CN113326565B - 一种三维编织物示迹线间距检测方法 - Google Patents
一种三维编织物示迹线间距检测方法 Download PDFInfo
- Publication number
- CN113326565B CN113326565B CN202110576133.3A CN202110576133A CN113326565B CN 113326565 B CN113326565 B CN 113326565B CN 202110576133 A CN202110576133 A CN 202110576133A CN 113326565 B CN113326565 B CN 113326565B
- Authority
- CN
- China
- Prior art keywords
- braided fabric
- dimensional braided
- dimensional
- learning model
- deep learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 59
- 238000001514 detection method Methods 0.000 title claims description 15
- 230000000007 visual effect Effects 0.000 claims abstract description 33
- 238000013136 deep learning model Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000012549 training Methods 0.000 claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000000523 sample Substances 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 3
- 230000006870 function Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000011176 pooling Methods 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 239000000284 extract Substances 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 12
- 239000010410 layer Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/64—Three-dimensional objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/698—Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/90—Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/12—Cloth
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/02—Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30124—Fabrics; Textile; Paper
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Geometry (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Signal Processing (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Quality & Reliability (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种三维编织物示迹线间距检测方法,包括:步骤(1)、利用视觉传感器搭建视觉数据采集系统;步骤(2)、视觉数据采集系统采集三维编织物示迹线的训练数据;步骤(3)、构建三维编织物示迹线识别深度学习模型,将步骤(2)采集到的训练数据送入深度学习模型进行训练,得到训练好的三维编织物示迹线识别深度学习模型;步骤(4)、根据步骤(3)得到的三维编织物示迹线识别深度学习模型定位批量图像中三维编织物示迹线的位置,测量相邻示迹线之间的距离,用以判断三维编织物是否达到生产标准,保证三维编织复合材料的安全性能。本发明自动化程度高,排除了人为因素的干扰,可准确地测量三维编织物示迹线之间的距离。
Description
技术领域
本发明属于飞机发动机检测技术领域,具体涉及一种三维编织物示迹线间距检测方法。
背景技术
三维编织物是复合材料与编织技术相结合的产物,因其采用在空间结构上整体性更好的编织物作为增强体,所以除了传统复合材料所具有的轻质、高强等特点,这种复合材料还表现出了抗冲击性能好、损伤容限高等优异的力学性能。特别是立体纺织复合材料,其增强体结构除了面内的经纱、纬纱外,还有沿厚度方向贯穿“层”与“层”的接结纱。得益于这一结构特点,这种立体编织复合材料克服了层合板复合材料层间性能差、易分层、开裂敏感等缺点。
此外,三维整体编织技术能按照最终复合材料构件的几何尺寸,编织出异型、变厚度、变截面的仿形织物作为增强体,这使得编织复合材料具有良好的近净成形能力,同时还降低了手工铺层产生的劳动成本,减少了二次加工量。基于上述各种优点,编织复合材料受到了越来越多的关注。目前复合材料三维编织物质量检测具有两大难题,一是三维编织物变形控制困难、树脂注射时间短,二是展平态三维编织物呈现出连续大变厚复杂曲面特征,正面和反面均有波纹状减纱痕迹线。三维编织物示迹线的间距测量决定了三维编织物的性能,进而决定复合材料产品的安全性能和使用期限。手工测量示迹线间距任务繁重,耗时长、效率低。另外由于人眼的有效工作时间以及识别精度有限,使用手工测量会额外引入很多人为测量误差。该方法难以确保三维编织物示迹线间距检测的高效性、准确性,为后续的三维编织物加工工作带来了不可控制因素,发动机质量也会受到一定程度的影响。使用智能化的图像处理方法用机器完成这一繁琐任务,提高间距检测精度,降低人眼负担,节省测量时间,是一种高效、智能、便捷的处理方式。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,提供一种三维编织物示迹线间距检测方法。
为实现上述技术目的,本发明采取的技术方案为:
一种三维编织物示迹线间距检测方法,包括:
步骤(1)、利用视觉传感器搭建视觉数据采集系统;
步骤(2)、视觉数据采集系统采集三维编织物示迹线的训练数据;
步骤(3)、构建三维编织物示迹线识别深度学习模型,将步骤(2)采集到的训练数据送入深度学习模型进行训练,得到训练好的三维编织物示迹线识别深度学习模型;
步骤(4)、根据步骤(3)得到的三维编织物示迹线识别深度学习模型定位批量图像中三维编织物示迹线的位置,测量相邻示迹线之间的距离。
为优化上述技术方案,采取的具体措施还包括:
上述的步骤(1)所述视觉数据采集系统中,同一运动平台上至少搭载2个视觉传感器,实现整个三维编织物生产区域全景视觉数据采集,所有视觉传感器观测视野覆盖360度环境信息且相邻视觉传感器的观测视野具有重叠区域。
上述的视觉数据采集系统还包括高清中长焦镜头、数据存储器和运算服务器;
所述高清中长焦镜头配合视觉传感器即监控相机完成数据采集、确定三维编织物示迹线位置;
所述数据存储器,用于存储与管理数据;
所述运算服务器,用于面向三维编织物示迹线提取所搭建的深度学习模型的运算。
上述的视觉传感器为BASLER acA2440-20gm工业相机。
上述的步骤(3)中构建三维编织物示迹线识别深度学习模型,具体包括:
步骤(a):输入一张三维编织物图像;
步骤(b):提取图像特征,作为一种CNN网络目标检测方法,首先使用一组基础的conv+relu+pooling层提取图像的feature maps,该feature maps将被后续RPN层和全连接层共享;
步骤(c):提取候选区域,RPN网络用于生成region proposals,该层通过Softmax判断anchors属于foreground或者background,再利用bounding box regression修正anchors获得精确的proposals;
步骤(d):区域归一化,RoI Pooling层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,得到固定维度的特征;
步骤(e):分类与回归,Classification利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得示迹线最终的精确位置;
步骤(f):计算间距,设计函数计算步骤(e)中定位到的三维编织物示迹线间距。
上述的步骤(f)中,若两三维编织物示迹线分别为Ax+By+C1=0和Ax+By+C2=0,则间离公式为:
本发明具有以下有益效果:
本发明可以自动化测量三维编织物材料中的示迹线间距,降低人为主观性的干扰,这对于提升三维编织物产品质量,保证产品生产的可靠性,提升三维编织物生产流程中的智能化测量水平,减少劳动人员强度会有很大贡献。
附图说明
图1是本发明方法流程图;
图2是视觉数据采集系统结构图;
图3是三维编织物示迹线间距检测实施例。
具体实施方式
以下结合附图对本发明的实施例作进一步详细描述。
参见图1,本发明的一种三维编织物示迹线间距检测方法,包括:
步骤(1)、利用视觉传感器搭建视觉数据采集系统;
实施例中,采用多视觉传感器协同的方式采集与分析数据。一种基于多视觉传感器协同的全景视觉方法,采用由搭载在同一运动平台上至少2个视觉传感器实现全景视觉数据采集,所有视觉传感器观测视野覆盖360度环境信息并要求相邻视觉传感器的观测视野具有一定的重叠区域;数据类型优选为各通用图片格式。
参见图2,所述视觉数据采集系统还包括高清中长焦镜头、数据存储器和运算服务器;
所述高清中长焦镜头配合视觉传感器即监控相机完成数据采集、确定三维编织物示迹线位置;
所述数据存储器,用于存储与管理数据;
所述运算服务器,用于面向三维编织物示迹线提取所搭建的深度学习模型的运算。
步骤(2)、进行数据采集:视觉数据采集系统采集三维编织物示迹线的训练数据;
步骤(3)、构建三维编织物示迹线识别深度学习模型,将步骤(2)采集到的训练数据送入深度学习模型进行训练,得到训练好的三维编织物示迹线识别深度学习模型;
步骤(4)、示迹线间距测量:根据步骤(3)得到的三维编织物示迹线识别深度学习模型定位批量图像中三维编织物示迹线的位置,测量相邻示迹线之间的距离。
实施例中,所述视觉传感器为BASLER acA2440-20gm工业相机。
步骤(3)中搭建深度学习模型的过程具体包括:
步骤(a):输入一张三维编织物图像;
步骤(b):提取图像特征,作为一种CNN网络目标检测方法,首先使用一组基础的conv+relu+pooling层提取图像的feature maps,该feature maps将被后续RPN层和全连接层共享;
步骤(c):提取候选区域,RPN网络用于生成region proposals,该层通过Softmax判断anchors属于foreground或者background,再利用bounding box regression修正anchors获得精确的proposals;
步骤(d):区域归一化,RoI Pooling层收集输入的feature maps和proposals,综合这些信息后提取proposal feature maps,得到固定维度的特征;
步骤(e):分类与回归,Classification利用proposal feature maps计算proposal的类别,同时再次bounding box regression获得示迹线最终的精确位置;
步骤(f):计算间距,设计函数计算步骤(e)中定位到的三维编织物示迹线间距,若两三维编织物示迹线分别为Ax+By+C1=0和Ax+By+C2=0,则间离公式为:
三维编织物的示迹线间是有固定标准的,达到标准则为一件合格的三维编织物。
图3是三维编织物示迹线间距检测实施例,如图3所示,在一对三维编织物示迹线上,将该条示迹线等距地划分成十小份,在每小份上根据直线距离公式计算一对线段之间的间距,测量数据如下表1所示。
表1三维编织物示迹线间距检测结果
综上所述,本发明可以自动化测量三维编织物材料中的示迹线间距,降低人为主观性的干扰,这对于提升三维编织物产品质量,保证产品生产的可靠性,提升三维编织物生产流程中的智能化测量水平,减少劳动人员强度会有很大贡献。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。
Claims (5)
1.一种三维编织物示迹线间距检测方法,其特征在于,包括:
步骤(1)、利用视觉传感器搭建视觉数据采集系统;
步骤(2)、视觉数据采集系统采集三维编织物示迹线的训练数据;
步骤(3)、构建三维编织物示迹线识别深度学习模型,将步骤(2)采集到的训练数据送入深度学习模型进行训练,得到训练好的三维编织物示迹线识别深度学习模型;
步骤(4)、根据步骤(3)得到的三维编织物示迹线识别深度学习模型定位批量图像中三维编织物示迹线的位置,测量相邻示迹线之间的距离;
所述步骤(3)中构建三维编织物示迹线识别深度学习模型,具体包括:
步骤(a):输入一张三维编织物图像;
步骤(b):提取图像特征,作为一种CNN网络目标检测方法,首先使用一组基础的conv+relu+pooling层提取图像的feature maps,该feature maps将被后续RPN层和全连接层共享;
步骤(c):提取候选区域,RPN网络用于生成region proposals,该层通过Softmax判断anchors属于foreground或者background,再利用bounding box regression修正anchors获得精确的proposals;
步骤(d):区域归一化,RoI Pooling层收集输入的feature maps和proposals,综合这些信息后提取proposalfeature maps,得到固定维度的特征;
步骤(e):分类与回归,Classification利用proposalfeature maps计算proposal的类别,同时再次bounding box regression获得示迹线最终的精确位置;
步骤(f):计算间距,设计函数计算步骤(e)中定位到的三维编织物示迹线间距。
2.根据权利要求1所述的一种三维编织物示迹线间距检测方法,其特征在于,步骤(1)所述视觉数据采集系统中,同一运动平台上至少搭载2个视觉传感器,实现整个三维编织物生产区域全景视觉数据采集,所有视觉传感器观测视野覆盖360度环境信息且相邻视觉传感器的观测视野具有重叠区域。
3.根据权利要求2所述的一种三维编织物示迹线间距检测方法,其特征在于,所述视觉数据采集系统还包括高清中长焦镜头、数据存储器和运算服务器;
所述高清中长焦镜头配合视觉传感器即监控相机完成数据采集、确定三维编织物示迹线位置;
所述数据存储器,用于存储与管理数据;
所述运算服务器,用于面向三维编织物示迹线提取所搭建的深度学习模型的运算。
4.根据权利要求1所述的一种三维编织物示迹线间距检测方法,其特征在于,所述视觉传感器为BASLER acA2440-20gm工业相机。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110576133.3A CN113326565B (zh) | 2021-05-26 | 2021-05-26 | 一种三维编织物示迹线间距检测方法 |
US17/701,753 US20220261983A1 (en) | 2021-05-26 | 2022-03-23 | Method for measuring distance between trace lines of three-dimensional braided material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110576133.3A CN113326565B (zh) | 2021-05-26 | 2021-05-26 | 一种三维编织物示迹线间距检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113326565A CN113326565A (zh) | 2021-08-31 |
CN113326565B true CN113326565B (zh) | 2022-11-22 |
Family
ID=77416824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110576133.3A Active CN113326565B (zh) | 2021-05-26 | 2021-05-26 | 一种三维编织物示迹线间距检测方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220261983A1 (zh) |
CN (1) | CN113326565B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110133639A (zh) * | 2019-04-08 | 2019-08-16 | 长安大学 | 一种传力杆施工质量检测方法 |
CN110321815A (zh) * | 2019-06-18 | 2019-10-11 | 中国计量大学 | 一种基于深度学习的道路裂缝识别方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018116128A1 (en) * | 2016-12-20 | 2018-06-28 | Novartis Ag | Systems and methods for wide field-of-view optical coherence tomography |
CN112102224A (zh) * | 2019-06-18 | 2020-12-18 | 浙江工业大学 | 一种基于深度卷积神经网络的布匹疵点识别方法 |
CN111932508B (zh) * | 2020-07-31 | 2023-10-10 | 山东大学 | 一种基于图像处理的钢筋尺寸测量方法及系统 |
CN112465752A (zh) * | 2020-11-16 | 2021-03-09 | 电子科技大学 | 一种基于改进的Faster R-CNN小目标检测方法 |
CN112815873B (zh) * | 2020-12-16 | 2022-07-12 | 南京玻璃纤维研究设计院有限公司 | 一种复杂曲面体的定位检测装置及检测方法 |
-
2021
- 2021-05-26 CN CN202110576133.3A patent/CN113326565B/zh active Active
-
2022
- 2022-03-23 US US17/701,753 patent/US20220261983A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110133639A (zh) * | 2019-04-08 | 2019-08-16 | 长安大学 | 一种传力杆施工质量检测方法 |
CN110321815A (zh) * | 2019-06-18 | 2019-10-11 | 中国计量大学 | 一种基于深度学习的道路裂缝识别方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113326565A (zh) | 2021-08-31 |
US20220261983A1 (en) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102410811B (zh) | 一种弯管参数的测量方法和系统 | |
CN103529051B (zh) | 一种机织纺织品瑕疵自动在线检测方法 | |
CN102135417B (zh) | 一种全自动三维特征提取方法 | |
CN103033253B (zh) | 一种塔式起重机结构的非接触振动检测方法 | |
CN105157609A (zh) | 基于两组相机的大型零件全局形貌测量方法 | |
CN103234969A (zh) | 一种基于机器视觉的织物纬密度测量新方法 | |
CN103884289B (zh) | 基于双激光测距仪的航空行李尺寸和件数检查方法 | |
CN112132886A (zh) | 一种航空零件圆孔圆心快速定位及圆度检测方法 | |
CN102175692A (zh) | 织物坯布疵点快速检测系统及方法 | |
CN102704215A (zh) | 基于dst文件解析与机器视觉结合的绣布自动切割方法 | |
CN103745238B (zh) | 基于AdaBoost和主动形状模型的受电弓识别方法 | |
CN115993096A (zh) | 一种高层建筑变形测量方法 | |
CN110503638A (zh) | 螺旋胶质量在线检测方法 | |
Tang et al. | A novel 3D laser scanning defect detection and measurement approach for automated fibre placement | |
CN115619738A (zh) | 一种模组侧缝焊焊后检测方法 | |
CN107167172A (zh) | 一种总线式汽车数字仪表指针功能的在线监测方法 | |
CN106203476A (zh) | 一种基于最近邻分类与模糊算法的猪头尾轮廓识别方法 | |
CN113326565B (zh) | 一种三维编织物示迹线间距检测方法 | |
CN106123808B (zh) | 一种用于汽车后视镜镜面角度偏转测量的方法 | |
CN106548474A (zh) | 一种微结构表面检测方法 | |
CN115855018A (zh) | 一种基于点线综合特征的改进同步定位与建图方法 | |
CN114972948A (zh) | 一种基于神经检测网络的识别定位方法及系统 | |
CN109919028B (zh) | 一种基于织物组织结构的柔性坐标系建立及形状识别方法 | |
CN104713888B (zh) | 使用计算机检测织物疵点的方法 | |
CN101907449A (zh) | 螺旋桨桨叶宽度的自动测量新方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |