CN113351882B - 一种高精度可降解金属多孔支架激光粉末床熔融制造方法 - Google Patents

一种高精度可降解金属多孔支架激光粉末床熔融制造方法 Download PDF

Info

Publication number
CN113351882B
CN113351882B CN202110692757.1A CN202110692757A CN113351882B CN 113351882 B CN113351882 B CN 113351882B CN 202110692757 A CN202110692757 A CN 202110692757A CN 113351882 B CN113351882 B CN 113351882B
Authority
CN
China
Prior art keywords
laser
scanning
powder bed
porous
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110692757.1A
Other languages
English (en)
Other versions
CN113351882A (zh
Inventor
温鹏
尹浜兆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110692757.1A priority Critical patent/CN113351882B/zh
Publication of CN113351882A publication Critical patent/CN113351882A/zh
Application granted granted Critical
Publication of CN113351882B publication Critical patent/CN113351882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Automation & Control Theory (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了属于材料加工技术领域的一种高精度可降解金属多孔支架激光粉末床熔融制造方法。本发明是在综合考虑材料特性和结构设计对激光粉末床熔融加工过程的影响,为此首先建立辅助气流系统,采用合适的辅助气流控制循环风速,抑制粉末材料蒸发对成形过程的不良影响,以激光功率和扫描速度决定的激光能量为变量,使用正交实验法制备一组标准尺寸实体试样,利用上述参数,制备具有不同直径或壁厚设计值的圆柱形或长方体试样,生成针对特定粉体材料和结构特征的激光能量和扫描策略。得到的多孔支架孔隙通透,且内部无明显残留粉末,致密度高于99.5%,实际孔隙率和设计值的误差小于±5%。本发明也适用于钛合金、不锈钢等其他金属材料。

Description

一种高精度可降解金属多孔支架激光粉末床熔融制造方法
技术领域
本发明属于材料加工技术领域,特别涉及一种高精度可降解金属多孔支架激光粉末床熔融制造方法。
背景技术
人体的器官和组织往往因为运动或疾病受到损伤,生物材料可以用来代替或修复人体的器官和组织,并实现其生理功能。因为生物材料长期或临时与人体接触时,必须充分满足与生物体环境的相容性,即生物体不发生任何毒性、致敏、炎症、致癌、血栓等生物反应,而这些都取决于材料表面与生物体环境的相互作用。可降解金属多孔支架是理想的人体骨替代材料;目前人体骨替代材料通常Mg、Zn、Ti、HA、,Mg-Zn、Mg-Cu、Mg-Ca、Mg-Mn及生物陶瓷等诸多材料;可降解金属多孔支架是人体骨替代材料,制作人体骨替代材料的方法也各式各样;在专利201110312539.7,“一种多孔镁合金/生物陶瓷仿生复合支架及其快速成型方法”就是借助于逆向工程和CAD技术进行外形相关性和微结构仿生设计,并,建立支架的CAD模型;,采用光固化直接成型多孔生物活性陶瓷框架,;利用真空吸铸向生物陶瓷框架的次级管路内浇铸熔融的镁合金,冷却凝固后,即可得到多孔镁合金/生物陶瓷复合结构骨支架。在专利201811139964.9“一种骨植入Mg/TiO2-HA梯度多孔涂层的可再生镁基骨骼材料的制备方法”,其包括 Ti02/Ag-HA梯度多孔涂层及镁基骨骼材料,Mg/TiO2-HA梯度涂层涂敷于镁基骨骼材料。本实验采用打印材料分两组,第一组选用Mg颗粒、Ag粉末混合粉末,得到金属粉末基;第二组选用Mg、TiO2、HA三种材料,构建3D打印模型,进行激光打印,熔覆结束后,经过一定的后期处理来制得。
镁和锌是人体必需的生命元素,在体液内能够逐渐被腐蚀降解,降解产物可不仅被人体安全吸收,而且具有促成骨重建能力。生物可降解镁合金和锌合金具有生物相容性好、力学性能好、无需二次手术取出等优点,在骨科植入物领域有广阔的应用前景。为了保障良好的承载和促进骨重建效果,骨缺损填充植入物应具有与患者骨骼创面相匹配的宏观外形,同时植入物内部具有大量连通的孔隙以便于骨细胞长入。激光粉末床熔融技术可实现各种定制化的宏微观精细结构,是个性化可降解金属骨植入物的理想制造方法。
镁和锌同为密排六方晶体结构,熔点和沸点较低、蒸发倾向较高、线膨胀系数较高、液态金属流动性较好,因此,采用激光粉末床熔融工艺制备镁合金和锌合金多孔支架时,容易出现气孔、飞溅、变形和粉末粘附等成形质量问题。为了抑制蒸发对成形过程的不良影响,需要及时清理成形舱室内的蒸发烟尘;为了确保可靠的力学性能,需要严格限制支架内部的成形缺陷,即提高支杆的致密度;增加激光能量有利于提高致密度,但是会造成蒸发加剧,以及多余粉末熔化和粘附,不利于尺寸精度;若降低激光能量,虽然有利于提高尺寸精度,但支杆内部产生较多缺陷,对性能不利。鉴于镁、锌合金材料特性,目前的增材制造方法难以同时保障多孔支架的成形质量和精度,不满足骨科植入物高可靠性、高精度要求。
发明内容
本发明的目的是提出一种高精度可降解金属多孔支架激光粉末床熔融制造方法,所述多孔支架激光粉末床熔融制造方法都是通过计算机模拟进行外形相关性和微结构仿生设计,并,建立支架模型;或直接成型多孔生物活性陶瓷框架或骨结构框架;然后采用激光粉末打印可再生镁基骨骼材料涂层;其特征在于,所述多孔支架激光粉末床熔融制造方法是在综合考虑材料特性和结构设计对激光粉末床熔融加工过程的影响,建立辅助气流系统,选用合适的辅助气流控制循环风速,抑制材料蒸发对成形过程的不良影响,具体包含以下步骤:
步骤一,获取基础工艺窗口,
根据所使用可降解金属粉末的蒸发特性,利用辅助气流系统控制合适的辅助气流循环风速vc,将粉末层厚t设置与可降解金属粉体材料平均粒径d50相等,将激光扫描行间距h设置与激光光斑直径φ相等,激光扫描策略采用之字形往复,每层旋转67°;改变激光功率P和扫描速度V,采用激光粉末床熔融工艺制备边长10mm的实心立方体试样。将试样平行于堆积方向切开,将截面打磨抛光后获取其光学显微图像,使用图像软件统计出界面上代表气孔和未熔合等成形缺陷的黑色像素数的百分比a,则将试件的致密度记为1-a;将致密度大于99.5%的所有激光功率和扫描速度的参数组合作为基础工艺窗口;
步骤二:设计扫描策略
多孔支架由支杆或薄壁组成的实体及其形成的孔隙组成,由厚度为t的二维图案堆积形成三维结构。在一个横截面内,实体部分的扫描路径分为外轮廓和内填充两部分。外轮廓扫描路径与实体外形重合,所用激光能量为基础工艺窗口内 P/V最小的一组,记为P1和V1;内填充扫描路径采用之字形往复,每层旋转67°,所用激光能量为基础工艺窗口中,将致密度高且位于窗口中心的一组,记为P2和V2
步骤三:确定外轮廓缩进量
采用步骤二的扫描策略制备直径为0.2~2mm,高10mm的圆柱试样,以及宽度为0.2~2mm,长和高为10mm的薄壁试样,测量所得试件的实际直径或宽度D1;并与设计值D0n对比,则该尺寸所对应的外轮廓缩进量Xn=(D1n-D0n)/2,根据D0n和Xn确定缩进量拟合公式f(D0n)=Xn
步骤四:获取多孔支架最优工艺
根据步骤二、三获得多孔支架的结构,确定支杆直径或壁厚的特征尺寸D0分布,根据步骤三确定的拟合公式计算得到各特征尺寸的外轮廓缩进量X0,同时,根据支架与基板的接触面积设置支撑,防止多孔支架打印过程中的变形,该支撑采用较低的功率P3和较快的扫描速度V3进行制造,目的是提高效率并方便后期从基板去除。至此得到制备多孔支架的激光粉末床熔融最优工艺参数组合,包括循环风速vc、粉末层厚t,扫描行间距h,外轮廓激光功率P1,外轮廓扫描速度V1,内填充激光功率P2,内填充扫描速度V2,外轮廓缩进量X0,支撑激光功率P3,支撑扫描速度V3
所述采用合适的辅助气流循环风速是通过辅助气流系统控制,该辅助气流系统结构是在主舱室4地板上固定激光粉末床11,主舱室4右边下部侧面壁上固定多孔进气装置1,主舱室4左边下部侧面壁上固定吸气装置3.,吸气装置3.与抽气泵8连通;多孔进气装置1,通过电控气阀10与保护气瓶9连接;在主舱室4 顶部左边固定氧气气体探测器5,主舱室4顶部中央垂直固定支持圆筒,支持圆筒侧壁上固定透镜保护气流口2,圆筒顶面固定透镜6,透镜6上面为透镜基座7,激光束12从透镜基座7中心圆孔进入主舱室4到达激光粉末床11表面,熔融待加工粉末。
本发明的有益效果通过辅助气流、激光能量和扫描策略设计优化,实现镁合金、锌合金精细多孔结构的激光增材制造,在保证成形质量的同时,尺寸精度较现有工艺有大幅提高,可用于骨科植入物。
附图说明
图1为辅助气流系统示意图;
图中标号:1-多孔进气装置,2-透镜保护气流口,3-吸气装置,4-主舱室,5-氧气气体探测器,6-透镜,7-透镜基座,8-抽气泵,9-保护气瓶, 10-电控气阀。激光粉末床11,激光束12。
图2:同一零件两个相邻横截面内的扫描路径示例
图3:外轮廓缩进量示意图
图4:多孔支架杆径,/壁厚示意图;其中a为多孔支架杆径;b为多孔支架杆径壁厚。
图5为采用等离子旋转雾化法制造镁合金粉末图.
图6为350μm直径的圆杆组成多孔支架三维模型图。
图7为激光粉熔融制造的成型质量良好的镁合金多孔支架示意图。
具体实施方式
本发明提出一种高精度可降解金属多孔支架激光粉末床熔融制造方法,在综合考虑材料特性和结构设计对激光粉末床熔融加工过程的影响,为此首先建立辅助气流系统,采用合适的辅助气流控制循环风速,抑制粉末材料蒸发对成形过程的不良影响。下面结合附图和实施例对本发明予以进一步说明。
如图1所示为辅助气流系统示意图;该辅助气流系统结构是在主舱室4地板上固定激光粉末床11,主舱室4右边下部侧面壁上固定多孔进气装置1,主舱室 4左边下部侧面壁上固定吸气装置3.,吸气装置3.与抽气泵8连通;多孔进气装置1,通过电控气阀10与保护气瓶9连接;在主舱室4顶部左边固定氧气气体探测器5,主舱室4顶部中央垂直固定支持圆筒,支持圆筒侧壁上固定透镜保护气流口2,圆筒顶面固定透镜6,透镜6上面为透镜基座7,激光束12从透镜基座 7中心圆孔进入主舱室4到达激光粉末床11表面,熔融待加工粉末。
该该多孔支架激光粉末床熔融制造包含以下步骤:
所述高精度可降解金属多孔支架激光粉末床熔融制造方法包含以下步骤:
步骤一,获取基础工艺窗口,
根据所使用可降解金属粉末的蒸发特性,利用图1所示的辅助气流系统控制合适的辅助气流循环风速vc,将粉末层厚t设置与可降解金属粉体材料平均粒径 d50相等,将激光扫描行间距h设置与激光光斑直径φ相等,激光扫描策略采用之字形往复,每层旋转67°。改变激光功率P和扫描速度V,采用激光粉末床熔融工艺制备边长10mm的实心立方体试样。将试样平行于堆积方向切开,将截面打磨抛光后获取其光学显微图像,使用图像软件统计出界面上代表气孔和未熔合等成形缺陷的黑色像素数的百分比a,则将试件的致密度记为1-a。将致密度大于99.5%的所有激光功率和扫描速度的参数组合作为基础工艺窗口。
步骤二:设计扫描策略
多孔支架由支杆或薄壁组成的实体及其形成的孔隙组成,由厚度为t的二维图案堆积形成三维结构。在一个横截面内,实体部分的扫描路径分为外轮廓和内填充两部分。外轮廓扫描路径与实体外形重合,所用激光能量为基础工艺窗口内 P/V最小的一组,记为P1和V1。内填充扫描路径采用之字形往复,每层旋转67° (如图2所示),所用激光能量为基础工艺窗口中致密度较高且位于窗口中心的一组,记为P2和V2
步骤三:确定外轮廓缩进量
采用步骤二的扫描策略制备直径为0.2~2mm,高10mm的圆柱试样,以及宽度为0.2~2mm,长和高为10mm的薄壁试样(如图4中a、b所示),测量所得试件的实际直径或宽度D1n并与设计值D0n对比,则该尺寸所对应的外轮廓缩进量 Xn=(D1n-D0n)/2,根据D0n和Xn确定缩进量拟合公式f(D0n)=Xn
步骤四:获取多孔支架最优工艺
通过计算机绘图软件或编程方法获得多孔支架的结构设计方案,确定支杆直径或壁厚的特征尺寸D0分布,根据步骤三确定的拟合公式计算得到各特征尺寸的外轮廓缩进量X0(如图3所示);同时,根据支架与基板的接触面积设置支撑,防止多孔支架打印过程中的变形,该支撑采用较低的功率P3和较快的扫描速度 V3进行制造,目的是提高效率并方便后期从基板去除。至此得到制备多孔支架的激光粉末床熔融最优工艺参数组合,包括循环风速vc、粉末层厚t,扫描行间距 h,外轮廓激光功率P1,外轮廓扫描速度V1,内填充激光功率P2,内填充扫描速度V2,外轮廓缩进量X0,支撑激光功率P3,支撑扫描速度V3
实施例
本实施例为镁合金多孔支架的制造实例,进一步说明本发明的实施方法和技术优势。
使用的激光粉末床熔融设备为西安铂力特制造的S210,搭载一台500W光纤激光器,光斑直径为70μm。所用镁合金粉末采用等离子旋转雾化法制造,d50=24.7 μm(如图5所示)。将层厚设置为0.2mm,扫描路径间距设置为0.07mm,循环风速vc设置为0.3vmax
使用表1中的参数打印25个边长10mm的正方体试件,打印完成后打磨抛光,拍摄光学显微照片并用图像处理软件统计致密度,绘制工艺窗口云图,选取 P1=80W,V1=800mm/s作为内填充路径的扫描参数,P2=60W,V2=800mm/s作为外轮廓路径的扫描参数,P3=60W,V3=1000mm/s作为支撑的扫描参数。
表1激光功率与扫描速度对成形致密度的影响
Figure RE-GDA0003160970030000071
使用上述的扫描参数组合打印长10mm,设计直径分别为0.2,0.4,0.6,0.8, 1.0,1.2,1.4,1.6,1.8,2.0mm的圆杆,打印完成后分别测量其实际平均直径,结果如表2所示。可得拟合公式X=f(D0)=-0.000005D0 2+0.01893D0+36.8(μm)
表2实际直径与设计直径的偏差(单位:μm)
D<sub>0</sub> 200 400 600 800 1000 1200 1400 1600 1800 2000
D<sub>1</sub> 281 487 693 897 1101 1305 1507 1709 1909 2109
X 40 44 46 49 51 52 54 54 55 55
需要打印的多孔支架由直径为350μm的圆杆组成,三维模型(如图6所示)。则根据拟合公式可计算得出X=43μm,即所需的路径偏移量为0.043mm。至此获得了一套完整的制造工艺参数,如表3。使用此参数可加工的出成型质量良好的镁合金多孔支架,孔隙率与设计值的偏差小于5%,孔隙通透(如图7所示)。
表3镁合金多孔支架的制造参数
层厚t 0.02mm 内填充激光功率P<sub>1</sub> 80W
路径间距h 0.07mm 外轮廓激光功率P<sub>2</sub> 60W
循环风速v<sub>c</sub> 0.3v<sub>max</sub> 支撑激光功率P<sub>3</sub> 80W
轮廓缩进量X 0.043mm 内填充扫描速度V<sub>1</sub> 800mm/s
外轮廓扫描速度V<sub>2</sub> 800mm/s
支撑扫描速度V<sub>3</sub> 1000mm/s

Claims (3)

1.一种高精度可降解金属多孔支架激光粉末床熔融制造方法,所述多孔支架激光粉末床熔融制造方法都是通过计算机模拟进行外形相关性和微结构仿生设计,并,建立支架模型;或直接成型多孔生物活性陶瓷框架或骨结构框架;然后采用激光粉末打印可再生镁基骨骼材料涂层;其特征在于,所述多孔支架激光粉末床熔融制造方法是在综合考虑材料特性和结构设计对激光粉末床熔融加工过程的影响,建立辅助气流系统,选用合适的辅助气流控制循环风速,抑制材料蒸发对成形过程的不良影响,具体包含以下步骤:
步骤一,获取基础工艺窗口,
根据所使用可降解金属粉末的蒸发特性,利用辅助气流系统控制合适的辅助气流循环风速vc,将粉末层厚t设置与可降解金属粉体材料平均粒径d50相等,将激光扫描行间距h设置与激光光斑直径φ相等,激光扫描策略采用之字形往复,每层旋转67°;改变激光功率P和扫描速度V,采用激光粉末床熔融工艺制备边长10mm的实心立方体试样;将试样平行于堆积方向切开,将截面打磨抛光后获取其光学显微图像,使用图像软件统计出界面上代表气孔和未熔合等成形缺陷的黑色像素数的百分比a,则将试件的致密度记为1-a;将致密度大于99.5%的所有激光功率和扫描速度的参数组合作为基础工艺窗口;
步骤二:设计扫描策略
多孔支架由支杆或薄壁组成的实体及其形成的孔隙组成,由厚度为t的二维图案堆积形成三维结构;在一个横截面内,实体部分的扫描路径分为外轮廓和内填充两部分,外轮廓扫描路径与实体外形重合;所用激光能量为基础工艺窗口内P和V最小的一组,“记为P1和V1;在基础工艺窗口内填充扫描路径采用之字形往复”,每层旋转67°,所用激光能量为基础工艺窗口中,将致密度高且位于窗口中心的一组,记为P2和V2
步骤三:确定外轮廓缩进量
采用步骤二的扫描策略制备直径为0.2~2mm,高10mm的圆柱试样,以及宽度为0.2~2mm,长和高为10mm的薄壁试样,测量所得试件的实际直径或宽度D1;并与设计值D0n对比,则该尺寸所对应的外轮廓缩进量Xn=(D1n-D0n)/2,根据D0n和Xn确定缩进量拟合公式f(D0n)=Xn
步骤四:获取多孔支架最优工艺
根据步骤二、三获得多孔支架的结构,确定支杆直径或壁厚的特征尺寸D0分布,根据步骤三确定的拟合公式计算得到各特征尺寸的外轮廓缩进量X0,同时,根据支架与基板的接触面积设置支撑,防止多孔支架打印过程中的变形,该支撑采用低的功率P3和快的扫描速度V3进行制造,目的是提高效率并方便后期从基板去除;至此得到制备多孔支架的激光粉末床熔融最优工艺参数组合,包括循环风速vc、粉末层厚t,扫描行间距h,外轮廓激光功率P1,外轮廓扫描速度V1,内填充激光功率P2,内填充扫描速度V2,外轮廓缩进量X0,支撑激光功率P3,支撑扫描速度V3
2.根据权利要求1所述一种高精度可降解金属多孔支架激光粉末床熔融制造方法,其特征在于,采用合适的辅助气流循环风速是通过辅助气流系统控制,该辅助气流系统结构是在主舱室(4)地板上固定激光粉末床(11),主舱室(4)右边下部侧面壁上固定多孔进气装置(1),主舱室(4) 左边下部侧面壁上固定吸气装置(3),吸气装置(3)与抽气泵(8)连通;多孔进气装置(1)通过电控气阀(10)与保护气瓶(9)连接;在主舱室(4)顶部左边固定氧气气体探测器(5),主舱室(4)顶部中央垂直固定支持圆筒,支持圆筒侧壁上固定透镜保护气流口(2),圆筒顶面固定透镜(6),透镜(6)上方为透镜基座(7),激光束(12)从透镜基座(7)中心圆孔进入主舱室(4)到达激光粉末床(11)表面,熔融待加工粉末。
3.根据权利要求1所述一种高精度可降解金属多孔支架激光粉末床熔融制造方法,其特征在于,多孔支架由周期重复或随机生成的孔隙单元组成,孔隙单元由支杆或薄壁组成,支杆直径和薄壁厚度可低至0.2mm,实体致密度高达99.5%以上,孔隙通透,且内部无明显残留粉末,实际孔隙率和设计值的误差小于±5%。
CN202110692757.1A 2021-06-22 2021-06-22 一种高精度可降解金属多孔支架激光粉末床熔融制造方法 Active CN113351882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110692757.1A CN113351882B (zh) 2021-06-22 2021-06-22 一种高精度可降解金属多孔支架激光粉末床熔融制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110692757.1A CN113351882B (zh) 2021-06-22 2021-06-22 一种高精度可降解金属多孔支架激光粉末床熔融制造方法

Publications (2)

Publication Number Publication Date
CN113351882A CN113351882A (zh) 2021-09-07
CN113351882B true CN113351882B (zh) 2022-10-25

Family

ID=77535733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110692757.1A Active CN113351882B (zh) 2021-06-22 2021-06-22 一种高精度可降解金属多孔支架激光粉末床熔融制造方法

Country Status (1)

Country Link
CN (1) CN113351882B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113770546A (zh) * 2021-10-11 2021-12-10 上海莘芝光电科技有限公司东莞分公司 一种通过激光蚀刻和碳化塑料表面制作立体线路的工艺
CN114042898B (zh) * 2021-11-10 2023-02-28 温州医科大学附属口腔医院 一种大面积电偶腐蚀结构的生物医用可降解金属骨架增强Zn基复合材料的制备方法
CN117206544B (zh) * 2023-11-09 2024-02-20 四川工程职业技术学院 一种Zn-Cu-Mn-Mg合金多孔结构激光选区熔化成形方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790719B (zh) * 2017-11-13 2018-09-11 成都优材科技有限公司 基于激光选区熔化的金属精细多孔结构成型方法
CN108555300A (zh) * 2018-06-29 2018-09-21 清华大学 易蒸发金属激光选区熔化气氛控制装置
CN109317675A (zh) * 2018-11-14 2019-02-12 哈尔滨工程大学 一种高致密度纯钼选区激光熔化制备方法
CN111774566B (zh) * 2020-06-23 2022-07-08 西安建筑科技大学 一种多组元稀土镁合金3d打印工艺
CN112045185B (zh) * 2020-08-24 2022-03-18 清华大学 基于选区激光熔化技术制备功能梯度材料的方法,计算机可读存储介质和电子设备

Also Published As

Publication number Publication date
CN113351882A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN113351882B (zh) 一种高精度可降解金属多孔支架激光粉末床熔融制造方法
Zhao et al. Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair
Calignano et al. Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters
Lv et al. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review
Khademzadeh et al. Micro porosity analysis in additive manufactured NiTi parts using micro computed tomography and electron microscopy
Tan et al. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility
Warnke et al. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering
CN109872769B (zh) 一种孔隙率梯度变化的植入体的制备方法
CN104646669A (zh) 生物医用多孔纯钛植入材料及其制备方法
JP5052506B2 (ja) 人工骨の製造方法
Maszybrocka et al. Morphology and surface topography of Ti6Al4V lattice structure fabricated by selective laser sintering
CN103495731A (zh) 一种选择性激光熔化制备纯钛多孔结构的方法
Li et al. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants
Leary et al. Surface roughness
CN105797206B (zh) 一种生物医用复合植入材料及其制备方法
Stevenson et al. Combining 3D human in vitro methods for a 3Rs evaluation of novel titanium surfaces in orthopaedic applications
Slámečka et al. Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturing
Sağbaş et al. Additively manufactured Ti6Al4V lattice structures for biomedical applications
Elhattab et al. Biomechanics of additively manufactured metallic scaffolds—A review
Zheng et al. A TMPS-designed personalized mandibular scaffolds with optimized SLA parameters and mechanical properties
Balcı et al. Reproducibility of replicated trabecular bone structures from ti6al4v extralow interstitials powder by selective laser melting
CN112206077A (zh) 基于Primitive和Diamond曲面结构单元的多孔梯度支架及制备方法
Zhao et al. Ti/β-TCP composite porous scaffolds fabricated by direct ink writing
CN108456803B (zh) 一种生物材料3d打印机多进一出喷头的制备方法
Song et al. Status and prospects of surface texturing: design, manufacturing and applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant