Bacterial plasmid lacking synthetic gene and CpG
CN113355345B (en) Method for integrating exogenous sequences in genome
Li et al. Genome-based rational engineering of Actinoplanes deccanensis for improving fidaxomicin production and genetic stability
CN115851664A (en) I-B type CRISPR-Cascade-Cas3 gene editing system and application
US11078458B2 (en) Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli
WO2021258580A1 (en) Crispr/cas12a-based in vitro large-fragment dna cloning method and applications thereof
CN116286931B (en) Double-plasmid system for rapid gene editing of Ralstonia eutropha and application thereof
US20230044600A1 (en) In-vivo Continuous Directed Evolution System and Application Thereof
US20210317402A1 (en) Genome-wide rationally-designed mutations leading to enhanced lysine production in e. coli
US20220220460A1 (en) Enzymes with ruvc domains
US11787841B2 (en) Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
WO2003064623A2 (en) Methods and vectors for facilitating site-specific recombination
Wen et al. Genome editing of Corynebacterium glutamicum using CRISPR-cpf1 system
Mougiakos Feel the burn: a collection of stories on hot’n’sharp DNA engineering
US20110033909A1 (en) Means and methods for cloning nucleic acid sequences
GB2617659A (en) Enzymes with RUVC domains
CN115786229A (en) Recombination system for knockout of rhodococcus gene and application thereof
WO2014201394A2 (en) Methods and compositions for the construction of prokaryotic organisms having multiple chromosomes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant