CN113341371A - DOA estimation method based on L array and two-dimensional ESPRIT algorithm - Google Patents
DOA estimation method based on L array and two-dimensional ESPRIT algorithm Download PDFInfo
- Publication number
- CN113341371A CN113341371A CN202110596959.6A CN202110596959A CN113341371A CN 113341371 A CN113341371 A CN 113341371A CN 202110596959 A CN202110596959 A CN 202110596959A CN 113341371 A CN113341371 A CN 113341371A
- Authority
- CN
- China
- Prior art keywords
- array
- matrix
- sub
- matrices
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims abstract description 37
- 230000005855 radiation Effects 0.000 claims abstract description 4
- 238000003491 array Methods 0.000 claims description 19
- 230000006870 function Effects 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract description 2
- 230000004304 visual acuity Effects 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明属于雷达信号处理技术领域,具体涉及一种基于L阵和二维ESPRIT算法的DOA估计方法。本发明提出了一种基于L阵和二维ESPRIT算法的DOA估计方法,在阵列接收到辐射源信号后,利用L阵的阵列特点对阵列数据进行处理,构造用于二维ESPRIT算法运算的数据矩阵,得到估计角度,完成信号源的方向测量估计。本发明的有益效果为,本发明利用L阵构造大矩阵,得到的矩阵形式简单,在后续的测向过程中保持了较低的计算复杂度,同时有效去除了统计独立噪声源的影响,改善了在高斯噪声环境下的分辨能力和统计性能。
The invention belongs to the technical field of radar signal processing, and in particular relates to a DOA estimation method based on an L-array and a two-dimensional ESPRIT algorithm. The invention proposes a DOA estimation method based on L-array and two-dimensional ESPRIT algorithm. After the array receives the radiation source signal, the array data is processed by using the array characteristics of the L-array to construct the data for the two-dimensional ESPRIT algorithm operation. matrix, obtain the estimated angle, and complete the direction measurement estimation of the signal source. The beneficial effects of the present invention are that the present invention utilizes the L array to construct a large matrix, and the obtained matrix has a simple form, maintains a low computational complexity in the subsequent direction finding process, effectively removes the influence of statistical independent noise sources, and improves the The resolving power and statistical performance in Gaussian noise environment are improved.
Description
技术领域technical field
本发明属于雷达信号处理技术领域,具体涉及一种基于L阵和二维ESPRIT算法的DOA估计方法。The invention belongs to the technical field of radar signal processing, and in particular relates to a DOA estimation method based on an L-array and a two-dimensional ESPRIT algorithm.
背景技术Background technique
在雷达信号处理中,基于L阵实现对目标雷达辐射源信号的波达方向(directionof arrival,DOA)估计一直是研究的重点,然而随着现代电磁频谱的日益密集、脉冲密度越来越高以及大功率电子设备的应用,电磁环境越来越复杂,传统的基于MUSIC算法的DOA估计方法面临着测向精度不高,计算复杂度大的问题,同时,这些方法大多数研究仅适用于一维DOA估计,针对实际空间下二维角度的测向能力有所欠缺,在L阵上实现二维DOA估计仍然是一个比较大的挑战。所以寻求新的技术和手段是当务之急,迫切需要提升雷达接收阵列的信号处理能力、测向精确性能。In radar signal processing, the estimation of the direction of arrival (DOA) of the target radar radiation source signal based on the L-array has always been the focus of research. With the application of high-power electronic equipment, the electromagnetic environment is becoming more and more complex. The traditional DOA estimation method based on the MUSIC algorithm faces the problems of low direction finding accuracy and large computational complexity. At the same time, most of these methods are only applicable to one-dimensional For DOA estimation, the direction finding ability for two-dimensional angles in real space is lacking, and it is still a big challenge to realize two-dimensional DOA estimation on L-array. Therefore, it is urgent to seek new technologies and means, and it is urgent to improve the signal processing capability and direction finding accuracy of the radar receiving array.
ESPRIT算法其原理在于利用数据协方差矩阵信号子空间的旋转不变特性求解信号的入射角等信息,由于不需要进行谱峰搜索,其复杂度和计算量与MUSIC算法相比大幅降低,在DOA估计中得到了广泛的应用。针对基于L阵的二维测向,此前也有一些二维ESPRIT方法提出,但这些方法都存在构造形式复杂,计算量高的问题,且不能很好的抑制噪声影响,在进行雷达信号处理时不能很好地平衡性能与计算成本之间的关系,阵列测向结果始终会存在较大误差。The principle of the ESPRIT algorithm is to use the rotation invariant characteristics of the signal subspace of the data covariance matrix to solve the information such as the incident angle of the signal. Since it does not need to search for spectral peaks, its complexity and calculation amount are greatly reduced compared with the MUSIC algorithm. In DOA has been widely used in estimation. For the two-dimensional direction finding based on the L-array, some two-dimensional ESPRIT methods have been proposed before, but these methods have the problems of complex structure and high calculation amount, and can not suppress the influence of noise well, and cannot be used in radar signal processing. With a good balance between performance and computational cost, there will always be large errors in the array direction finding results.
发明内容SUMMARY OF THE INVENTION
本发明的目的,是针对上述问题,提出了一种基于L阵和二维ESPRIT算法的DOA估计方法,在阵列接收到辐射源信号后,利用L阵的阵列特点对阵列数据进行处理,构造用于二维ESPRIT算法运算的数据矩阵,得到估计角度,完成信号源的方向测量估计。The purpose of the present invention is to solve the above problems, and propose a DOA estimation method based on L-array and two-dimensional ESPRIT algorithm. Based on the data matrix operated by the two-dimensional ESPRIT algorithm, the estimated angle is obtained, and the direction measurement and estimation of the signal source is completed.
本发明的技术方案为:The technical scheme of the present invention is:
将L阵划分为四个子阵,通过对空间中目标信号接收数据进行处理,计算L阵中三个无共用阵元的子阵之间的互协方差矩阵,利用三个互协方差矩阵组成一个用于L阵子空间分解的大矩阵,根据旋转不变性得到两个旋转矩阵,对两个矩阵基于二维ESPRIT算法进行处理,通过特征分解得到两个旋转矩阵的特征值并进行特征值配对,最后求解得到信号的方位角和仰角,完成二维DOA估计。Divide the L array into four sub-arrays, and calculate the cross-covariance matrix between the three sub-arrays without shared array elements in the L-array by processing the received data of the target signal in the space, and use the three cross-covariance matrices to form a For the large matrix used for L-array subspace decomposition, two rotation matrices are obtained according to the rotation invariance, and the two matrices are processed based on the two-dimensional ESPRIT algorithm. Solve the azimuth and elevation of the obtained signal, and complete the two-dimensional DOA estimation.
本发明基于L阵的信号接收模型如图1所示,信号si(t)的波达方向(DOA)用矢量表示:其中θ为方位角,范围为θ∈(-π,π),定义为波达方向在xoy平面的投影与x正半轴的夹角,为仰角,范围为定义为波达方向在yoz平面的投影与z正半轴的夹角。相邻阵元之间的间距为d。The signal receiving model based on the L-array of the present invention is shown in Figure 1, and the direction of arrival (DOA) of the signal si (t) uses a vector Representation: where θ is the azimuth angle, the range is θ∈(-π,π), which is defined as the angle between the projection of the direction of arrival on the xoy plane and the positive semi-axis of x, is the elevation angle, and the range is It is defined as the angle between the projection of the direction of arrival on the yoz plane and the positive half-axis of z. The spacing between adjacent array elements is d.
为了简化分析过程和保证所构建的数学模型的合理性,本发明中基于L阵的信号接收模型基于如下假设:(1)不考虑接收天线阵列的阵元通道幅相误差;(2)阵列接收信号均为远场点源发出的窄带信号,信号的中心频率相同且已知,信号波长λ大于阵元间距d的两倍,即λ≥2d;(3)接收信号的相位是随机的,不考虑严格非圆信号等已知信号部分先验信息下的特殊情况。In order to simplify the analysis process and ensure the rationality of the constructed mathematical model, the signal receiving model based on the L-array in the present invention is based on the following assumptions: (1) the amplitude and phase errors of the array element channels of the receiving antenna array are not considered; (2) the array receives The signals are all narrowband signals from far-field point sources, the center frequencies of the signals are the same and known, and the signal wavelength λ is greater than twice the array element spacing d, that is, λ≥2d; (3) The phase of the received signal is random, not Consider the special case under the prior information of known signal parts such as strictly non-circular signals.
如图2所示,均匀L阵可划分为四个子阵:x轴上的前M个阵元组成子阵X1,后M个阵元组成子阵X2;y轴上的前M个阵元组成子阵Y1,后M个阵元组成子阵Y2。As shown in Figure 2, a uniform L-array can be divided into four sub-arrays: the first M array elements on the x-axis form a sub-array X 1 , the last M array elements form a sub-array X 2 ; the first M array elements on the y-axis form a
子阵X1、X2和Y1、Y2接收的数据矩阵分别为:The data matrices received by the sub-arrays X 1 , X 2 and Y 1 , Y 2 are:
其中,xl、yl分别表示阵列X与阵列Y标号为l(l=0,1,2,…,M,M+1)的阵元接收的数据。Wherein, x l and y l respectively represent the data received by the array elements of the array X and the array Y whose labels are l (l=0, 1, 2, . . . , M, M+1).
基于L阵和二维ESPRIT的DOA估计方法,主要包括以下步骤:The DOA estimation method based on L-array and two-dimensional ESPRIT mainly includes the following steps:
S1、利用子阵X1、X2和Y1、Y2接收的数据矩阵构造得到三个互协方差矩阵:S1. Three cross-covariance matrices are obtained by constructing the data matrices received by the sub-arrays X 1 , X 2 and Y 1 , Y 2 :
由于子阵X1和Y2、子阵X2和Y1、子阵X2和Y2之间均没有共用阵元,且各阵元接收的噪声相互独立,因此得到的三个互协方差矩阵中都不存在噪声项。Since the sub-arrays X 1 and Y 2 , the sub-arrays X 2 and Y 1 , and the sub-arrays X 2 and Y 2 do not share array elements, and the noises received by each array element are independent of each other, the obtained three cross-covariances There are no noise terms in the matrix.
S2、将步骤S1中三个互协方差矩阵堆叠成一个大矩阵CL,矩阵的构造形式为S2. Stack the three cross-covariance matrices in step S1 into a large matrix CL , and the structure of the matrix is as follows
S3、对步骤S2中构造的大矩阵CL进行奇异值分解,将前N个大特征值对应的特征向量组成的矩阵作为信号子空间的估计得到信号子空间的估计ES。S3. Perform singular value decomposition on the large matrix CL constructed in step S2, and use the matrix formed by the eigenvectors corresponding to the first N large eigenvalues as the estimation of the signal subspace to obtain the estimation E S of the signal subspace.
其中,E1、E2和E3为组成矩阵ES的三个M×M维块矩阵;Wherein, E 1 , E 2 and E 3 are three M×M-dimensional block matrices that form the matrix ES;
S4、计算两个旋转矩阵ΨX和ΨY,计算公式为S4. Calculate two rotation matrices Ψ X and Ψ Y , the calculation formula is
对这两个旋转矩阵进行特征分解,得到Eigen decomposition of these two rotation matrices, we get
其中,λ1,…,λN和γ1,…,γN分别是旋转矩阵ΨX和ΨY的特征值,ΦX和ΦY是特征值矩阵,T1和T2是由旋转矩阵ΨX和ΨY的特征向量组成的正交矩阵。where λ 1 ,…,λ N and γ 1 ,…,γ N are the eigenvalues of the rotation matrices Ψ X and Ψ Y respectively, Φ X and Φ Y are the eigenvalue matrices, T 1 and T 2 are the rotation matrices Ψ Orthogonal matrix of eigenvectors of X and Ψ Y.
S5、基于二维ESPRIT算法进行二维角度参数配对,确定两个旋转矩阵ΨX和ΨY的特征值之间的对应关系,具体步骤为:S5. Perform two-dimensional angle parameter pairing based on the two-dimensional ESPRIT algorithm to determine the correspondence between the eigenvalues of the two rotation matrices Ψ X and Ψ Y. The specific steps are:
S51、构造估计矩阵构造形式为:S51. Construct an estimation matrix The construction form is:
S52、取出矩阵的对角元素u1,…,uN,并对这些元素取复数相角,并按照相角大小,从大到小对对角元素进行排序,得到排序后的对角元素取矩阵ΨY特征值γ1,…,γN的相角,并按照相角的大小按从大到小对γ1,…,γN进行排序,得到排序后的特征值顺序按照排序后的序号得到配对关系S52, take out the matrix The diagonal elements u 1 ,…,u N of , take complex phase angles for these elements, and sort the diagonal elements according to the size of the phase angles, from large to small, to obtain the sorted diagonal elements Take the phase angles of the eigenvalues γ 1 ,…,γ N of the matrix Ψ Y , and sort γ 1 ,…,γ N according to the size of the phase angles in descending order to obtain the sorted eigenvalue order Get the pairing relationship according to the sorted sequence number
S53、根据步骤S52中对角元素与矩阵T1中特征向量的对应关系,调整ΨX的特征值顺序(若在矩阵中的行序为j,那么其对应特征向量为矩阵T1的第j个列向量,对应的ΨX的特征值为λj),得到调整之后矩阵ΨX的特征值以及配对关系为S53, according to the diagonal elements in step S52 The corresponding relationship with the eigenvectors in the matrix T1, adjust the eigenvalue order of ΨX (if in the matrix The row order in is j, then its corresponding eigenvector is the jth column vector of the matrix T 1 , and the corresponding eigenvalue of Ψ X is λ j ), and the eigenvalue of the matrix Ψ X after adjustment is obtained. and the pairing relationship is
S54、根据步骤S52、S53得到的两组配对关系,得到矩阵ΨX和ΨY的特征值之间的配对关系为S54. According to the two groups of pairing relationships obtained in steps S52 and S53, the pairing relationship between the eigenvalues of the matrices Ψ X and Ψ Y is obtained as
S6、利用经过步骤S5配对后的特征值,计算目标辐射源信号的二维波达方向的数值解完成二维DOA估计:S6, using the eigenvalues paired in step S5 to calculate the numerical solution of the two-dimensional direction of arrival of the target radiation source signal Complete the 2D DOA estimation:
其中,in,
为第i个信号的方位角估值,为第i个信号的仰角估值,函数“arctan(·)”和“arcsin(·)”分别表示反正切函数和反正弦函数。 is an estimate of the azimuth angle of the ith signal, For the elevation angle estimation of the ith signal, the functions "arctan(·)" and "arcsin(·)" represent the arc tangent function and the arc sine function, respectively.
本发明的有益效果为,本发明利用L阵构造大矩阵,得到的矩阵形式简单,在后续的测向过程中保持了较低的计算复杂度,同时有效去除了统计独立噪声源的影响,改善了在高斯噪声环境下的分辨能力和统计性能。The beneficial effects of the present invention are that the present invention utilizes the L array to construct a large matrix, and the obtained matrix has a simple form, maintains a low computational complexity in the subsequent direction finding process, effectively removes the influence of statistical independent noise sources, and improves the The resolving power and statistical performance in Gaussian noise environment are improved.
附图说明Description of drawings
图1为L阵信号接收示意图;Figure 1 is a schematic diagram of L-array signal reception;
图2为L阵子阵划分示意图;Fig. 2 is a schematic diagram of L-array sub-array division;
图3为RMSE随SNR变化曲线;Figure 3 is the curve of RMSE versus SNR;
图4为RMSE随子阵数阵元数变化曲线;Fig. 4 is the change curve of RMSE with the number of sub-array elements;
图5为仿真运行时间随子阵阵元数变化曲线。Figure 5 shows the variation curve of the simulation running time with the number of sub-array elements.
具体实施方式Detailed ways
下面将结合附图和仿真,对本发明的性能进行说明。The performance of the present invention will be described below with reference to the accompanying drawings and simulations.
利用Matlab对本发明所提方法进行仿真验证。计算机仿真环境:MicrosoftWindows 10操作系统,Matlab 2020a软件,AMD R7-4800U处理器(支持AVX指令集),16GBDDR4-3200内存。The method proposed in the present invention is simulated and verified by using Matlab. Computer simulation environment: Microsoft Windows 10 operating system, Matlab 2020a software, AMD R7-4800U processor (supporting AVX instruction set), 16GBDDR4-3200 memory.
(一)本发明方法的DOA测向估计性能(1) DOA direction finding estimation performance of the method of the present invention
仿真1:方法的方向精度随信号信噪比变化情况Simulation 1: The direction accuracy of the method varies with the signal-to-noise ratio
空间中的L阵阵元总数为13,四个子阵的阵元数均为7,仿真信号数据长度为500个快拍,信号的来波方向为(60°,60°)。不同信噪比下均进行1000次Monte-Carlo实验,得到本发明方法的角度估计RMSE随SNR变化曲线如图3所示。The total number of L-array elements in the space is 13, the number of elements of the four sub-arrays is 7, the length of the simulated signal data is 500 snapshots, and the direction of arrival of the signal is (60°, 60°). 1000 times of Monte-Carlo experiments are carried out under different signal-to-noise ratios, and the curve of the angle estimated RMSE of the method of the present invention as a function of SNR is obtained as shown in Fig. 3 .
结论分析:从仿真结果来看,本发明L阵ESPRIT新方法的具有较高的波达方向估计精度,性能上的损失较少,测向效果颇佳。Conclusion analysis: From the simulation results, the new L-array ESPRIT method of the present invention has high DOA estimation accuracy, less performance loss, and good direction finding effect.
仿真2:方法的方向精度随接收阵列子阵阵元数变化情况Simulation 2: The direction accuracy of the method varies with the number of sub-array elements of the receiving array
空间中的L形阵列,四个子阵的阵元数均为M,仿真数据长度为200个快拍,信噪比为-10dB,信号的来波方向为(60°,60°),不同子阵数M下进行500次Monte-Carlo实验得到本发明ESPRIT算法的RMSE随子阵阵元数M的变化曲线如图4所示。In the L-shaped array in space, the number of array elements of the four sub-arrays are all M, the length of the simulated data is 200 snapshots, the signal-to-noise ratio is -10dB, the direction of arrival of the signal is (60°, 60°), and the different sub-arrays are 500 times of Monte-Carlo experiments are performed under the array number M to obtain the variation curve of the RMSE of the ESPRIT algorithm of the present invention with the number M of sub-array elements as shown in FIG. 4 .
结论分析:图4的结果表明,本发明方法的统计性能随子阵阵元数增多而增强。Conclusion analysis: The results in Figure 4 show that the statistical performance of the method of the present invention increases with the increase of the number of sub-array elements.
(二)本发明方法的运行时间(2) the running time of the method of the present invention
仿真1:方法的仿真时间Simulation 1: Simulation time of the method
空间中的L形阵列,四个子阵的阵元数均为M,信号的来波方向为(30°,30°),仿真数据长度为500个快拍,信噪比为0dB。对本发明方法进行仿真,得到不同子阵阵元数下该算法进行1000次Monte-Carlo实验的仿真时长。For the L-shaped array in space, the number of array elements of the four sub-arrays is M, the direction of arrival of the signal is (30°, 30°), the length of the simulated data is 500 snapshots, and the signal-to-noise ratio is 0dB. The method of the present invention is simulated to obtain the simulation duration of 1000 Monte-Carlo experiments performed by the algorithm under different numbers of sub-array elements.
将仿真时长数据绘制成曲线图得到该算法仿真时长随子阵阵元数变化曲线如图5所示。The simulation duration data is drawn into a curve graph to obtain the variation curve of the simulation duration of the algorithm with the number of sub-array elements, as shown in Figure 5.
结论分析:从图5的结果来看,随着子阵阵元数的增长,本发明算法的时长也随之增长,但增长幅度较小,这说明本发明计算成本较小,计算复杂度低,有着计算上的优势。Conclusion analysis: From the results of Figure 5, with the increase of the number of sub-array elements, the duration of the algorithm of the present invention also increases, but the increase is small, which shows that the present invention has a small computational cost and low computational complexity. , has a computational advantage.
综合以上仿真结果,本发明所提方法在计算成本和估计性能之间取得了更好的平衡。Based on the above simulation results, the method proposed in the present invention achieves a better balance between computational cost and estimation performance.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110596959.6A CN113341371B (en) | 2021-05-31 | 2021-05-31 | DOA estimation method based on L array and two-dimensional ESPRIT algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110596959.6A CN113341371B (en) | 2021-05-31 | 2021-05-31 | DOA estimation method based on L array and two-dimensional ESPRIT algorithm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113341371A true CN113341371A (en) | 2021-09-03 |
CN113341371B CN113341371B (en) | 2022-03-08 |
Family
ID=77472091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110596959.6A Active CN113341371B (en) | 2021-05-31 | 2021-05-31 | DOA estimation method based on L array and two-dimensional ESPRIT algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113341371B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115308680A (en) * | 2022-08-04 | 2022-11-08 | 中国科学院微小卫星创新研究院 | Two-dimensional DOA estimation method, system and computer readable medium |
CN115421098A (en) * | 2022-07-12 | 2022-12-02 | 南京航空航天大学 | 2-D DOA Estimation Method Based on Nested Planar Array Descending Dimension Root-Finding MUSIC |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6278406B1 (en) * | 1998-03-24 | 2001-08-21 | Nec Corporation | Direction finder and device for processing measurement results for the same |
CN102253363A (en) * | 2011-03-29 | 2011-11-23 | 西安交通大学 | Device for estimating two-dimensional direction of arrival (DOA) of coherent signals based on L array and method thereof |
CN102279381A (en) * | 2011-03-29 | 2011-12-14 | 西安交通大学 | L-shaped array-based two-dimensional wave arrival direction estimating device and method thereof |
US20140145825A1 (en) * | 2009-03-11 | 2014-05-29 | Checkpoint Systems, Inc | Localization Using Virtual Antenna Arrays in Modulated Backscatter Rfid Systems |
CN106054123A (en) * | 2016-06-06 | 2016-10-26 | 电子科技大学 | Sparse L-shaped array and two-dimensional DOA estimation method thereof |
US20170082730A1 (en) * | 2015-09-17 | 2017-03-23 | Panasonic Corporation | Radar device |
CN106872935A (en) * | 2017-03-20 | 2017-06-20 | 北京理工大学 | A kind of Electromagnetic Vector Sensor Array Wave arrival direction estimating method based on quaternary number |
CN108663653A (en) * | 2018-05-17 | 2018-10-16 | 西安电子科技大学 | Wave arrival direction estimating method based on L-shaped Electromagnetic Vector Sensor Array |
CN110286351A (en) * | 2019-07-12 | 2019-09-27 | 电子科技大学 | A two-dimensional DOA estimation method and device based on L-shaped nested matrix |
CN110286350A (en) * | 2019-07-12 | 2019-09-27 | 电子科技大学 | An accurate pairing method and device for L-type sparse array DOA estimation |
US20190377056A1 (en) * | 2018-06-12 | 2019-12-12 | Kaam Llc. | Direction of Arrival Estimation of Acoustic-Signals From Acoustic Source Using Sub-Array Selection |
CN110954859A (en) * | 2019-11-22 | 2020-04-03 | 宁波大学 | L-shaped array-based two-dimensional incoherent distributed non-circular signal parameter estimation method |
CN111175690A (en) * | 2019-10-29 | 2020-05-19 | 宁波大学 | Joint diagonalization L-type MIMO radar circle and non-circle mixed direction finding method |
CN111983554A (en) * | 2020-08-28 | 2020-11-24 | 西安电子科技大学 | High Accuracy 2D DOA Estimation under Nonuniform L Arrays |
CN112763972A (en) * | 2020-12-30 | 2021-05-07 | 长沙航空职业技术学院 | Sparse representation-based double parallel linear array two-dimensional DOA estimation method and computing equipment |
-
2021
- 2021-05-31 CN CN202110596959.6A patent/CN113341371B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6278406B1 (en) * | 1998-03-24 | 2001-08-21 | Nec Corporation | Direction finder and device for processing measurement results for the same |
US20140145825A1 (en) * | 2009-03-11 | 2014-05-29 | Checkpoint Systems, Inc | Localization Using Virtual Antenna Arrays in Modulated Backscatter Rfid Systems |
CN102253363A (en) * | 2011-03-29 | 2011-11-23 | 西安交通大学 | Device for estimating two-dimensional direction of arrival (DOA) of coherent signals based on L array and method thereof |
CN102279381A (en) * | 2011-03-29 | 2011-12-14 | 西安交通大学 | L-shaped array-based two-dimensional wave arrival direction estimating device and method thereof |
US20170082730A1 (en) * | 2015-09-17 | 2017-03-23 | Panasonic Corporation | Radar device |
CN106054123A (en) * | 2016-06-06 | 2016-10-26 | 电子科技大学 | Sparse L-shaped array and two-dimensional DOA estimation method thereof |
CN106872935A (en) * | 2017-03-20 | 2017-06-20 | 北京理工大学 | A kind of Electromagnetic Vector Sensor Array Wave arrival direction estimating method based on quaternary number |
CN108663653A (en) * | 2018-05-17 | 2018-10-16 | 西安电子科技大学 | Wave arrival direction estimating method based on L-shaped Electromagnetic Vector Sensor Array |
US20190377056A1 (en) * | 2018-06-12 | 2019-12-12 | Kaam Llc. | Direction of Arrival Estimation of Acoustic-Signals From Acoustic Source Using Sub-Array Selection |
CN110286351A (en) * | 2019-07-12 | 2019-09-27 | 电子科技大学 | A two-dimensional DOA estimation method and device based on L-shaped nested matrix |
CN110286350A (en) * | 2019-07-12 | 2019-09-27 | 电子科技大学 | An accurate pairing method and device for L-type sparse array DOA estimation |
CN111175690A (en) * | 2019-10-29 | 2020-05-19 | 宁波大学 | Joint diagonalization L-type MIMO radar circle and non-circle mixed direction finding method |
CN110954859A (en) * | 2019-11-22 | 2020-04-03 | 宁波大学 | L-shaped array-based two-dimensional incoherent distributed non-circular signal parameter estimation method |
CN111983554A (en) * | 2020-08-28 | 2020-11-24 | 西安电子科技大学 | High Accuracy 2D DOA Estimation under Nonuniform L Arrays |
CN112763972A (en) * | 2020-12-30 | 2021-05-07 | 长沙航空职业技术学院 | Sparse representation-based double parallel linear array two-dimensional DOA estimation method and computing equipment |
Non-Patent Citations (4)
Title |
---|
T.Q.XIA等: ""2-D angle of arrival estimation with two parallel uniform linear arrays for coherent signals"", 《2007 IEEE RADAR CONFERENCE》 * |
夏铁骑: ""二维波达方向估计方法研究"", 《中国优秀博硕士学位论文全文数据库(博士)信息科技辑》 * |
曾操等: ""一种基于双平行线阵相干源二维波达方向估计的新方法"", 《雷达科学与技术》 * |
王爱莹: ""卫星干扰源定位及干扰抑制技术研究"", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115421098A (en) * | 2022-07-12 | 2022-12-02 | 南京航空航天大学 | 2-D DOA Estimation Method Based on Nested Planar Array Descending Dimension Root-Finding MUSIC |
CN115308680A (en) * | 2022-08-04 | 2022-11-08 | 中国科学院微小卫星创新研究院 | Two-dimensional DOA estimation method, system and computer readable medium |
Also Published As
Publication number | Publication date |
---|---|
CN113341371B (en) | 2022-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108957391B (en) | Two-dimensional direction of arrival estimation method of L-shaped antenna array based on nested array | |
CN111123192B (en) | A two-dimensional DOA localization method based on circular array and virtual expansion | |
CN106021637B (en) | A DOA Estimation Method Based on Iterative Sparse Reconstruction in Coprime Arrays | |
CN111239678B (en) | Two-dimensional DOA estimation method based on L-shaped array | |
CN106483493B (en) | A kind of sparse double parallel linear array and estimating two-dimensional direction-of-arrival method | |
CN108181557B (en) | A Method for Determining the Orientation of UHF Partial Discharge Signals | |
CN108663653A (en) | Wave arrival direction estimating method based on L-shaped Electromagnetic Vector Sensor Array | |
CN113341371B (en) | DOA estimation method based on L array and two-dimensional ESPRIT algorithm | |
CN107907855A (en) | A kind of coprime array switching DOA estimation method and device for even linear array | |
CN117970233B (en) | Information source number and direction of arrival joint estimation method and system of coherent distributed source | |
CN114488034A (en) | A passive detection and reconnaissance jamming integrated device and method | |
CN106872934B (en) | L-type Electromagnetic Vector Sensor Array decorrelation LMS ESPRIT method for parameter estimation | |
Liu et al. | Antenna array signal direction of arrival estimation on digital signal processor (DSP) | |
CN111413668A (en) | A DOA Estimation Method Based on DFT Enhancement in Large Scale Arrays | |
CN113759303A (en) | Non-grid DOA (angle of arrival) estimation method based on particle swarm optimization | |
Yang et al. | Coprime L‐shaped array connected by a triangular spatially‐spread electromagnetic‐vector‐sensor for two‐dimensional direction of arrival estimation | |
Veerendra et al. | Unitary root-MUSIC method with Nystrom approximation for 3D sparse array DOA estimation in sensor networks | |
CN116755028A (en) | A fast estimation method for the direction of arrival of mixed polarization signals with enhanced separation | |
CN113126021B (en) | A single snapshot 2D DOA estimation method based on three parallel linear arrays | |
Wang et al. | Subspace projection semi-real-valued MVDR algorithm based on vector sensors array processing | |
CN115329261A (en) | MIMO radar low elevation angle estimation method based on space smooth sparse reconstruction | |
Wang et al. | A two-dimensional direction finding method based on non-uniform array | |
CN111562549A (en) | A Fast Adaptive Beamforming Method for Large Arrays in Blocks and Parallelism | |
CN113093111A (en) | Method and system for demodulating two-dimensional coherent signals by uniform circular array based on compressed sensing and genetic algorithm | |
CN111474534B (en) | Two-dimensional DOA estimation method based on symmetric parallel nested array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |