CN113338793B - 一种基于4d打印技术的钻孔劈裂器及其制备方法 - Google Patents

一种基于4d打印技术的钻孔劈裂器及其制备方法 Download PDF

Info

Publication number
CN113338793B
CN113338793B CN202110562654.3A CN202110562654A CN113338793B CN 113338793 B CN113338793 B CN 113338793B CN 202110562654 A CN202110562654 A CN 202110562654A CN 113338793 B CN113338793 B CN 113338793B
Authority
CN
China
Prior art keywords
alloy
drill rod
alloy powder
drilling
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110562654.3A
Other languages
English (en)
Other versions
CN113338793A (zh
Inventor
周燕
甘杰
李霏
文世峰
蔡志娟
马国财
段隆臣
史玉升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Beijing Institute of Electronic System Engineering
Original Assignee
China University of Geosciences
Beijing Institute of Electronic System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences, Beijing Institute of Electronic System Engineering filed Critical China University of Geosciences
Priority to CN202110562654.3A priority Critical patent/CN113338793B/zh
Publication of CN113338793A publication Critical patent/CN113338793A/zh
Application granted granted Critical
Publication of CN113338793B publication Critical patent/CN113338793B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Soil Sciences (AREA)
  • Earth Drilling (AREA)

Abstract

本发明公开一种基于4D打印技术的钻孔劈裂器及其制备方法,其中,基于4D打印技术的钻孔劈裂器包括钻杆和金刚石钻头,金刚石钻头设置在钻杆前端,钻杆中设有沿轴向贯穿的液体流道,液体流道供冷却介质流通至金刚石钻头底部,还包括若干劈裂单元,劈裂单元包括推力弹簧和电热丝,推力弹簧采用形状记忆合金制备,推力弹簧中设有螺旋通道,电热丝设置在螺旋通道内,钻杆侧面上设有数量与劈裂单元一致的圆柱销孔,每一劈裂单元的推力弹簧对应设置在每一圆柱销孔内,每一推力弹簧中所设电热丝的导线均外接电源。本发明将岩石钻进机构与岩石劈裂机构进行了有机结合,在不更换仪器的情况下,能够对钻孔后的岩石及时开展劈裂作业,更加高效便捷。

Description

一种基于4D打印技术的钻孔劈裂器及其制备方法
技术领域
本发明涉及增材制造、先进制造与智能机械技术领域,尤其涉及一种基于4D打印技术的钻孔劈裂器及其制备方法。
背景技术
在月球、火星及近地行星进行受控地质挖掘时,对某些待探索的区域,如大型岩石或坚硬陨石坑,由于缺乏引力、岩石硬度大、机载工具提取样品的能力不足等问题,造成取样困难。岩石的破碎与劈裂是地球上地质作业常见的任务,作业方法包括动态爆破、水力压裂、化学剂及液压楔等。动态碎岩受制于设备沉重、搬运成本高等问题,碎岩过程中产生的灰尘、噪音、振动等将干扰航天器关键部件运转(传感器、探测器及摄相机等)。使用静态剂或水力压裂难以保证未知岩石的原有成分、结构属性不发生变化。因此,安全静态、经济环保的岩石破裂方式亟待开发。
发明内容
本发明的目的在于针对已有的技术现状,提供一种基于4D打印技术的钻孔劈裂器及其制备方法。
为达到上述目的,本发明采用如下技术方案:
一种基于4D打印技术的钻孔劈裂器,包括钻杆和金刚石钻头,金刚石钻头设置在钻杆前端,钻杆中设有沿轴向贯穿的液体流道,液体流道供冷却介质流通至金刚石钻头底部,还包括若干劈裂单元,劈裂单元包括推力弹簧和电热丝,推力弹簧采用形状记忆合金制备,推力弹簧中设有螺旋通道,电热丝设置在螺旋通道内,钻杆侧面上设有数量与劈裂单元一致的圆柱销孔,每一劈裂单元的推力弹簧对应设置在每一圆柱销孔内,每一推力弹簧中所设电热丝的导线均外接电源。
进一步的,所述钻杆中设有沿其末端向下延伸的布线通道,每一推力弹簧中所设电热丝的导线均通过布线通道外接电源。
进一步的,所述圆柱销孔在钻杆侧面上沿其径向向内延伸,圆柱销孔在钻杆轴向上的投影重合且等间距分布。
进一步的,所述圆柱销孔的数量为3-5个。
进一步的,所述钻杆采用钛合金制备。
进一步的,所述钻杆采用TC4合金或TiAl合金制备。
进一步的,所述推力弹簧采用Au-Cd合金、Ag-Cd合金、Cu-Zn合金、Cu-Sn合金、NiAl合金、Fe-Pt合金、Ti-Ni合金、Ti-Ni-Pd合金、Ti-Nb合金、U-Nb合金和Fe-Mn-Si合金中的一种制备。
一种基于4D打印技术的钻孔劈裂器的制备方法,包括以下步骤:
S1、利用三维建模软件对钻杆进行建模,采用4D打印设备将TC4合金粉末或TiAl合金粉末按钻杆的三维数字模型打印成型,取出后进行固溶时效处理;
S2、利用三维建模软件对推力弹簧进行建模,采用4D打印设备将Au-Cd合金粉末、Ag-Cd合金粉末、Cu-Zn合金粉末、Cu-Sn合金粉末、NiAl合金粉末、Fe-Pt合金粉末、Ti-Ni合金粉末、Ti-Ni-Pd合金粉末、Ti-Nb合金粉末、U-Nb合金粉末和Fe-Mn-Si合金粉末中的一种按推力弹簧的三维数字模型打印成型;
S3、将热处理后的钻杆与金刚石钻头进行装配;
S4、将电热丝装配至推力弹簧中的螺旋通道内,随后将每一推力弹簧分别置于钻杆上的每一圆柱销孔内,并将每一推力弹簧中所设电热丝的导线通过钻杆中的布线通道与外部电源连接。
本发明的有益效果为:
与现有技术相比,本发明的技术方案具有下列有益效果:本发明将岩石钻进机构与岩石劈裂机构进行了有机结合,在不更换仪器的情况下,能够对钻孔后的岩石及时开展劈裂作业,更加高效便捷;本发明采用4D打印先进制造技术,克服了传统加工方法难以加工具有复杂内部结构钻杆的挑战,并采用智能材料增材制造成型的4D打印技术制备同样具有复杂内部结构的推力弹簧,在制备方式上更加方便。
附图说明
附图1为本发明钻孔劈裂器的结构示意图;
附图2为本发明推力弹簧的结构示意图(变形前);
附图3为本发明推力弹簧的结构示意图(变形后)。
标注说明:1、导线,2、液体流道,3、金刚石钻头,4、布线通道,5、圆柱销孔,6、推力弹簧,7、钻杆。
具体实施方式
下面结合附图对本发明作进一步说明。
实施例1:
请参阅图1-3所示,一种基于4D打印技术的钻孔劈裂器,包括钻杆7和金刚石钻头3,金刚石钻头3选用全面钻进钻头,金刚石钻头3设置在钻杆7前端,钻杆7中设有沿轴向贯穿的液体流道2,液体流道2供冷却介质流通至金刚石钻头3底部。4D打印技术指的是激光选区熔化技术。
上述技术方案中,还包括若干劈裂单元,劈裂单元包括推力弹簧6和电热丝(图中未示出),推力弹簧6采用形状记忆合金制备,推力弹簧6中设有螺旋通道8,电热丝设置在螺旋通道8内。
其中,所述推力弹簧6采用Au-Cd合金、Ag-Cd合金、Cu-Zn合金、Cu-Sn合金、NiAl合金、Fe-Pt合金、Ti-Ni合金、Ti-Ni-Pd合金、Ti-Nb合金、U-Nb合金和Fe-Mn-Si合金中的一种制备。
上述技术方案中,钻杆7侧面上设有数量与劈裂单元一致的圆柱销孔5,每一劈裂单元的推力弹簧6对应设置在每一圆柱销孔5内,每一推力弹簧6中所设电热丝的导线1均外接电源。
优选的是,所述钻杆7中设有沿其末端向下延伸的布线通道4,每一推力弹簧6中所设电热丝的导线1均通过布线通道4外接电源。
其中,所述圆柱销孔5在钻杆7侧面上沿其径向向内延伸,圆柱销孔5在钻杆7轴向上的投影重合且等间距分布。具体的,所述圆柱销孔5的数量为3-5个。
其中,所述钻杆7采用钛合金制备。更进一步的,所述钻杆7采用TC4合金或TiAl合金制备。
该钻孔劈裂器的工作过程如下:
当金刚石钻头3在岩石内部钻出钻孔后,停止钻进;打开外部电源给电热丝通电,电热丝将热传导给采用形状记忆合金制备的推力弹簧6;原本处于收缩状态的推力弹簧6在热驱动下沿着钻孔径向伸展;当接触到孔壁时,由于圆柱销孔5端部与孔壁之间的阻碍,推力弹簧6继续伸展将产生较大的推力,当推力达到岩石的抗拉强度(岩石抗拉强度低)时,岩石便被劈裂开来。
该钻孔劈裂器将岩石钻进机构与岩石劈裂机构进行了有机结合,在不更换仪器的情况下,能够对钻孔后的岩石及时开展劈裂作业,更加高效便捷,可以作为未来航天器在外太空开展地质勘探任务的候选仪器包。
具体的,针对岩石断裂力学的特点,提出利用形状记忆合金在变形回复时产生的巨大回复力进行岩石破碎。形状记忆合金特有的热弹性马氏体相变使其成为静态碎岩应用的候选材料。在低温马氏体状态下对其进行赋形,通过施加高于一定阈值温度(奥氏体起始温度)的热来恢复诱导变形,当材料变形遇障碍无法恢复时,它可以在应用热时产生巨大的应力。例如,镍钛形状记忆合金在热刺激下能输出近1.5GPa的力,且在几十秒内迅速响应。这种高功率/重量比的特性使形状记忆合金适用于大的力应用,如静态岩石破碎。
实施例2:
一种基于4D打印技术的钻孔劈裂器的制备方法,包括以下步骤:
S1、利用三维建模软件对钻杆7进行建模,采用4D打印设备将TC4合金粉末或TiAl合金粉末按钻杆7的三维数字模型打印成型,取出后进行固溶时效处理;
S2、利用三维建模软件对推力弹簧6进行建模,采用4D打印设备将Au-Cd合金粉末、Ag-Cd合金粉末、Cu-Zn合金粉末、Cu-Sn合金粉末、NiAl合金粉末、Fe-Pt合金粉末、Ti-Ni合金粉末、Ti-Ni-Pd合金粉末、Ti-Nb合金粉末、U-Nb合金粉末和Fe-Mn-Si合金粉末中的一种按推力弹簧6的三维数字模型打印成型;
S3、将热处理后的钻杆7与金刚石钻头3进行装配;
S4、将电热丝装配至推力弹簧6中的螺旋通道内,随后将每一推力弹簧6分别置于钻杆7上的每一圆柱销孔5内,并将每一推力弹簧6中所设电热丝的导线1通过钻杆7中的布线通道4与外部电源连接。
其中,三维建模软件包括但不限于Magics、UG、solid works。
该钻孔劈裂器的制备方法采用4D打印先进制造技术,克服了传统加工方法难以加工具有复杂内部结构钻杆7的挑战,并采用智能材料增材制造成型的4D打印技术制备同样具有复杂内部结构的推力弹簧6,在制备方式上更加方便。
具体的,4D打印作为智能构件的材料-结构-功能一体化成形的新技术,结合了3D打印技术的特点,能将三维制造降为简单的二维制造,可成型任意具有复杂结构的零部件。将该技术用于岩石钻孔-劈裂一体化装置的制备,可使该装置通过轻量化的设计大幅减轻自身重量,更好地为未来航天器在外太空开展地质勘探任务提供便捷。
当然,以上仅为本发明较佳实施方式,并非以此限定本发明的使用范围,故,凡是在本发明原理上做等效改变均应包含在本发明的保护范围内。

Claims (3)

1.一种基于4D打印技术的钻孔劈裂器,包括钻杆和金刚石钻头,金刚石钻头设置在钻杆前端,钻杆中设有沿轴向贯穿的液体流道,液体流道供冷却介质流通至金刚石钻头底部,其特征在于:还包括若干劈裂单元,劈裂单元包括推力弹簧和电热丝,推力弹簧采用形状记忆合金制备,推力弹簧中设有螺旋通道,电热丝设置在螺旋通道内,钻杆侧面上设有数量与劈裂单元一致的圆柱销孔,每一劈裂单元的推力弹簧对应设置在每一圆柱销孔内,每一推力弹簧中所设电热丝的导线均外接电源;
所述钻杆中设有沿其末端向下延伸的布线通道,每一推力弹簧中所设电热丝的导线均通过布线通道外接电源;
所述钻杆采用钛合金制备,且制备钻杆的钛合金为TC4合金或TiAl合金;
所述推力弹簧采用Au-Cd合金、Ag-Cd合金、Cu-Zn合金、Cu-Sn合金、NiAl合金、Fe-Pt合金、Ti-Ni合金、Ti-Ni-Pd合金、Ti-Nb合金、U-Nb合金和Fe-Mn-Si合金中的一种制备;
基于4D打印技术的钻孔劈裂器的制备方法包括以下步骤:
S1、利用三维建模软件对钻杆进行建模,采用4D打印设备将TC4合金粉末或TiAl合金粉末按钻杆的三维数字模型打印成型,取出后进行固溶时效处理;
S2、利用三维建模软件对推力弹簧进行建模,采用4D打印设备将Au-Cd合金粉末、Ag-Cd合金粉末、Cu-Zn合金粉末、Cu-Sn合金粉末、NiAl合金粉末、Fe-Pt合金粉末、Ti-Ni合金粉末、Ti-Ni-Pd合金粉末、Ti-Nb合金粉末、U-Nb合金粉末和Fe-Mn-Si合金粉末中的一种按推力弹簧的三维数字模型打印成型;
S3、将热处理后的钻杆与金刚石钻头进行装配;
S4、将电热丝装配至推力弹簧中的螺旋通道内,随后将每一推力弹簧分别置于钻杆上的每一圆柱销孔内,并将每一推力弹簧中所设电热丝的导线通过钻杆中的布线通道与外部电源连接。
2.根据权利要求1所述的一种基于4D打印技术的钻孔劈裂器,其特征在于:所述圆柱销孔在钻杆侧面上沿其径向向内延伸,圆柱销孔在钻杆轴向上的投影重合且等间距分布。
3.根据权利要求2所述的一种基于4D打印技术的钻孔劈裂器,其特征在于:所述圆柱销孔的数量为3-5个。
CN202110562654.3A 2021-05-24 2021-05-24 一种基于4d打印技术的钻孔劈裂器及其制备方法 Active CN113338793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110562654.3A CN113338793B (zh) 2021-05-24 2021-05-24 一种基于4d打印技术的钻孔劈裂器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110562654.3A CN113338793B (zh) 2021-05-24 2021-05-24 一种基于4d打印技术的钻孔劈裂器及其制备方法

Publications (2)

Publication Number Publication Date
CN113338793A CN113338793A (zh) 2021-09-03
CN113338793B true CN113338793B (zh) 2023-04-28

Family

ID=77470978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110562654.3A Active CN113338793B (zh) 2021-05-24 2021-05-24 一种基于4d打印技术的钻孔劈裂器及其制备方法

Country Status (1)

Country Link
CN (1) CN113338793B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474410A (en) * 1981-03-31 1984-10-02 Kabushiki Kaisha Komatsu Seisakusho Power-driven, wedge-operated rock splitter
CN104625049A (zh) * 2015-01-30 2015-05-20 殷琴 一种基于三维打印技术制备神经阻滞穿刺针的方法及产品
US10662513B2 (en) * 2016-07-26 2020-05-26 Verkko Biomedical, LLC Dynamic, non-homogenous shape memory alloys
CN209277850U (zh) * 2018-11-01 2019-08-20 中国石油化工股份有限公司 一种滑套工具
CN110080762A (zh) * 2019-06-03 2019-08-02 张薇 一种岩石劈裂机的劈裂棒
CN111497220A (zh) * 2020-03-24 2020-08-07 深圳大学 形状记忆传感器及其制造方法
CN212130495U (zh) * 2020-04-10 2020-12-11 王洪积 岩石隧道四臂钻劈掘进台车

Also Published As

Publication number Publication date
CN113338793A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
Sadeghi et al. Robotic mechanism for soil penetration inspired by plant root
Melamed et al. Hydraulic hammer drilling technology: developments and capabilities
US20170175446A1 (en) Force Stacking Assembly for Use with a Subterranean Excavating System
Zacny et al. Challenges and methods of drilling on the Moon and Mars
Baria et al. Microseismic monitoring of the world’s largest potential HDR reservoir
CN113338793B (zh) 一种基于4d打印技术的钻孔劈裂器及其制备方法
CN104819858B (zh) 一种评价水平井井下工具可靠性的试验装置
Nagaoka et al. Experimental study on autonomous burrowing screw robot for subsurface exploration on the Moon
CN103174137A (zh) 具有二次驱动功能的主动式锚固机构
Ihnatov Analyzing mechanics of rock breaking under conditions of hydromechanical drilling
CN104453711B (zh) 一种自动垂直钻井工具
Bar-Cohen et al. Deep drilling and sampling via the wireline auto-gopher driven by piezoelectric percussive actuator and EM rotary motor
Rossi et al. Advanced drilling technologies to improve the economics of deep geo-resource utilization
Zacny et al. Mars2020 sample acquisition and caching technologies and architectures
Zhang et al. Inchworm drilling system for planetary subsurface exploration
Baria et al. Creation and mapping of 5000 m deep HDR/HFR reservoir to produce electricity
CN205743692U (zh) 一种矿山钻井机
Paulsen et al. Robotic drill systems for planetary exploration
Zhang et al. Drilling load model of an inchworm boring robot for lunar subsurface exploration
Timoney et al. The development of the european uitrasonic planetary core drill (UPCD)
Shen et al. Study on optimization of structure parameters to the penetrator
Chu et al. Mars 2020 sampling and caching subsystem environmental development testing and preliminary results
Danilov et al. Improvement of pipe pushing method
Hironaka et al. Lightweight low force rotary percussive coring tool for planetary applications
Beckwith Drilling in extreme environments: Space drilling and the oil and gas industry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant