CN113343161B - 一种低位域陆架边缘三角洲的定量表征方法 - Google Patents

一种低位域陆架边缘三角洲的定量表征方法 Download PDF

Info

Publication number
CN113343161B
CN113343161B CN202110600291.8A CN202110600291A CN113343161B CN 113343161 B CN113343161 B CN 113343161B CN 202110600291 A CN202110600291 A CN 202110600291A CN 113343161 B CN113343161 B CN 113343161B
Authority
CN
China
Prior art keywords
delta
water
ground
distance
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110600291.8A
Other languages
English (en)
Other versions
CN113343161A (zh
Inventor
葛家旺
赵晓明
马畅
廖晋
万志峰
方小宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110600291.8A priority Critical patent/CN113343161B/zh
Publication of CN113343161A publication Critical patent/CN113343161A/zh
Application granted granted Critical
Publication of CN113343161B publication Critical patent/CN113343161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Geophysics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种低位域陆架边缘三角洲的定量表征方法,包括以下步骤:选择目标三角洲的剖面,基于经典层序地层学理论,利用地震终止关系划分所述目标三角洲的三级层序界面;在所述三级层序界面内,识别出初始海泛面在所述三级层序界面上的第一个上超点、第一个下超点以及初始海泛面角度变化最大点;读取上述三个点的时间值,利用时深转换公式,将其转换为深度值;根据所述深度值计算所述三角洲的加积距离;根据上述三个点的平面位置计算所述三角洲的进积距离;根据所述加积距离和所述进积距离计算所述三角洲的坡度;根据所述坡度的计算结果确定所述三角洲的类型。本发明能够定量划分低位域陆架边缘三角洲的类型,为深水沉积研究提供技术支持。

Description

一种低位域陆架边缘三角洲的定量表征方法
技术领域
本发明涉及深水沉积技术领域,特别涉及一种低位域陆架边缘三角洲的定量表征方法。
背景技术
深水沉积是当今世界油气勘探、开发的热点和前沿领域,低位域陆架边缘三角洲的研究是深水沉积理论的重要研究方向。低位域往往同时发育深水扇体(斜坡扇及海底扇)和陆架边缘三角洲沉积体系,其中陆架边缘三角洲对深水富砂体系具有良好的指示效应。低位域陆架边缘三角洲的研究不但具有丰富层序地层学、海洋沉积学等理论意义,对其进行定量化的表征,不仅有利于判识其砂体发育类型及展布规律预测,更有利于深水区的资源勘探与开发。
然而,尽管低位域陆架边缘三角洲的研究对深水扇体的预测有着积极地意义,但是受气候、海平面升降、沉积物供给等因素的影响,其形态复杂多变;形成各种不同类型的三角洲,这也严重影响了对深水有利砂体及油气勘探区的预测准确度。
目前对于低位域陆架边缘三角洲的表征方法,主要以形态描述为主,亟需一种可以定量化表征低位域陆架边缘三角洲的方法。
发明内容
针对上述问题,本发明旨在提供一种低位域陆架边缘三角洲的定量表征方法。
本发明的技术方案如下:
一种低位域陆架边缘三角洲的定量表征方法,包括以下步骤:
选择目标三角洲的剖面,基于经典层序地层学理论,利用地震终止关系划分所述目标三角洲的三级层序界面;
在所述三级层序界面内,识别出初始海泛面在所述三级层序界面上的第一个上超点、第一个下超点以及初始海泛面角度变化最大点;
读取所述第一个上超点、第一个下超点以及初始海泛面角度变化最大点的时间值,利用时深转换公式,将所述时间值转换为深度值;
根据所述第一个上超点和所述初始海泛面角度变化最大点的深度值计算所述三角洲的加积距离;
根据所述第一个上超点和所述初始海泛面角度变化最大点的平面位置计算所述三角洲的进积距离;
根据所述加积距离和所述进积距离计算所述三角洲的坡度;
根据所述坡度的计算结果确定所述三角洲的类型。
作为优选,所述时深转换公式为:
D=(V*T+V*T)/2 (1)
式中:D为深度值,m;V、V分别为地震波在水体和地层中的速度,m/s;T、T分别为地震波在水体中和地层中传播的时间,s。
作为优选,所述加积距离通过下式进行计算:
dA=(V*T+V*T地2)/2-(V*T+V*T地1)/2 (2)
式中:dA为加积距离,m;T地1为第一个上超点时间,s;T地2为初始海泛面角度变化最大点时间,s。
作为优选,所述进积距离通过下式进行计算:
dP=(CDP2-CDP1)*12.5 (3)
式中:dP为进积距离,m;CDP1为第一个上超点平面位置,m;CDP2为初始海泛面角度变化最大点平面位置,m。
作为优选,所述三角洲的坡度通过下式进行计算:
α=tan-1(dA/dP) (4)
式中:α为三角洲的坡度,°。
作为优选,所述三角洲的类型判断标准为:
当所述三角洲的坡度大于等于1°时,所述三角洲的类型为加积型;
当所述三角洲的坡度大于等于0°,且小于1°时,所述三角洲的类型为进积型;
当所述三角洲的坡度小于0°时,所述三角洲的类型为强烈进积型。
作为优选,所述低位域陆架边缘三角洲的定量表征方法还包括以下步骤:
根据所述第一个上超点和所述第一个下超点的深度值计算所述三角洲的高度;
根据所述第一个上超点和所述第一个下超点的平面位置计算所述三角洲的长度;
根据所述高度和所述长度计算所述三角洲的前积角;
根据所述加积距离、进积距离、高度、长度、以及前积角计算所述三角洲的砂体面积;
根据所述高度、长度、以及砂体面积判断所述三角洲的规模和形态。
作为优选,所述高度和所述长度分别通过下式进行计算:
H=(V*T+V*T地3)/2-(V*T+V*T地1)/2 (5)
L=(CDP3-CDP1)*12.5 (6)
式中:H为高度,m;T地3为第一个下超点时间,s;L为长度,m;CDP3为第一个下超点平面位置,m。
作为优选,所述前积角通过下式进行计算:
β=tan-1(H/L)-tan-1(dA/dP) (7)
式中:β为前积角,°。
作为优选,所述砂体面积通过下式进行计算:
S=1/2Sinβ×(dA2+dP2)1/2+(H2+L2)1/2 (8)
式中:S为砂体面积,m。
本发明的有益效果是:
本发明利用低位域陆架边缘三角洲的坡度对三角洲的类型进行定量表征,如此划分的三角洲类型结果更为精确,有效减少人为识别的误差,丰富了深海沉积学及层序地层学的研究方法,对于低位域陆架边缘三角洲的砂体发育预测也有积极的意义。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为经典层序地层学示意图;
图2为本发明一个实施例的地震测线1的剖面结果示意图;
图3为本发明一个实施例的地震测线2的剖面结果示意图;
图4为本发明一个实施例的地震测线3的剖面结果示意图;
图5为本发明一个实施例的三级层序界面识别结果示意图;
图6为本发明一个实施例的体系域界面识别结果示意图;
图7为本发明低位域陆架边缘三角洲的形态特征及几何参数示意图;
图8为本发明低位域陆架边缘三角洲的类型示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互结合。需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。本发明公开使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
本发明提供一种低位域陆架边缘三角洲的定量表征方法,包括以下步骤:
S1:选择目标三角洲的剖面,基于如图1所示的经典层序地层学理论,利用地震终止关系划分所述目标三角洲的三级层序界面。
S2:在所述三级层序界面内,识别出初始海泛面在所述三级层序界面上的第一个上超点、第一个下超点以及初始海泛面角度变化最大点。
S3:读取所述第一个上超点、第一个下超点以及初始海泛面角度变化最大点的时间值,利用时深转换公式,将所述时间值转换为深度值;所述时深转换公式为:
D=(V*T+V*T)/2 (1)
式中:D为深度值,m;V、V分别为地震波在水体和地层中的速度,m/s;T、T分别为地震波在水体中和地层中传播的时间,s。
需要说明的是,本发明除了采用式(1)所示的时深转换公式外,也可采用现有技术中的其他时深转换公式。
S4:根据所述第一个上超点和所述初始海泛面角度变化最大点的深度值计算所述三角洲的加积距离;所述加积距离通过下式进行计算:
dA=(V*T+V*T地2)/2-(V*T+V*T地1)/2 (2)
式中:dA为加积距离,m;T地1为第一个上超点时间,s;T地2为初始海泛面角度变化最大点时间,s。
S5:根据所述第一个上超点和所述初始海泛面角度变化最大点的平面位置计算所述三角洲的进积距离;所述进积距离通过下式进行计算:
dP=(CDP2-CDP1)*12.5 (3)
式中:dP为进积距离,m;CDP1为第一个上超点平面位置,m;CDP2为初始海泛面角度变化最大点平面位置,m。
S6:根据所述加积距离和所述进积距离计算所述三角洲的坡度;所述坡度通过下式进行计算:
α=tan-1(dA/dP) (4)
式中:α为三角洲的坡度,°。
需要说明的是,本发明式(4)中的加积距离和进积距离除了采用式(2)和式(3)所示的加积距离计算公式和进积距离计算公式外,也可采用现有技术中的其他计算方法。
S7:根据所述坡度的计算结果确定所述三角洲的类型,所述三角洲的类型判断标准如下:
当所述三角洲的坡度大于等于1°时,所述三角洲的类型为加积型;
当所述三角洲的坡度大于等于0°,且小于1°时,所述三角洲的类型为进积型;
当所述三角洲的坡度小于0°时,所述三角洲的类型为强烈进积型。
在一个具体的实施例中,所述低位域陆架边缘三角洲的定量表征方法还包括以下步骤:
S8:根据所述第一个上超点和所述第一个下超点的深度值计算所述三角洲的高度;所述高度通过下式进行计算:
H=(V*T+V*T地3)/2-(V*T+V*T地1)/2 (5)
式中:H为高度,m;T地3为第一个下超点时间,s。
S9:根据所述第一个上超点和所述第一个下超点的平面位置计算所述三角洲的长度;所述长度通过下式进行计算:
L=(CDP3-CDP1)*12.5 (6)
式中:L为长度,m;CDP3为第一个下超点平面位置,m。
S10:根据所述高度和所述长度计算所述三角洲的前积角;所述前积角通过下式进行计算:
β=tan-1(H/L)-tan-1(dA/dP) (7)
式中:β为前积角,°。
S11:根据所述加积距离、进积距离、高度、长度、以及前积角计算所述三角洲的砂体面积;所述砂体面积通过下式进行计算:
S=1/2Sinβ×(dA2+dP2)1/2+(H2+L2)1/2 (8)
式中:S为砂体面积,m。
S12:根据所述高度、长度、以及砂体面积判断所述三角洲的规模和形态。
在一个具体的实施例中,可选取所述目标三角洲的多个剖面进行定量表征,根据各个坡面的高度、长度、以及砂体面积进行相互比较,将各个三角洲剖面的规模定义为大规模、中规模、小规模等。
在一个具体的实施例中,以某地的低位域陆架边缘三角洲为例,该三角洲的三个地震剖面如图2-4所示,该三角洲的定量表征方法包括以下步骤:
(1)选择目标三角洲的经典剖面,基于经典层序地层学,利用地震终止关系划分得到目标三角洲的三级层序界面,其中一个剖面的三级层序界面如图5所示。
(2)在图5所示的三级层序界面内,基于经典体系域模式,识别出初始海泛面在所述三级层序界面上的第一个上超点、第一个下超点以及初始海泛面角度变化最大点,体系界面识别结果如图6和图7所示。
(3)读取所述第一个上超点、第一个下超点以及初始海泛面角度变化最大点的时间值,利用式(1)所示的时深转换公式,将所述时间值转换为深度值,在本实施例中,式(1)中的V=1480m/s,V=1700m/s。
(4)根据所述第一个上超点、第一个下超点以及初始海泛面角度变化最大点的深度值,结合式(2)和式(5)计算所述三角洲的加积距离和高度。
(5)根据所述第一个上超点、第一个下超点以及初始海泛面角度变化最大点的平面位置(Geofeame工作站中的CDP值),结合式(3)和式(6)计算所述三角洲的进积距离和长度。
(6)根据所述加积距离和所述进积距离,结合式(4)计算所述三角洲的坡度;根据所述高度和所述长度,结合式(7)计算所述三角洲的前积角;根据所述加积距离、进积距离、高度、长度、以及前积角,结合式(8)计算所述三角洲的砂体面积。
步骤(3)至步骤(6)的计算结果如表1所示,结合图8所示的三角洲类型判断标准,本实施例三角洲类型的判断结果如表1所示:
表1低位域陆架边缘三角洲定量表征参数计算结果及三角洲类型判断结果
Figure BDA0003092699730000061
根据表1的结果可知,在本实例中,可知T24时期,1号测线所观测到的低位域陆架边缘三角洲以进积型为主,高度497.92m,宽度6000m,高宽比0.0829,规模较大;2号测线所观测到的低位域陆架边缘三角洲以强烈进积型为主,高度472.48m,宽度5500m,高宽比0.0859,规模很大;3号测线所观测到的低位域陆架边缘三角洲以加积型为主,高度423.12m,宽度9600m,高宽比0.0441,规模较小。
T23时期,1号测线所观测到的低位域陆架边缘三角洲以进积型为主,高度482.24m,宽度5537.5m,高宽比0.0871,规模很大;2号测线所观测到的低位域陆架边缘三角洲以加积型为主,高度420.48m,宽度6175m,高宽比0.0681,规模较小;3号测线所观测到的低位域陆架边缘三角洲以加积型为主高度,486.08m,宽度6325m,高宽比0.0769,规模较小。
T20时期,1号测线所观测到的低位域陆架边缘三角洲以加积型为主,高度385.28m,宽度7437.5m,高宽比0.0518,规模较小;2号测线所观测到的低位域陆架边缘三角洲以加积型为主,高度443.52m,宽度6262.5m,高宽比0.0708,规模较大;3号测线所观测到的低位域陆架边缘三角洲以强烈进积型为主,高度481.36m,宽度7637.5m,高宽比0.0631,规模很大。
综上所述,本发明能够通过定量表征参数(三角洲的坡度)明确三角洲的类型,进一步的,还可通过三角洲的高度、长度、以及砂体面积判断不同三角洲剖面的相对规模和形态,与现有技术相比,具有显著的进步。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (8)

1.一种低位域陆架边缘三角洲的定量表征方法,其特征在于,包括以下步骤:
选择目标三角洲的剖面,基于经典层序地层学理论,利用地震终止关系划分所述目标三角洲的三级层序界面;
在所述三级层序界面内,识别出初始海泛面在所述三级层序界面上的第一个上超点、第一个下超点以及初始海泛面角度变化最大点;
读取所述第一个上超点、第一个下超点以及初始海泛面角度变化最大点的时间值,利用时深转换公式,将所述时间值转换为深度值;
根据所述第一个上超点和所述初始海泛面角度变化最大点的深度值计算所述三角洲的加积距离;所述加积距离通过下式进行计算:
dA=(V*T+V*T地2)/2-(V*T+V*T地1)/2 (2)
式中:dA为加积距离,m;V、V分别为地震波在水体和地层中的速度,m/s;T为地震波在水体中传播的时间,s;T地1为第一个上超点时间,s;T地2为初始海泛面角度变化最大点时间,s;
根据所述第一个上超点和所述初始海泛面角度变化最大点的平面位置计算所述三角洲的进积距离;所述进积距离通过下式进行计算:
dP=(CDP2-CDP1)*12.5 (3)
式中:dP为进积距离,m;CDP1为第一个上超点平面位置,m;CDP2为初始海泛面角度变化最大点平面位置,m;
根据所述加积距离和所述进积距离计算所述三角洲的坡度;
根据所述坡度的计算结果确定所述三角洲的类型。
2.根据权利要求1所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,所述时深转换公式为:
D=(V*T+V*T)/2 (1)
式中:D为深度值,m;V、V分别为地震波在水体和地层中的速度,m/s;T、T分别为地震波在水体中和地层中传播的时间,s。
3.根据权利要求1所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,所述三角洲的坡度通过下式进行计算:
α=tan-1(dA/dP) (4)
式中:α为三角洲的坡度,°;dA为加积距离,m;dP为进积距离,m。
4.根据权利要求1所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,所述三角洲的类型判断标准为:
当所述三角洲的坡度大于等于1°时,所述三角洲的类型为加积型;
当所述三角洲的坡度大于等于0°,且小于1°时,所述三角洲的类型为进积型;
当所述三角洲的坡度小于0°时,所述三角洲的类型为强烈进积型。
5.根据权利要求1-4中任意一项所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,还包括以下步骤:
根据所述第一个上超点和所述第一个下超点的深度值计算所述三角洲的高度;
根据所述第一个上超点和所述第一个下超点的平面位置计算所述三角洲的长度;
根据所述高度和所述长度计算所述三角洲的前积角;
根据所述加积距离、进积距离、高度、长度、以及前积角计算所述三角洲的砂体面积;
根据所述高度、长度、以及砂体面积判断所述三角洲的规模和形态。
6.根据权利要求5所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,所述高度和所述长度分别通过下式进行计算:
H=(V*T+V*T地3)/2-(V*T+V*T地1)/2 (5)
L=(CDP3-CDP1)*12.5 (6)
式中:H为高度,m;V、V分别为地震波在水体和地层中的速度,m/s;T为地震波在水体中传播的时间,s;T地1为第一个上超点时间,s;T地3为第一个下超点时间,s;L为长度,m;CDP1为第一个上超点平面位置,m;CDP3为第一个下超点平面位置,m。
7.根据权利要求5所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,所述前积角通过下式进行计算:
β=tan-1(H/L)-tan-1(dA/dP) (7)
式中:β为前积角,°;H为高度,m;L为长度,m;dA为加积距离,m;dP为进积距离,m。
8.根据权利要求5所述的低位域陆架边缘三角洲的定量表征方法,其特征在于,所述砂体面积通过下式进行计算:
S=1/2 Sinβ×(dA2+dP2)1/2+(H2+L2)1/2 (8)
式中:S为砂体面积,m;β为前积角,°;dA为加积距离,m;dP为进积距离,m;H为高度,m;L为长度,m。
CN202110600291.8A 2021-05-31 2021-05-31 一种低位域陆架边缘三角洲的定量表征方法 Active CN113343161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110600291.8A CN113343161B (zh) 2021-05-31 2021-05-31 一种低位域陆架边缘三角洲的定量表征方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110600291.8A CN113343161B (zh) 2021-05-31 2021-05-31 一种低位域陆架边缘三角洲的定量表征方法

Publications (2)

Publication Number Publication Date
CN113343161A CN113343161A (zh) 2021-09-03
CN113343161B true CN113343161B (zh) 2022-04-05

Family

ID=77472685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110600291.8A Active CN113343161B (zh) 2021-05-31 2021-05-31 一种低位域陆架边缘三角洲的定量表征方法

Country Status (1)

Country Link
CN (1) CN113343161B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629130A (zh) * 2018-05-10 2018-10-09 山东科技大学 确定控制陆源分散有机质分布三角洲体系外缘坡度的方法
CN109005969A (zh) * 2018-07-27 2018-12-18 铜仁学院 一种夏季扦插罗汉松的方法
CN111983678A (zh) * 2020-07-22 2020-11-24 中海石油(中国)有限公司深圳分公司 一种快速评价深水砂体发育潜力的方法
CN112230301A (zh) * 2020-09-18 2021-01-15 西南石油大学 一种深水水道成因类型划分方法
CN112861322A (zh) * 2021-01-15 2021-05-28 哈尔滨工程大学 一种海底阶梯式地貌演化定量分析方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820008B1 (en) * 2001-07-24 2004-11-16 Fugro Global Environmental & Ocean Sciences, Inc. System and method for measuring deep sea currents
CN104933276A (zh) * 2014-03-19 2015-09-23 中国石油化工股份有限公司 三角洲前缘原始沉积坡度定量恢复方法
US10107770B2 (en) * 2014-06-18 2018-10-23 Texas Tech University System Portable apparatus for soil chemical characterization
AU2018203428A1 (en) * 2017-03-09 2018-09-27 Shell Internationale Research Maatschappij B.V. Constructing stratigraphic images of sediment distribution in a subsurface of the earth
CN111340379B (zh) * 2020-03-02 2022-06-17 西南石油大学 一种稀井网区深海水道砂体建筑结构的解剖方法
CN111475920B (zh) * 2020-03-13 2023-03-14 中海石油深海开发有限公司 一种深水盆地古水深的获取方法、系统、电子设备及存储介质
CN111610561B (zh) * 2020-06-05 2021-05-07 中国地质大学(北京) 定量建立海平面变化及海进-海退曲线计算方法
CN111919699A (zh) * 2020-08-18 2020-11-13 广西壮族自治区农业科学院 一种百香果套种黄豆的栽培方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629130A (zh) * 2018-05-10 2018-10-09 山东科技大学 确定控制陆源分散有机质分布三角洲体系外缘坡度的方法
CN109005969A (zh) * 2018-07-27 2018-12-18 铜仁学院 一种夏季扦插罗汉松的方法
CN111983678A (zh) * 2020-07-22 2020-11-24 中海石油(中国)有限公司深圳分公司 一种快速评价深水砂体发育潜力的方法
CN112230301A (zh) * 2020-09-18 2021-01-15 西南石油大学 一种深水水道成因类型划分方法
CN112861322A (zh) * 2021-01-15 2021-05-28 哈尔滨工程大学 一种海底阶梯式地貌演化定量分析方法及系统

Also Published As

Publication number Publication date
CN113343161A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Damen et al. Spatially varying environmental properties controlling observed sand wave morphology
McNabb et al. Using surface velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA
CN105868482B (zh) 一种沉积期微幅度古隆起的推算方法及装置
CN106772587A (zh) 基于同位多相协同克里金的地震弹性参数相控建模方法
Kliem et al. On the pressure gradient error in sigma coordinate ocean models: A comparison with a laboratory experiment
CN103389077A (zh) 一种基于mbes的海底沙波地貌运动探测方法
Wang et al. An automated procedure to calculate the morphological parameters of superimposed rhythmic bedforms
CN113343161B (zh) 一种低位域陆架边缘三角洲的定量表征方法
Roveri Sediment drifts of the Corsica Channel, northern Tyrrhenian sea
Roslov et al. Deep seismic investigations in the Barents and Kara Seas
Sheng et al. A robust method for diagnosing regional shelf circulation from scattered density profiles
Alonso et al. Morphology of the Ebro Fan valleys from SeaMARC and Sea Beam profiles
Wood et al. Sediment thickness and crustal structure of offshore western New Zealand from 3D gravity modelling
CN107976714B (zh) 一种复杂地表分级空间距离加权的超道集计算方法
Masuda et al. High-accuracy synchronism for seismic reflectors and 14C ages: Holocene prodelta succession of the Kiso River, central Japan
CN111856579B (zh) 一种综合识别南海含油气盆地深水区盆缘沉积扇体的方法
Fenster et al. Assessing decadal-scale changes to a giant sand wave field in eastern Long Island Sound
CN111948716A (zh) 一种利用地震资料计算海底水道深度的方法
Noye et al. Three-dimensional numerical model of tides in Spencer Gulf
CN112394393B (zh) 一种crp道集数据体重构的方法
CN114859414B (zh) 从地震数据中自动提取地层倾角信息的方法和装置
Zil'bershtein et al. A procedure for calculating extreme characteristics of the Northern Caspian Sea level
Vardar Morphological definition of the North İmralı Canyon in the Sea of Marmara
Ezz et al. A Polynomial Model for Lateral Thickness Decay of Submarine Channel–Levees
CN117518239A (zh) 地震资料解释方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant