CN113341396B - 机器人及其充电桩识别方法和装置 - Google Patents
机器人及其充电桩识别方法和装置 Download PDFInfo
- Publication number
- CN113341396B CN113341396B CN202110595202.5A CN202110595202A CN113341396B CN 113341396 B CN113341396 B CN 113341396B CN 202110595202 A CN202110595202 A CN 202110595202A CN 113341396 B CN113341396 B CN 113341396B
- Authority
- CN
- China
- Prior art keywords
- point cloud
- point
- charging pile
- pose
- segment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000009466 transformation Effects 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 238000004590 computer program Methods 0.000 claims description 19
- 238000001914 filtration Methods 0.000 claims description 6
- 230000011218 segmentation Effects 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 4
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4802—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本申请属于机器人领域,提出了一种机器人及其充电桩识别方法和装置,该方法包括:通过单线激光雷达获取机器人所在场景的点云数据;根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段;根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿;将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段。通过将点云数据通过充电桩表面尺寸数据进行分割得到点云分段,并进一步根据预设的模板点云对点云分段进行位姿变换,从而能够有效的提高充电桩与点云分段的匹配精度,提升充电桩识别方法的适用范围。
Description
技术领域
本申请属于机器人领域,尤其涉及机器人及其充电桩识别方法和装置。
背景技术
随着科学技术的发展,智能的机器人为人们的生活工作提供了越来越多的便利。其中,如何使机器人能够高效稳定的完成智能回充,是目前所研究的机器人的热点问题。
常见的轮式机器人识别充电桩的方法是使用红外线对准充电桩上的线外接口,通过红外通信的方式,调整机器人相对于充电桩的位姿,从而完成机器人自动回桩充电。由于红外线对准操的效率不高,且成功率较低。为了提高充电桩识别效率,可以通过单线激光雷达识别充电桩的形状来确定充电桩位姿,但这种方式通常局限于特殊形状的充电桩,不利于提升充电桩识别方法的适用范围。
发明内容
有鉴于此,本申请实施例提供了一种机器人及其充电桩识别方法和装置,以解决现有技术中充电桩识别时局限于特殊形状,不利于提升充电桩识别方法的适用范围的问题。
本申请实施例的第一方面提供了一种机器人的充电桩识别方法,所述方法包括:
通过单线激光雷达获取机器人所在场景的点云数据;
根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,确定所得到的点云分段的位姿;
根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定点云分段的位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿;
将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段。
结合第一方面,在第一方面的第一种可能实现方式中,根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,包括:
根据点云数据中的两个相邻的点之间的距离大于第一距离阈值,则将这两个相邻的点划分为不同的点云分段;
如果所述点云分段的第一个点和最后一个点之间的距离小于第三距离阈值,则丢弃该点云分段;
如果所述点云分段的第一个点和最后一个点之间的距离大于第二距离阈值,则按照预定的第四距离阈值将所述点云分段拆分为两个或两个以上的点云分段;
其中,第一距离阈值为充电桩前表面曲线部分的厚度,所述第二距离阈值为预定倍数的充电桩前表面曲线部分的宽度。
结合第一方面或第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,在对所述点云数据进行分段,得到多个点云分段之前,所述方法还包括:
将点云数据中的点与机器人之间的距离与预设的第五距离阈值进行比较,过滤掉点云数据对应的距离大于所述第五距离阈值的点。
结合第一方面,在第一方面的第三种可能实现方式中,确定充电桩的模板点云的位姿,包括:
通过单线激光雷达从正面获取充电桩的表面曲线;
从左上角第一个点开始搜索,逐个记录表面曲线上的点的坐标,直到除了已知点外预定范围内没有点,则结束记录,得到模板点云;
根据模板点云的质心位置和模板点云朝向处于充电状态的机器人的方向,确定所述模板点云的位姿。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式中,在得到模板点云之后,所述方法还包括:
按照预定的点数间隔,或者按照预定的距离间隔,对所述点云模板进行抽样,得到抽样后的模板点云。
结合第一方面,在第一方面的第五种可能实现方式中,确定所得到的点云分段的位姿,包括:
根据点云分段的第一个点和最后一个点的坐标,确定点云分段的质心坐标;
根据点云分段的第一个点和最后一个点的连线的法向量确定所述点云分段的质心方向;
根据所述点云分段的质心坐标和质心方向确定所述点云分段的质心位姿。
结合第一方面,在第一方面的第六种可能实现方式中,在确定充电桩所对应的点云分段之后,所述方法还包括:
根据所述点云分段的位姿变换矩阵,以及激光雷达相对于机器人中心位置的关系矩阵,确定充电桩相对于机器人中心的位姿。
本申请实施例的第二方面提供了一种机器人的充电桩识别装置,所述装置包括:
点云数据获取单元,用于通过单线激光雷达获取机器人所在场景的点云数据;
分段单元,用于根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,确定所得到的点云分段的位姿;
位姿变换单元,用于根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定点云分段的位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿;
匹配单元,用于将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段。
本申请实施例的第三方面提供了机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面任一项所述方法的步骤。
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述方法的步骤。
本申请实施例与现有技术相比存在的有益效果是:本申请通过单线激光雷达获取机器人所在场景的点云数据后,结合充电桩表面的尺寸数据对点云数据进行分段,得到与充电桩尺寸信息匹配的点云分段,从而可以有效的过滤场景中的干扰点云,然后再进一步根据点云分段的位姿和预先确定的模板点云的位姿对点云分段进行位姿变换,通过位姿变换后的点云分段进行匹配得分确定充电桩,能够进一步提高充电桩与点云分段的匹配精度,从而能够有效的提升充电桩识别方法的适用范围。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种机器人的充电桩的三维示意图;
图2是本申请实施例提供的一种充电桩俯视示意图;
图3是本申请实施例提供的充电桩的表面曲线示意图;
图4是本申请实施例提供的一种机器人的充电桩识别方法的实现流程示意图;
图5为本申请实施例提供的充电桩参数示意图;
图6是本申请实施例提供的一种机器人的充电桩识别装置的示意图;
图7是本申请实施例提供的机器人的示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为了说明本申请所述的技术方案,下面通过具体实施例来进行说明。
目前的机器人进行充电桩识别时,通常采用红外识别的方式。在机器人和充电桩上分别设置红外线发射枪和红外线接口,红外发射枪所发射的红外线对准充电桩上的红外接口,通过红外通信的方式调整机器人相对于充电桩的位姿。由于红外信号强度受多种因素的影响,导致回充速度较慢,并且精度也不高。
为了提高充电桩回充效率和成功率,可以采用单线激光雷达进行扫描的方式,将充电桩设置为特定的形状,比如设置为与生活场景中相似形状较少的形状,包括如圆弧形状等。由于特殊形状的限定,导致机器人所能识别的充电桩的样式受限,不利于提升充电桩识别方法的应用范围。
基于此,本申请实施例提出了一种机器人的充电桩识别方法,通过充电桩表面的尺寸数据,对单线激光雷达所获取的点云数据分割得到点云分段。然后根据点云分段的位姿与模板点云的位姿确定位姿变换矩阵,通过位姿变换矩阵对点云分段进行位姿变换,根据变换后的点云分段与模板点云进行匹配,根据匹配的得分确定充电桩对应的点云,从而使得充电桩不必局限于特定形状,提升充电桩识别方法的应用范围。
图1为本申请实施例提供的一种机器人的充电桩的三维示意图。如图1所示,充电桩安装固定后,机器人可以通过单线激光雷达扫描,在单线激光雷达的高度对应的水平面,与充电桩前面表相交,得到充电桩前表面部分的表面曲线,即图1所示的粗线部分。
图2为本申请实施例提供的充电桩俯视示意图。如图2所示,充电桩被机器人的单线激光雷达所扫描得到的表面曲线,包括充电桩的宽度信息等。
在进行充电桩识别时,可以预先由机器人建立模板点云。如图3所示,可以由机器人根据所读取的表面曲线的点云数据,从左上角第一个点开始,记录其坐标位置,并以该点逐步进行搜索周围最近的点云数据中的点,逐个记录所搜索到的点的坐标位置。直到最后一个点周围的预设范围内除了已知点外,不存在其它点,则搜索结束。比如,最后一个点周围5个像素点,除了已知的点,不存在其它点,则结束搜索,所记录下来的点集称为模板点云。
对于图3所示的由机器人根据所读取的表面曲线的点云数据所记录的充电桩的表面曲线示意图,其质心坐标可以表示为M0(M0.x,M0.y),质心法向量可以为对准机器人充电的方向,即对准向下的方向为质心方向,即为π/2。模板点云的质心的位姿可以表示为:Pm=(M0.x,M0.y,-π/2)。与图3所示的充电桩的表面曲线对应的充电位置的机器人中心的位姿为P=(Px,Py,Pth),且Pth通常为π/2,机器人的方向通常为机器人朝向充电桩的方向。
在本申请实施例中,为了提高计算效率,可以对所生成的模板点云进行抽样处理,从而通过抽样所剩下的点进行匹配计算,提高匹配计算效率。抽样可以根据间隔点的数量进行抽样,也可以根据预定的间隔距离进行抽样。比如,可以每隔N个点保留一个点,剩下的去掉,或者也可以每隔1-2厘米保留一个点。
图4为本申请实施例提供的一种机器人的充电桩识别方法的实现流程图,详述如下:
在S401中,通过单线激光雷达获取机器人所在场景的点云数据。
具体的,本申请实施例中的机器人,可以在进行回充时,按照预先设定的充电桩所在的位置区域,在机器人进入该位置区域后,按照预定的采集周期,通过单线激光雷达进行点云数据的扫描和采集。
所述单线激光雷达,是指激光源发出的线束是单线的雷达,包括三角测距的单纯激光雷达及TOF单纯激光雷达。单线激光雷达具有扫描速度快、分辨率强、可靠性高,并且在角频率及灵敏度上反应更快捷,在障碍物的测距距离和精度上更为精准。
在S402中,根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,确定所得到的点云分段的位姿。
在对点云数据进行支点分段的划分之前,还可以对点云数据进行初步的过滤操作。该过滤操作可以通过机器人与点之间的距离与预设的第五距离阈值进行比较的方式,过滤掉点云数据中的点对应的距离大于所述第五距离阈值的点。
其中,第五距离阈值可以为1.2米-3.5米范围内的任意值。当检测到的点云数据中的点与机器人的距离大于第五距离阈值,则表明该点与机器人的距离较远,可以暂时不参与分段操作。
其中,第五距离阈值可以与预设的位置区域相关。当所设定的位置区域的范围越小,第五距离阈值可以相应的取较小值,当所设定的位置区域的范围较大,则第五距离阈值可以相应的取较大值。
其中,充电桩表面的尺寸数据,如图5所示,可以包括充电桩前表面曲线部分的厚度d1,充电桩前表面曲线部分的宽度d2。其中,前表面曲线部分可以为机器人激光雷达在前面,以及侧前面可以扫描到的曲线部分。d1可以为机器人激光雷达在充电桩前面和侧前面可扫描到的前表面到后表面的距离。
根据充电桩表面的尺寸数据,对点云数据进行分段可以包括:
如果点云数据中的相邻两个点的距离大于第一距离阈值,比如可以大于充电桩在单线激光雷达扫描处的厚度,则可以将这两个相邻的点划分至不同的点云分段。比如第N点与第N+1点之间的距离为x,且x>d1,则将第N点与第N+1点划分至两个点云分段中。
如果点云数据中所划分的点云分段中,其第一个点至最后一个点之间的距离小于预定的第二距离阈值,比如小于充电桩的宽度,则可以将该点云分段舍弃,即对不符合充电桩宽度的点云分段筛选过滤掉。
另外,如果得到的点云分段的第一个点至最后一个点之间的距离大于第二距离阈值,并且大于预定的第三距离阈值,则可以对该点云分段进一步进行分割处理,得到两个或两个以上的点云分段。比如,第三距离阈值可以为预定倍数的第二距离阈值,该预定倍数可以为1.2倍-2倍。
比如,当检测到点云分段的第一个点至最后一个点之间的距离大于1.5倍d2,则可以分别提取从左侧第一个点往右,宽度为1.2倍d2的点云,以及从右侧第一个点往左,宽度为1.2倍d2的点云,作为两个新的点云分段,并去掉原来大于1.5倍的点云分段。通过点云分段的划分,使得所划分的点云分段能够更为准确的与模板点云进行匹配和计算。
在S403中,根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定点云分段的位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿。
在确定机器人所采集的点云数据对应的点云分段后,可以将点云分段与预设的模板点云进行匹配。为了提升点云分段与模板点云的匹配准确度,减少误匹配操作,可以根据充电桩的模板点云的质心位姿,与点云分段的质心位姿,进行位姿变换,从而使得点云分段的位姿与模板点云的位姿匹配。
其中,模板点云和点云分段的位姿,可以通过模板点云的质心的位姿来表示,或者也可以通过模板点云和点云分段的第一个点和最后一个点的坐标来确定质心坐标,通过该点的法向量且对准充电位置的方向为质心方向。如果点云分段的第一个点的坐标为(x0,y0),(x1,y1),那么质心坐标(x2,y2)=((x0+x1)/2,(y0+y1)/2)。点云分段的方向th为:th=atan[(y1-y0)/(x1-x0)]-π/2。点云分段的粗略位姿Pc表示为(x2,y2,th)。
根据所计算得到的点云分段的位姿,结合所确定的模板点云的位姿,可以确定由点云分段位姿,变换为模板点云位姿的位姿变换矩阵H1,从而使变换后的点云分段的位姿,与模板点云的位姿匹配。
在S404中,将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段。
将位姿变换后的点云分段,与模板点云进行匹配时,可以通过ICP(英文全称为Iterative Closest Point,中文全称为迭代最近点算法)或NDT(中文全称为正态分布变换,英文全称为Normal Distribution Transform)点云匹配算法,把点云分段的每个点与模板点云的点进行匹配,得到转换矩阵H2,以及对应的匹配分值S。该分值可以为ICP匹配的平均距离,也可以为NDT匹配的代价函数结果。根据匹配分值的大小,选择匹配分值最大的点云分段,即为充电桩所对应的点云分段。
在确定充电桩所对应的点云分段后,假设单线激光雷达相对于机器人中心的位置关系矩阵为H3,那么,充电桩相对于机器人中心的位姿Pd可以表示为:Pd=P*(H2^-1)*H3。
本申请通过单线激光雷达获取机器人所在场景的点云数据后,结合充电桩表面的尺寸数据对点云数据进行分段,得到与充电桩尺寸信息匹配的点云分段,从而可以有效的过滤场景中的干扰点云,然后再进一步根据点云分段的位姿和预先确定的模板点云的位姿对点云分段进行位姿变换,通过位姿变换后的点云分段进行匹配得分确定充电桩,能够进一步提高充电桩与点云分段的匹配精度,从而能够有效的提升充电桩识别方法的适用范围。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图6为本申请实施例提供的一种机器人的充电桩识别装置的示意图,如图6所示,该装置包括:
点云数据获取单元601,用于通过单线激光雷达获取机器人所在场景的点云数据;
分段单元602,用于根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,确定所得到的点云分段的位姿;
位姿变换单元603,用于根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定点云分段的位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿;
匹配单元604,用于将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段。
图6所示的机器人的充电桩识别装置,与图4所示的机器人的充电桩识别方法对应。
图7是本申请一实施例提供的机器人的示意图。如图7所示,该实施例的机器人7包括:处理器70、存储器71以及存储在所述存储器71中并可在所述处理器70上运行的计算机程序72,例如机器人的充电桩识别程序。所述处理器70执行所述计算机程序72时实现上述各个机器人的充电桩识别方法实施例中的步骤。或者,所述处理器70执行所述计算机程序72时实现上述各装置实施例中各模块/单元的功能。
示例性的,所述计算机程序72可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器71中,并由所述处理器70执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序72在所述机器人7中的执行过程。
所述机器人可包括,但不仅限于,处理器70、存储器71。本领域技术人员可以理解,图7仅仅是机器人7的示例,并不构成对机器人7的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述机器人还可以包括输入输出设备、网络接入设备、总线等。
所称处理器70可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器71可以是所述机器人7的内部存储单元,例如机器人7的硬盘或内存。所述存储器71也可以是所述机器人7的外部存储设备,例如所述机器人7上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器71还可以既包括所述机器人7的内部存储单元也包括外部存储设备。所述存储器71用于存储所述计算机程序以及所述机器人所需的其他程序和数据。所述存储器71还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,RandomAccess Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。
Claims (9)
1.一种机器人的充电桩识别方法,其特征在于,所述方法包括:
通过单线激光雷达获取机器人所在场景的点云数据;
根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,确定所得到的点云分段的位姿;
根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定点云分段的位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿;
将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段;
根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,包括:
根据点云数据中的两个相邻的点之间的距离大于第一距离阈值,则将这两个相邻的点划分为不同的点云分段;
如果所述点云分段的第一个点和最后一个点之间的距离小于第二距离阈值,则丢弃该点云分段,对不符合充电桩宽度的点云分段筛选过滤掉;
如果所述点云分段的第一个点和最后一个点之间的距离大于第三距离阈值,则按照预定的第四距离阈值将所述点云分段拆分为两个或两个以上的点云分段;
所述按照预定的第四距离阈值将所述点云分段拆分为两个或两个以上的点云分段,包括:分别提取从左侧第一个点往右,宽度为第四距离阈值的点云,以及从右侧第一个点往左,宽度为第四距离阈值的点云,作为两个新的点云分段,并去掉原来大于第三距离阈值的点云分段;
其中,第一距离阈值为充电桩前表面曲线部分的厚度,所述第二距离阈值为充电桩前表面曲线部分的宽度,所述第三距离阈值为预定倍数的充电桩前表面曲线部分的宽度。
2.根据权利要求1所述的方法,其特征在于,在对所述点云数据进行分段,得到多个点云分段之前,所述方法还包括:
将点云数据中的点与机器人之间的距离与预设的第五距离阈值进行比较,过滤掉点云数据对应的距离大于所述第五距离阈值的点。
3.根据权利要求1所述的方法,其特征在于,确定充电桩的模板点云的位姿,包括:
通过单线激光雷达从正面获取充电桩的表面曲线;
从左上角第一个点开始搜索,逐个记录表面曲线上的点的坐标,直到除了已知点外预定范围内没有点,则结束记录,得到模板点云;
根据模板点云的质心位置和模板点云朝向处于充电状态的机器人的方向,确定所述模板点云的位姿。
4.根据权利要求3所述的方法,其特征在于,在得到模板点云之后,所述方法还包括:
按照预定的点数间隔,或者按照预定的距离间隔,对所述点云模板进行抽样,得到抽样后的模板点云。
5.根据权利要求1所述的方法,其特征在于,确定所得到的点云分段的位姿,包括:
根据点云分段的第一个点和最后一个点的坐标,确定点云分段的质心坐标;
根据点云分段的第一个点和最后一个点的连线的法向量确定所述点云分段的质心方向;
根据所述点云分段的质心坐标和质心方向确定所述点云分段的质心位姿。
6.根据权利要求1所述的方法,其特征在于,在确定充电桩所对应的点云分段之后,所述方法还包括:
根据所述点云分段的位姿变换矩阵,以及激光雷达相对于机器人中心位置的关系矩阵,确定充电桩相对于机器人中心的位姿。
7.一种机器人的充电桩识别装置,其特征在于,所述装置包括:
点云数据获取单元,用于通过单线激光雷达获取机器人所在场景的点云数据;
分段单元,用于根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,确定所得到的点云分段的位姿;
位姿变换单元,用于根据点云分段的位姿和预先确定的充电桩的模板点云的位姿,确定点云分段的位姿变换矩阵,根据所述位姿变换矩阵调整所述点云分段的位姿;
匹配单元,用于将转换位姿后的点云分段与所述模板点云进行匹配,根据匹配的得分确定充电桩所对应的点云分段;
根据预定的充电桩表面的尺寸数据,对所述点云数据进行分段,得到多个点云分段,包括:
根据点云数据中的两个相邻的点之间的距离大于第一距离阈值,则将这两个相邻的点划分为不同的点云分段;
如果所述点云分段的第一个点和最后一个点之间的距离小于第二距离阈值,则丢弃该点云分段,对不符合充电桩宽度的点云分段筛选过滤掉;
如果所述点云分段的第一个点和最后一个点之间的距离大于第三距离阈值,则按照预定的第四距离阈值将所述点云分段拆分为两个或两个以上的点云分段;
所述按照预定的第四距离阈值将所述点云分段拆分为两个或两个以上的点云分段,包括:分别提取从左侧第一个点往右,宽度为第四距离阈值的点云,以及从右侧第一个点往左,宽度为第四距离阈值的点云,作为两个新的点云分段,并去掉原来大于第三距离阈值的点云分段;
其中,第一距离阈值为充电桩前表面曲线部分的厚度,所述第二距离阈值为充电桩前表面曲线部分的宽度,所述第三距离阈值为预定倍数的充电桩前表面曲线部分的宽度。
8.一种机器人,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述方法的步骤。
9.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110595202.5A CN113341396B (zh) | 2021-05-28 | 2021-05-28 | 机器人及其充电桩识别方法和装置 |
PCT/CN2021/127150 WO2022247137A1 (zh) | 2021-05-28 | 2021-10-28 | 机器人及其充电桩识别方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110595202.5A CN113341396B (zh) | 2021-05-28 | 2021-05-28 | 机器人及其充电桩识别方法和装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113341396A CN113341396A (zh) | 2021-09-03 |
CN113341396B true CN113341396B (zh) | 2023-12-15 |
Family
ID=77472607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110595202.5A Active CN113341396B (zh) | 2021-05-28 | 2021-05-28 | 机器人及其充电桩识别方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113341396B (zh) |
WO (1) | WO2022247137A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113341396B (zh) * | 2021-05-28 | 2023-12-15 | 深圳市优必选科技股份有限公司 | 机器人及其充电桩识别方法和装置 |
CN114296467B (zh) * | 2021-12-31 | 2023-06-06 | 福建汉特云智能科技有限公司 | 一种机器人充电桩自动找桩对桩的方法 |
CN114924560A (zh) * | 2022-04-27 | 2022-08-19 | 深圳市优必选科技股份有限公司 | 机器人上桩方法、装置、电子设备及存储介质 |
CN114895686A (zh) * | 2022-05-27 | 2022-08-12 | 广州高新兴机器人有限公司 | 机器人对桩充电方法及系统 |
CN116501070B (zh) * | 2023-06-30 | 2023-09-19 | 深圳市欢创科技有限公司 | 回充方法、机器人及存储介质 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109655805A (zh) * | 2019-01-25 | 2019-04-19 | 南京理工大学 | 一种基于扫描线段重合长度估计的激光雷达定位方法 |
WO2021000240A1 (zh) * | 2019-07-01 | 2021-01-07 | Oppo广东移动通信有限公司 | 一种点云分割方法及设备、计算机可读存储介质 |
CN112198871A (zh) * | 2020-09-02 | 2021-01-08 | 创新工场(北京)企业管理股份有限公司 | 用于移动机器人的自主充电的方法和装置 |
CN112217248A (zh) * | 2020-09-02 | 2021-01-12 | 创新工场(北京)企业管理股份有限公司 | 充电桩、用于移动机器人的自主充电的方法和装置 |
CN112327842A (zh) * | 2020-10-29 | 2021-02-05 | 深圳市普渡科技有限公司 | 机器人定位充电桩的方法及系统 |
CN112518759A (zh) * | 2020-12-21 | 2021-03-19 | 深圳市优必选科技股份有限公司 | 机器人及其扫描上桩方法和装置 |
CN112526545A (zh) * | 2019-08-30 | 2021-03-19 | 深圳市速腾聚创科技有限公司 | 一种激光雷达点云处理方法、装置、存储介质及终端设备 |
CN112561998A (zh) * | 2020-12-16 | 2021-03-26 | 国网江苏省电力有限公司检修分公司 | 一种基于三维点云配准的机器人定位和自主充电方法 |
WO2021062736A1 (zh) * | 2019-09-30 | 2021-04-08 | Oppo广东移动通信有限公司 | 划分方法、编码器、解码器以及计算机存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10311595B2 (en) * | 2013-11-19 | 2019-06-04 | Canon Kabushiki Kaisha | Image processing device and its control method, imaging apparatus, and storage medium |
US9760996B2 (en) * | 2015-08-11 | 2017-09-12 | Nokia Technologies Oy | Non-rigid registration for large-scale space-time 3D point cloud alignment |
CN108228798B (zh) * | 2017-12-29 | 2021-09-17 | 百度在线网络技术(北京)有限公司 | 确定点云数据之间的匹配关系的方法和装置 |
CN110824491B (zh) * | 2019-10-24 | 2022-07-29 | 北京迈格威科技有限公司 | 充电桩定位方法、装置、计算机设备和存储介质 |
CN111324121B (zh) * | 2020-02-27 | 2023-07-18 | 四川阿泰因机器人智能装备有限公司 | 一种基于激光雷达的移动机器人自动充电方法 |
CN113341396B (zh) * | 2021-05-28 | 2023-12-15 | 深圳市优必选科技股份有限公司 | 机器人及其充电桩识别方法和装置 |
-
2021
- 2021-05-28 CN CN202110595202.5A patent/CN113341396B/zh active Active
- 2021-10-28 WO PCT/CN2021/127150 patent/WO2022247137A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109655805A (zh) * | 2019-01-25 | 2019-04-19 | 南京理工大学 | 一种基于扫描线段重合长度估计的激光雷达定位方法 |
WO2021000240A1 (zh) * | 2019-07-01 | 2021-01-07 | Oppo广东移动通信有限公司 | 一种点云分割方法及设备、计算机可读存储介质 |
CN112526545A (zh) * | 2019-08-30 | 2021-03-19 | 深圳市速腾聚创科技有限公司 | 一种激光雷达点云处理方法、装置、存储介质及终端设备 |
WO2021062736A1 (zh) * | 2019-09-30 | 2021-04-08 | Oppo广东移动通信有限公司 | 划分方法、编码器、解码器以及计算机存储介质 |
CN112198871A (zh) * | 2020-09-02 | 2021-01-08 | 创新工场(北京)企业管理股份有限公司 | 用于移动机器人的自主充电的方法和装置 |
CN112217248A (zh) * | 2020-09-02 | 2021-01-12 | 创新工场(北京)企业管理股份有限公司 | 充电桩、用于移动机器人的自主充电的方法和装置 |
CN112327842A (zh) * | 2020-10-29 | 2021-02-05 | 深圳市普渡科技有限公司 | 机器人定位充电桩的方法及系统 |
CN112561998A (zh) * | 2020-12-16 | 2021-03-26 | 国网江苏省电力有限公司检修分公司 | 一种基于三维点云配准的机器人定位和自主充电方法 |
CN112518759A (zh) * | 2020-12-21 | 2021-03-19 | 深圳市优必选科技股份有限公司 | 机器人及其扫描上桩方法和装置 |
Non-Patent Citations (6)
Title |
---|
An innovative segmentation method with multi-feature fusion for 3D point cloud;Ren, XL (Ren, Xiaoling);JOURNAL OF INTELLIGENT & FUZZY SYSTEMS;第38卷(第1期);全文 * |
MC2PS: Cloud-Based 3-D Place Recognition Using Map Segmentation Coordinates Points;Shimaa S.Ali;IEEE Communications Letters;第22卷(第8期);全文 * |
地铁点云分割方法比较研究;王丙达;;四川建材(第04期);全文 * |
基于NDT与ICP结合的点云配准算法;王庆闪;张军;刘元盛;张鑫晨;;计算机工程与应用;第56卷(第7期);第1-8页 * |
李峰.机载LiDAR系统原理与点云处理方法.煤炭工业出版社,2017,第119页. * |
面向室内三维场景散乱点云语义分割的PointUnet网络研究;陈杰运;中国优秀硕士学位论文全文数据库 信息科技辑;全文 * |
Also Published As
Publication number | Publication date |
---|---|
WO2022247137A1 (zh) | 2022-12-01 |
CN113341396A (zh) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113341396B (zh) | 机器人及其充电桩识别方法和装置 | |
CN110070570B (zh) | 一种基于深度信息的障碍物检测系统及方法 | |
CN111291708B (zh) | 融合深度相机的变电站巡检机器人障碍物检测识别方法 | |
US9454692B2 (en) | Method for identifying and positioning building using outline region restraint of mountain | |
CN113761999B (zh) | 一种目标检测方法、装置、电子设备和存储介质 | |
CN105678347A (zh) | 行人检测方法及装置 | |
CN109359614A (zh) | 一种激光点云的平面识别方法、装置、设备和介质 | |
CN109829458B (zh) | 实时自动生成记录系统操作行为的日志文件的方法 | |
CN111507340B (zh) | 一种基于三维点云数据的目标点云数据提取方法 | |
CN111291749B (zh) | 手势识别方法、装置及机器人 | |
CN113945219B (zh) | 动态地图生成方法、系统、可读存储介质及终端设备 | |
CN112418089A (zh) | 一种手势识别方法、装置及终端 | |
CN116299540A (zh) | 激光雷达目标航向角拟合方法和装置 | |
CN117152949A (zh) | 一种基于无人机的交通事件识别方法及系统 | |
CN115223031B (zh) | 一种单目边框测距方法、装置、介质及幕墙机器人 | |
JP2004280713A (ja) | 車番認識装置 | |
JP3244850B2 (ja) | ナンバープレート読み取り装置 | |
CN112508065B (zh) | 机器人及其定位方法和装置 | |
CN112416128B (zh) | 一种手势识别方法及终端设备 | |
CN115311495A (zh) | 一种基于可更新复合特征的图片状态变化识别方法及系统 | |
CN112016514B (zh) | 一种交通标志识别方法、装置、设备及储存介质 | |
CN111489386B (zh) | 点云特征点提取方法、装置、存储介质、设备及系统 | |
CN114578378A (zh) | 一种激光雷达障碍物检测方法及装置 | |
CN107392209B (zh) | 一种提取线段的装置及方法 | |
CN111507339B (zh) | 一种基于强度图像的目标点云获取方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |