CN113340760B - 一种支撑剂破碎率的测定装置 - Google Patents

一种支撑剂破碎率的测定装置 Download PDF

Info

Publication number
CN113340760B
CN113340760B CN202110691719.4A CN202110691719A CN113340760B CN 113340760 B CN113340760 B CN 113340760B CN 202110691719 A CN202110691719 A CN 202110691719A CN 113340760 B CN113340760 B CN 113340760B
Authority
CN
China
Prior art keywords
unit
pressure
pipe joint
cylinder
proppant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110691719.4A
Other languages
English (en)
Other versions
CN113340760A (zh
Inventor
高新平
范宇
张华礼
彭钧亮
韩慧芬
彭欢
曾冀
周玉超
殷悦琳
王晓娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN202110691719.4A priority Critical patent/CN113340760B/zh
Publication of CN113340760A publication Critical patent/CN113340760A/zh
Application granted granted Critical
Publication of CN113340760B publication Critical patent/CN113340760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种支撑剂破碎率的测定装置,包括第一泵注单元、第二泵注单元与依次连接的输送单元、承压单元和容器;所述输送单元内用于放置支撑剂与压裂液的混合物;所述第一泵注单元用于为输送单元内部加压,所述加压过程用于将输送单元内的混合物输送到承压单元;所述第二泵注单元用于为所述承压单元加压,所述第二泵注单元加压过程用于将承压单元内的混合物输送到容器。采用本方案,能直接评价支撑剂在压裂中的真实破碎率,为压裂施工设计过程中支撑剂优选、性能评价提供有力的实验技术支撑。

Description

一种支撑剂破碎率的测定装置
技术领域
本发明涉及油气田开发技术领域,具体涉及一种支撑剂破碎率的测定装置。
背景技术
现有的油气田开发,由于地下深处的岩石裂缝非常致密,导致采油采气效率低下,因此,需人力对地下岩石压裂裂缝,并在裂缝中填充支撑剂,形成地下油气通道,能更高效的开采油气田。水力压裂便是高效开发油气田的主要技术之一,其根本目标是在地层中形成高导流能力的压裂裂缝。然而,由于压裂施工过程、地层闭合压力的作用会产生支撑剂破碎的现象,支撑剂破碎导致支撑裂缝宽度减小、碎片颗粒堵塞部分支撑剂间的孔隙,导致裂缝导流能力下降,缩短压裂有效期。因此,有必要针对支撑剂破碎率的检测开展研究,为支撑剂性能评价、支撑剂优选提供理论依据。目前对于支撑剂破碎率的检测主要以室内实验研究和理论计算模型为主。
现有的实验方法:将一定量的支撑剂放置在破碎室中,安装破碎室活塞,利用压力试验机施加35MPa压力,卸载压力后,收集破碎室支撑剂放入目数不等的标准筛网上,在振筛机上筛选,称重不同目数标准筛网上的支撑剂质量,计算破碎率。支撑剂破碎率是在定压力(35MPa)、干样检测、单一的破碎检测,属于支撑剂破碎率的片面实验评价方法。
现有的理论计算方法,假设情况过于理想,都是假设支撑剂干样与湿样破碎率相同、且只在闭合压力下破碎,而在其他压裂施工过程中不产生新的破碎。没有考虑支撑剂是通过压裂液携带进入地层裂缝中,裂缝中的支撑剂颗粒为湿样,强度有一定程度的下降,破碎率比干样大。其实在实际压裂施工过程中,支撑剂与压裂液的混合液在井筒中运动,支撑剂颗粒与管柱壁面、支撑剂颗粒之间存在接触碰撞,产生新的破碎;支撑剂与压裂液的混合液到井底后,通过井底射孔孔眼进入地层裂缝中,孔眼较小,混合液中支撑剂颗粒在一定的排量及施工压力下快速通过孔眼时,支撑剂颗粒与孔眼、支撑剂颗粒之间存在强烈碰撞,也产生新的破碎。实际压裂施工过程中支撑剂会产生新的破碎,而且支撑剂的破碎率对裂缝导流能力影响很大,不容忽视。
总体来看,现有的支撑剂破碎率评价方法,没有考虑支撑剂干样与湿样的破碎率不同,没有考虑压裂施工过程中会产生新的破碎,测定的支撑剂破碎率是理想化片面的,不能真实反映支撑剂在压裂中的破碎率。因此,急需设计一种压裂施工过程中支撑剂破碎率的测定装置及方法,来评价支撑剂在压裂中的真实破碎率,为压裂施工设计过程中支撑剂优选、性能评价提供有力的实验技术支撑。
发明内容
本发明为解决上述问题,提供了一种支撑剂破碎率的测定装置,采用本方案,能直接评价支撑剂在压裂中的真实破碎率,为压裂施工设计过程中支撑剂优选、性能评价提供有力的实验技术支撑。
本发明采用的技术方案为:一种支撑剂破碎率的测定装置,包括第一泵注单元、第二泵注单元与依次连接的输送单元、承压单元和容器;
所述输送单元内用于放置支撑剂与压裂液的混合物;
所述第一泵注单元用于为输送单元内部加压,所述加压过程用于将输送单元内的混合物输送到承压单元;
所述第二泵注单元用于为所述承压单元加压,所述第二泵注单元加压过程用于将承压单元内的混合物输送到容器。
相对于现有技术中直接对支撑剂干样进行破碎率计算,导致测定的支撑剂破碎率是理想化片面的,都是假设支撑剂干样与湿样破碎率相同、且只在闭合压力下破碎,而在其他压裂施工过程中不产生新的破碎。没有考虑支撑剂是通过压裂液携带进入地层裂缝中,裂缝中的撑剂颗粒为湿样,强度有一定程度的下降,破碎率比干样大,不能真实反映支撑剂在压裂中的破碎率;本方案通过一系列模拟实验,能计算出支撑剂湿样的破碎率。具体的,本方案包括第一泵注单元、第二泵注单元与依次连接的输送单元、承压单元和容器,其中输送单元内部用于放置支撑剂与压裂液的混合物,用于模拟压裂液携带支撑剂在井筒内运动、模拟压裂液携带支撑剂从井筒内进入地层中,使支撑剂干样变为支撑剂湿样,输送单元和承压单元连接,第一泵注单元对输送单元内部加压,输送单元由于内部压力,将混合物输送到承压单元内,用于模拟压裂液携带支撑剂从井筒内进入地层中,并用于模拟压裂施工时的地面泵注设备;承压单元和容器连接,第二泵注单元用于为承压单元加压,用于模拟地层压力,承压单元由于内部压力,可将内部的液体输送到容器中,用于排出承压单元内的液体,模拟地层压裂施工后的液体反排;此时在承压单元内部可得到在经过一系列压裂施工过程后的支撑剂湿样,再通过收集装置收集承压单元内部剩余的支撑剂湿样或支撑剂与压裂液的混合物,并在烘箱中烘干,将烘干后的支撑剂放入标准筛网组合的顶筛上,在振筛机上筛选;仔细的称出底盘中破碎率材料的质量,底盘中破碎材料的质量除以破碎实验中支撑剂样品质量,即为该支撑剂的破损率。
进一步优化,所述输送单元包括第一柱筒,所述第一柱筒顶部开口,所述开口处设有第一顶盖,所述第一顶盖中部开孔,所述中部开孔处设有第一管接头,所述第一泵注单元通过管道和第一管接头连接,所述第一柱筒内部设有第一活塞,所述第一活塞下方空间用于放置混合物,所述第一柱筒下侧开孔,所述下侧开孔处设有第二管接头,所述第二管接头通过管道和承压单元连接;具体的,由于支撑剂与压裂液的混合液到井底后,通过井底射孔孔眼进入地层裂缝中,孔眼较小,混合液中支撑剂颗粒在一定的排量及施工压力下快速通过孔眼时,支撑剂颗粒与孔眼、支撑剂颗粒之间存在强烈碰撞,也产生新的破碎,本方案进一步模拟此过程,优化输送单元,其中输送单元包括第一柱筒,用于模拟井筒,第一柱筒顶部开口,在顶部开口处设有第一顶盖,其中第一顶盖和第一柱筒顶部开口处通过丝扣连接,在第一顶盖中部开孔,中部开孔处设有第一管接头,第一管接头通过管道和第一泵注单元连接,在第一柱筒内部还设有第一活塞,第一活塞和第一柱筒内部滑动连接,第一活塞的下部空间用于放置混合物;在第一柱筒下侧开孔,开孔处不做打磨处理,在下侧开孔处设有第二管接头,第二管接头通过管道和承压单元连接,此时第一泵注单元对输送单元内部施压,使活塞向下移动,挤压混合物通过下侧开孔处流入到承压单元中,用于模拟在压裂施工时,支撑剂从井底射孔进入地层。
进一步优化,还包括搅拌单元,所述搅拌单元包括扶正架和搅拌机,所述第一柱筒底部带有旋转固定块,所述搅拌机用于带动旋转固定块旋转,所述旋转固定块用于带动输送单元旋转,所述扶正架用于夹持扶正第一柱筒;具体的,在实际压裂施工过程中,井筒非常深,支撑剂与压裂液的混合液在井筒中运动,支撑剂颗粒与管柱壁面、支撑剂颗粒之间存在接触碰撞,产生新的破碎,为模拟支撑剂与压裂液的混合物在井筒中的运动,本方案还设置有搅拌单元,其中搅拌单元包括扶正架和搅拌机,在第一柱筒底部带有旋转固定块,旋转固定块下端可插入到搅拌机中,搅拌机用于带动旋转固定块旋转,旋转固定块上端可带动输送单元内部的混合物在一定转速下转动,而在搅拌机搅拌过程中,输送单元会产生晃动,此时还设有扶正架,扶正架环绕输送单元设置,并将输送单元夹持在内,扶正架可随输送单元同步旋转,其中搅拌机可调并设定转速。
进一步优化,所述承压单元包括第二柱筒,所述第二柱筒内部设有第二活塞,所述第二柱筒上侧面开孔,所述第二柱筒上侧面开孔处设有第三管接头,所述第三管接头通过管道和第二管接头连接,所述第二柱筒下侧面开孔,所述第二柱筒下侧面开孔处设有第四管接头,所述第四管接头通过管道和第二泵注单元连接,所述第二活塞设于第三管接头和第四管接头之间;本方案进一步优化承压单元,其中承压单元包括第二柱筒,第二柱筒内部设有第二活塞,第二活塞和第二柱筒内部滑动连接,在第二柱筒上侧面开孔,第二柱筒上侧面开孔处设有第三管接头,第三管接头通过管道和第二管接头连接,在第二柱筒下侧面开孔,在下侧面开孔处设有第四管接头,第四管接头通过管道和第二泵注单元连接,此时活塞位于上侧孔和下侧孔之间,输送单元内部的混合液能进入到第二活塞上方,混合液推动承压单元内部的第二活塞克服第二泵注单元恒压泵的压力向下运动,用于模拟压裂液压开地层,形成裂缝;第一泵注单元恒流泵泵注完输送单元内的混合液后,关闭承压单元上部侧面开孔处,承压一定时间,可用于模拟压裂施工后的闷井。
进一步优化,所述第二柱筒顶部开口,第二柱筒顶部开口处设有第二顶盖,所述第二顶盖中部开孔,所述第二顶盖中部开孔处设有第五管接头,所述第五管接头通过管道和容器进孔处连接;为模拟地层压裂施工后的液体反排,本方案设置第二柱筒顶部开口,在顶部开口处设有丝扣,第二顶盖和顶部开口处丝扣连接,在第二顶盖中部开孔,开孔处设有第五管接头,第五管接头通过管道和容器内部连接,在承压单元承压一定时间后,可缓慢打开第二顶盖中部开孔处,用于排出承压单元内部的液体,模拟地层压裂施工后的液体反排。
进一步优化,在液体反排过程中,为避免支撑剂被排入到容器中,设置为:所述第二顶盖中部开孔处设有滤网。
进一步优化,为实现输送单元、承压单元和容器上每个开孔处的开闭,设置为:所述输送单元、承压单元和容器上的每个开孔处均设有阀门。
进一步优化,在承压单元承压过程中,为模拟地层温度,设置为:所述第二柱筒外侧套设有加热套。
进一步优化,为模拟压裂施工时的地层数据,集中控制并检测第一泵注单元的流量、第二泵注单元的压力和加热套的温度,设置为:还包括数据记录控制单元,所述数据记录控制单元用于检测并控制第一泵注单元、第二泵注单元和加热套;数据记录控制单元能控制第一泵注单元的流量,用于模拟压裂排量,数据记录控制单元能控制第二泵注单元的压力,用于模拟地层压力,数据记录控制单元还能控制加热套的温度,用于模拟地层温度。
进一步优化,所述第一泵注单元采用恒流泵,所述第二泵注单元采用恒压泵;本方案中,第一泵注单元为恒流泵,其流量可调,可用于模拟地面泵注设备的压裂排量,其中第二泵注单元为恒压泵,其压力可调,用于模拟地层压力。
本发明具有以下有益效果:
(1)本发明实现了模拟在真实压裂施工工况下支撑剂破碎率的检测,支撑剂的破碎率结果更真实、可靠。
(2)本发明专利提供压裂施工工况下支撑剂破碎率检测装置,是对现有支撑剂破碎率检测装置的重要补充。
(3)本发明专利提供了现场施工排量转换为室内实验流量的计算公式,使室内实验流量与现场施工排量一致。
(4)本发明专利确定的支撑剂破碎率,可以在压裂施工设计过程中对支撑剂的优选、性能评价提供重要的实验参考。
附图说明
图1为本发明提供的一种支撑剂破碎率的测定装置的结构示意图;
图2为本发明提供的一种支撑剂破碎率的测定装置的输送单元的结构示意图;
图3为本发明提供的一种支撑剂破碎率的测定装置的承压单元的结构示意图。
图中附图标记为:1-容器,2-第二泵注单元,3-承压单元,301-第五管接头,302-滤网,303-第二顶盖,304-第二活塞,305-第三管接头,306-第二柱筒,307-第四管接头,308-加热套,4-输送单元,401-第一管接头,402-第一顶盖,403-第一活塞;404-第一柱筒;405-第二管接头,406-旋转固定块,5-搅拌单元,501-扶正架,502-搅拌机,6-第一泵注单元,7-数据记录控制单元,8-阀门。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实例中,为了避免混淆本发明,未具体描述公知的结构、电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
在本发明的描述中,需要理解的是,术语“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“高”、“低”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
实施例一:如图1至图3所示,一种支撑剂破碎率的测定装置,包括:输送单元4、搅拌单元5、第一泵注单元6、承压单元3、第二泵注单元2、数据记录控制单元7、筛分单元。
输送单元4由第一柱筒404、第一活塞403和第一顶盖402组成。第一柱筒404可承压用于模拟井筒,第一柱筒404上部有丝扣,第一柱筒404通过丝扣与第一顶盖402组合;下部侧面开孔,用于模拟井底射孔(压裂施工时支撑剂从井底射孔进入地层),开孔不做打磨处理,开孔处设置第一管接头401,第一管接头401通过管道和第一泵注单元6连接,且开孔处安装阀门8;第一柱筒404底部带有旋转固定块406,用于搅拌机502带动第一柱筒404旋转,模拟支撑剂与压裂液的混合物在井筒中的运动;第一顶盖402开孔,开孔处设有第二管接头405,并安装阀门8,第一顶盖402通过管道与第一泵注单元6连接;第一柱筒404内有第一活塞403,可在第一柱筒404内运动。
搅拌单元5有扶正架501、搅拌机502组成。搅拌机502可调并设定转速;搅拌机502带动输送单元4在一定转速下转动时,输送单元4会晃动,扶正架501环绕输送单元4柱体随输送单元4同步转动,用于扶正输送单元4。
第一泵注单元6通过管道和第一管接头401连接,优选为恒流泵,用于模拟压裂施工地面泵注设备,给输送单位活塞注液加压,可调并设定流量。
承压单元3由第二柱筒306、第二顶盖303、加热套308、第二活塞304组成。第二柱筒306可承压,用于模拟压裂施工后支撑剂在地层条件下的承压状态,第二柱筒306上部有丝扣,第二柱筒306通过丝扣与第二顶盖303组合;第二顶盖303开孔,且开孔处设置有阀门8及可拆卸滤网302,并设置有第五管接头301,第五管接头301通过管道和容器1连接,用于排出承压单元3内液体,模拟地层压裂施工后液体返排;第二柱筒306上部侧面开孔,且开孔处设置有第三管接头305和阀门8,通过管道与第一柱体下部开孔相连;第二柱筒306下部侧面开孔,且开孔处设置有第四管接头307和阀门8,通过管道与第二泵注单元2相连;第二柱筒306内有活塞,活塞在第二柱筒306侧面上、下孔之间,可在柱体内运动。加热套308是包裹在承压单元3外壳上,用于给承压单元3加热模拟地层温度。
第二泵注单元2通过管道和第四管接头307连接,优选为恒压泵,恒压泵通过向承压单元3活塞下部注液,达到给承压单元3加压目的,用于模拟地层压力,第二泵注单元2可调并设定压力。
数据记录控制单元7由计算机及线路组成。数据记录控制单元7,设置第一泵注单元6恒流泵流量、第二泵注单元2恒压泵压力、承压单元3加热套308温度,并采集记录整个过程数据。
筛分单元由振筛机、标准筛网组成。根据支撑剂的大小,选择标准筛网组合,将收集承压单元3内的支撑剂放置在筛网组合的最顶层,再将筛网组合放置在振筛机进行筛选;筛选后,称取筛网组合里每层筛网上支撑剂的质量,计算该支撑剂的破损率。
实施例二:一种支撑剂破碎率的测定装置的测定方法,包括以下步骤:
步骤一:配置压裂液和支撑剂的混合液,并将混合液放入输送单元4中;
步骤二:对输送单元4中的混合液进行搅拌;
步骤三:将搅拌后的混合液泵注到承压单元3中;
步骤四:将承压单元3中的混合液承压一定时间;
步骤五:承压一定时间后,将承压单元3中的混合液进行积液反排,排出液体;
步骤六:排液后,再对承压单元3中的支撑剂承压一定时间;
步骤七:收集第二次承压后的支撑剂,并进行破碎率计算。
本方案具体工作原理:
查阅相关压裂施工、地质及钻井资料,明确施工排量、施工压力、压裂液类型、支撑剂类型、砂浓度、施工时长;查阅地质及钻井资料,明确地层压力、地层温度。
打开输送单元4顶盖,取出第一柱筒404内的第一活塞403,关闭第一柱筒404侧面下部阀门8;按照压裂施工砂浓度,将一定量的压裂液、支撑剂装入输送单元4的第一柱筒404中,再依次放入第一活塞403、旋紧输送单元4的第一顶盖402,关闭第一顶盖402开孔处阀门8。装入输送单元4柱体中的支撑剂(选择适用于支撑剂样品规格的顶筛和底筛的目数,对支撑剂样品进行筛选,将遗留在顶筛和底盘内的样品全部倒掉,仅留下底筛内的样品作为装入输送单元4柱体内的支撑剂)。
依次将扶正架501、第一柱体放置在搅拌机502上,在数据记录控制单元7上设置搅拌机502转速及搅拌时长;搅拌完后,管道连接第一泵注单元6到第一柱筒404的第一顶盖402开孔处并打开开孔处阀门8,第一柱筒404侧面下部开孔,并打开第一柱筒404侧面下部开孔处阀门8。
打开承压单元3的第二顶盖303,管道连接第二泵注单元2与承压单元3柱体下部侧面开孔并打开开孔处阀门8,管道连接输送单元4柱体侧面下部开孔与承压单元3柱体上部侧面开孔,并打开承压单元3柱体上部侧面开孔处阀门8;在数据记录控制单元7上设置恒压泵压力(以推动活塞运动的压力即可),恒压泵注液推动柱体内活塞运动到柱体侧面开孔处;旋紧承压单元3的第二顶盖303;承压单元3的第二顶盖303开孔处放置滤网302;管道连接承压单元3开孔处与出口端容器1连接,并关闭开孔处阀门8。
在数据记录控制单元7上设置第二泵注单元2恒压泵压力(地层压力)、设置第一泵注单元6恒流泵流量(模拟压裂排量)、设置承压单元3温度(加热套308加热,模拟地层温度);恒流泵注液推动输送单元4内第一活塞403向下运动,使第一活塞403下部混合液以相同的流量通过输送单元4柱体侧面下部开孔进入承压单元3;混合液推动承压单元3柱体侧面开孔处第二活塞304克服第二泵注单元2恒压泵的压力向下运动(模拟压裂液压开地层,形成裂缝);第一泵注单元6恒流泵泵注完输送单元4柱体内混合液后,关闭承压单元3柱体上部侧面开孔处阀门8,承压一定时间(模拟压裂施工后的闷井);承压一定时间后,缓慢打开承压单元3第二顶盖303开孔处阀门8,排出承压单元3内液体(模拟地层压裂施工后液体返排),再关闭承压单元3第二顶盖303开孔处阀门8,承压一定时间。
在数据记录控制单元7上设置第二泵注单元2恒压泵压力为0MPa(泄压)、设置第一泵注单元6恒流泵流量为0mL/min(泄压)、设置承压单元3温度为0℃(降温至室温)。
拆卸承压单元3第二顶盖303开孔处管道并取出滤网302;打开承压单元3第二顶盖303,用收集装置收集承压室内支撑剂(或支撑剂与压裂液的混合物),在烘箱中烘干。
烘干后的支撑剂放入标准筛网组合的顶筛上,在振筛机上筛选;仔细的称出底盘中破碎率材料的质量,底盘中破碎材料的质量除以破碎实验中支撑剂样品质量,即为该支撑剂的破损率。
实施例三:本实施例在实施例二的基础上进行实验:
本实施例提供了现场施工排量转换为室内实验流量的计算公式,如下式所述:
Figure BDA0003126419750000081
式中:Q施工——现场施工排量,m3/min;
V——现场施工介质总量,m3
t——现场施工总时间,min;
Figure BDA0003126419750000082
式中:Q实验——室内实验流量,mL/min;
V'——室内实验介质总量,mL;
t'——室内实验总时间,min;
Q=v×s------------------------------------(3)
式中:Q——特定的时间内流过的流量,m3/s;
v——管道中的流速,m/s;
s——管道的截面积,m2
实验模拟参数选择现场线速度,进行公式推导,得实验流量Q实验:
Figure BDA0003126419750000091
式中:Q实验——室内实验流量,L/min;
Q施工——现场施工排量,m3/min;
S实验——室内实验管线横截面积,mm2
S施工——现场施工管柱横截面积,mm2
搅拌机转速n:
Figure BDA0003126419750000092
式中:n——搅拌机转速,rad/s;
v——管道中的流速,m/s;
r——管道的半径,m。
(1)查阅相关压裂施工、地质及钻井资料,施工排量16m3/min、施工压力74MPa、压裂液为滑溜水、支撑剂为425/212μm石英砂、砂浓度160kg/m3、施工时长53min、地层压力57MPa、地层温度74℃。
(2)对425/212μm石英砂支撑剂样品进行筛选,筛网组合从上到下依次为425(顶筛)、212(底筛)、底盘,将遗留在顶筛和底盘内的样品全部倒掉,留下中间筛网的为石英砂支撑剂实验样品。
(3)打开输送单元4的第一顶盖402,取出输送单元4柱体内的第一活塞403,关闭输送单元4柱体侧面下部阀门8;按照压裂施工砂浓度160kg/m3,量取240mL的滑溜水、称取38.4g石英砂支撑剂样品装入输送单元4的第一柱筒404中,再依次放入第一活塞403、旋紧输送单元4的第一顶盖402,关闭第一顶盖402开孔处阀门8。
(4)依次将扶正架501、装有混合液的第一柱筒404放置在搅拌机502上,施工排量16m3/min,施工管道直径139.7mm,带入式(3)、(5),得线速度v为17.62m/s,转速为40.168rad/s。在数据记录控制单元7上设置搅拌机502转速2460rad/min,搅拌时长53min。
(5)搅拌完后,管道连接第一泵注单元6到输送单元4第一顶盖402开孔处并打开开孔处阀门8,管道连接输送单元4柱体侧面下部开孔,并打开输送单元4侧面下部开孔处阀门8。打开承压单元3第二顶盖303,管道连接第二泵注单元2与承压单元3柱体下部侧面开孔并打开开孔处阀门8,管道连接输送单元4柱体侧面下部开孔与承压单元3柱体上部侧面开孔,并打开承压单元3柱体上部侧面开孔处阀门8。
(6)在数据记录控制单元7上设置恒压泵压力0.1MPa(以推动第二活塞304运动的压力即可),恒压泵注液推动第二柱筒306内第二活塞304运动到柱体侧面开孔处;旋紧承压单元3的第二顶盖303;承压单元3的第二顶盖303开孔处放置滤网302;管道连接承压单元3开孔处与出口端容器1连接,并关闭开孔处阀门8。
(7)在数据记录控制单元7上设置第二泵注单元2恒压泵压力57MPa(地层压力);S实验为113.04mm2(实验管径12mm)、S施工为15320.13065mm2、施工排量16m3/min,带入式(4),得实验流量118.056L/min,因此设置第一泵注单元6恒流泵流量为118L/min(模拟压裂排量)、设置承压单元3温度74℃(加热套308加热,模拟地层温度);恒流泵注液推动输送单元4内的第一活塞403向下运动,使第一活塞403下部混合液以相同的流量通过输送单元4柱体侧面下部开孔进入承压单元3;混合液推动承压单元3柱体侧面开孔处第二活塞304克服第二泵注单元2恒压泵的压力向下运动(模拟压裂液压开地层,形成裂缝);第一泵注单元6恒流泵泵注完输送单元4柱体内混合液后,关闭承压单元3柱体上部侧面开孔处阀门8,承压一定时间3h(模拟压裂施工后的闷井);承压3h后,缓慢打开承压单元3的第二顶盖303开孔处阀门8,排出承压单元3内液体(模拟地层压裂施工后液体返排),再关闭承压单元3的第二顶盖303开孔处阀门8,承压一定时间。
(8)在数据记录控制单元7上设置第二泵注单元2恒压泵压力为0MPa(泄压)、设置第一泵注单元6恒流泵流量为0mL/min(泄压)、设置承压单元3温度为0℃(降温至室温)。
(9)拆卸承压单元3第二顶盖303开孔处管道并取出滤网302;打开承压单元3的第二顶盖303,用收集装置收集承压室内支撑剂(或支撑剂与压裂液的混合物),在烘箱中烘干(温度74℃)。
(10)烘干后的支撑剂放入标准筛网组合的顶筛上,在振筛机上筛选10min;仔细的称出底盘中破碎率材料的质量,底盘中破碎材料的质量(8.832g)除以破碎实验中支撑剂样品质量(38.4g)的百分比,即为该支撑剂的破损率(23%)。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种支撑剂破碎率的测定装置,其特征在于,包括第一泵注单元(6)、第二泵注单元(2)与依次连接的输送单元(4)、承压单元(3)和容器(1);
所述输送单元(4)内用于放置支撑剂与压裂液的混合物;
所述第一泵注单元(6)用于为输送单元(4)内部加压,所述加压过程用于将输送单元(4)内的混合物输送到承压单元(3);
所述第二泵注单元(2)用于为所述承压单元(3)加压,所述第二泵注单元(2)加压过程用于将承压单元(3)内的液体输送到容器(1);
所述输送单元(4)包括第一柱筒(404),所述第一柱筒(404)顶部开口,所述开口处设有第一顶盖(402),所述第一顶盖(402)中部开孔,所述中部开孔处设有第一管接头(401),所述第一泵注单元(6)通过管道和第一管接头(401)连接,所述第一柱筒(404)内部设有第一活塞(403),所述第一活塞(403)下方空间用于放置混合物,所述第一柱筒(404)下侧开孔,所述下侧开孔处设有第二管接头(405),所述第二管接头(405)通过管道和承压单元(3)连接;
还包括搅拌单元(5),所述搅拌单元(5)包括扶正架(501)和搅拌机(502),所述第一柱筒(404)底部带有旋转固定块(406),所述搅拌机(502)用于带动旋转固定块(406)旋转,所述旋转固定块(406)用于带动输送单元(4)旋转,所述扶正架(501)用于夹持扶正第一柱筒(404);
所述承压单元(3)包括第二柱筒(306),所述第二柱筒(306)内部设有第二活塞(304),所述第二柱筒(306)上侧面开孔,所述第二柱筒(306)上侧面开孔处设有第三管接头(305),所述第三管接头(305)通过管道和第二管接头(405)连接,所述第二柱筒(306)下侧面开孔,所述第二柱筒(306)下侧面开孔处设有第四管接头(307),所述第四管接头(307)通过管道和第二泵注单元(2)连接,所述第二活塞(304)设于第三管接头(305)和第四管接头(307)之间。
2.根据权利要求1所述的一种支撑剂破碎率的测定装置,其特征在于,所述第二柱筒(306)顶部开口,第二柱筒(306)顶部开口处设有第二顶盖(303),所述第二顶盖(303)中部开孔,所述第二顶盖(303)中部开孔处设有第五管接头(301),所述第五管接头(301)通过管道和容器(1)进孔处连接。
3.根据权利要求2所述的一种支撑剂破碎率的测定装置,其特征在于,所述第二顶盖(303)中部开孔处设有滤网(302)。
4.根据权利要求2所述的一种支撑剂破碎率的测定装置,其特征在于,所述输送单元(4)、承压单元(3)和容器(1)上的每个开孔处均设有阀门(8)。
5.根据权利要求1所述的一种支撑剂破碎率的测定装置,其特征在于,所述第二柱筒(306)外侧套设有加热套(308)。
6.根据权利要求5所述的一种支撑剂破碎率的测定装置,其特征在于,还包括数据记录控制单元(7),所述数据记录控制单元(7)用于检测并控制第一泵注单元(6)、第二泵注单元(2)和加热套(308)。
7.根据权利要求1所述的一种支撑剂破碎率的测定装置,其特征在于,所述第一泵注单元(6)采用恒流泵,所述第二泵注单元(2)采用恒压泵。
CN202110691719.4A 2021-06-22 2021-06-22 一种支撑剂破碎率的测定装置 Active CN113340760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110691719.4A CN113340760B (zh) 2021-06-22 2021-06-22 一种支撑剂破碎率的测定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110691719.4A CN113340760B (zh) 2021-06-22 2021-06-22 一种支撑剂破碎率的测定装置

Publications (2)

Publication Number Publication Date
CN113340760A CN113340760A (zh) 2021-09-03
CN113340760B true CN113340760B (zh) 2023-06-13

Family

ID=77477527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110691719.4A Active CN113340760B (zh) 2021-06-22 2021-06-22 一种支撑剂破碎率的测定装置

Country Status (1)

Country Link
CN (1) CN113340760B (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140151049A1 (en) * 2012-11-30 2014-06-05 General Electric Company Apparatus and method of delivering a fluid using direct proppant injection
CN203432957U (zh) * 2013-07-04 2014-02-12 北京仁创科技集团有限公司 支撑剂在管道中破碎率的测定装置
CN103389358B (zh) * 2013-07-04 2016-02-03 北京仁创科技集团有限公司 支撑剂在管道中的摩阻性能评价装置
CN203702118U (zh) * 2014-03-03 2014-07-09 中国石油化工股份有限公司 一种模拟压裂裂缝内支撑剂沉降及铺置实验装置
CN103867178A (zh) * 2014-03-17 2014-06-18 中国石油化工股份有限公司 一种有效评价压裂液对支撑裂缝导流能力伤害的方法
CN203929572U (zh) * 2014-06-12 2014-11-05 北京艾迪博科油气技术有限公司 压裂液携带支撑剂能力测试实验装置
CN206074398U (zh) * 2016-10-14 2017-04-05 西南石油大学 一种高温条件下压裂液中支撑剂输送实验装置
CN107421811B (zh) * 2017-07-26 2023-09-26 中国石油天然气股份有限公司 一种压裂用支撑剂压力实验机及方法
CN107387075B (zh) * 2017-08-28 2023-04-07 河南理工大学 一种用于观测煤储层压裂过程中支撑剂运移装置
CN108641704A (zh) * 2018-04-23 2018-10-12 中国石油天然气集团有限公司 一种压裂支撑剂及其制备方法和应用
CN110873665A (zh) * 2018-08-29 2020-03-10 中国石油天然气股份有限公司 支撑剂性能测试装置和支撑剂性能测试系统
CN111553065B (zh) * 2020-04-22 2023-06-16 山东科技大学 一种模拟储层压裂裂隙内支撑剂输送与铺置的实验台及实验方法

Also Published As

Publication number Publication date
CN113340760A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN110219631B (zh) 一种模拟压裂井焖井返排性能测试装置与方法
CN107044273B (zh) 防砂井筒堵塞-解堵一体化评价实验模拟装置及方法
CN103195417B (zh) 一种模拟水平井限流分段压裂的实验方法
CN112903961B (zh) 一种模拟井下钻井液循环形成泥饼的装置的使用方法
CN110965980B (zh) 一种可获取支撑剂粒径分布的支撑剂输送实验装置及方法
CN108979630B (zh) 应变片式压力测试致密油渗吸实验装置
CN108240185B (zh) 固井冲洗效率的评价装置和方法
CN105804738B (zh) 一种泥页岩井壁稳定及完整性可视化评价装置
CN109339766A (zh) 充气钻井动态循环模拟综合实验系统
CN111272637B (zh) 一种压裂充填防砂性能测试系统及其测试方法与评价方法
Ahmad Experimental investigation of proppant transport and behavior in horizontal wellbores using low viscosity fluids
CN113340760B (zh) 一种支撑剂破碎率的测定装置
CN115949377A (zh) 一种井下地层多功能防砂性能评价系统及方法
CN209129602U (zh) 水平井水平段动态循环模拟实验装置
CN107860694A (zh) 测量预交联凝胶颗粒在岩石微观孔喉中运移规律的方法
CN113216924B (zh) 一种支撑剂破碎率的测定方法
CA2939989C (en) Column flow testing
Ma et al. Experimental investigation of the plugging mechanisms of non-consolidated prepacked gravel screens
CN109025939B (zh) 超声波致密油渗吸实验装置
CN115012901B (zh) 一种支撑剂高效铺置多级纤维防砂实验方法
CN107831052A (zh) 一种物理模拟实验用的特制大直径填砂模型装置及方法
CN115060757A (zh) 一种页岩压裂裂缝与基质内流体饱和度在线监测方法
CN114961564A (zh) 井底交变流场发生工具结构优化室内实验装置及实验方法
Loehken et al. Determination of the perforation hole erosion characteristics on single and dual casing for hydraulic fracturing, in a laboratory test setup under realistic downhole conditions
CN209704542U (zh) 一种分段压裂装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant