CN113325697B - Automatic control system - Google Patents
Automatic control system Download PDFInfo
- Publication number
- CN113325697B CN113325697B CN202110656812.1A CN202110656812A CN113325697B CN 113325697 B CN113325697 B CN 113325697B CN 202110656812 A CN202110656812 A CN 202110656812A CN 113325697 B CN113325697 B CN 113325697B
- Authority
- CN
- China
- Prior art keywords
- automatic control
- controlled object
- fractional
- order
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003860 storage Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 6
- 230000003044 adaptive effect Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 238000004590 computer program Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明提供了一种自动控制系统,所述系统包括接收模块、处理模块、输出模块及存储模块;其中,所述存储模块,用于存储被控对象模型及自动控制模型;所述接收模块,用于接收被控对象的实时数据,并将所述实时数据传输给所述处理模块;所述处理模块,用于接收所述实时数据,调用所述被控对象模型、所述自动控制模型,基于所述实时数据所述被控对象模型、所述自动控制模型输出目标控制信号;所述输出模块,用于将所述目标控制信号输出至被控对象。本发明所提出的自动控制系统利用了分数阶自耦PIλDμ控制器来输出更加优良的控制信号,能够显著提高使被控对象达到更为满意的控制效果。
The present invention provides an automatic control system, the system includes a receiving module, a processing module, an output module and a storage module; wherein, the storage module is used to store the controlled object model and the automatic control model; the receiving module, for receiving the real-time data of the controlled object, and transmitting the real-time data to the processing module; the processing module is used for receiving the real-time data, calling the controlled object model and the automatic control model, The controlled object model and the automatic control model output a target control signal based on the real-time data; the output module is configured to output the target control signal to the controlled object. The automatic control system proposed by the invention utilizes the fractional-order auto-coupling PI λ D μ controller to output a better control signal, which can significantly improve the controlled object to achieve a more satisfactory control effect.
Description
技术领域technical field
本发明涉及自动控制领域,具体而言,涉及一种自动控制系统。The invention relates to the field of automatic control, in particular to an automatic control system.
背景技术Background technique
随着科技的进步,工业生产中越来越多的用到了各种自动控制系统,其中,PID控制器因简单易调而被较多的使用。With the advancement of science and technology, more and more automatic control systems are used in industrial production. Among them, PID controllers are used more because of their simplicity and ease of adjustment.
同时,实际中存在的系统或多或少都受非整数阶次的影响,这些系统难以用传统整数阶次数学模型进行准确描述,所以,需要用分数阶模型才能得到较为准确的数学描述与满意的控制性能。分数阶PIλDμ控制器在国防、工业、航空、航天等领域得到了长足应用与发展,PIλDμ控制器相较于传统整数阶PID控制器增加了两个参数:积分阶次λ和微分阶次μ,使其具有更多机会对分数阶系统的动态性做出灵活与满意的调整。所以,针对分数阶系统,分数阶PIλDμ控制器相比于整数阶PID控制器,能够起到更好的控制效果。At the same time, the systems that exist in practice are more or less affected by non-integer orders. These systems are difficult to be accurately described by traditional integer order mathematical models. Therefore, fractional order models are needed to obtain a more accurate mathematical description and satisfaction. control performance. The fractional-order PI λ D μ controller has been widely used and developed in the fields of national defense, industry, aviation, and aerospace. Compared with the traditional integer-order PID controller, the PI λ D μ controller has two additional parameters: the integral order λ and differential order μ, so that it has more opportunities to make flexible and satisfactory adjustments to the dynamics of fractional-order systems. Therefore, for fractional-order systems, the fractional-order PI λ D μ controller can play a better control effect than the integer-order PID controller.
但现有的分数阶PIλDμ控制器整定方法得到的参数大多都是固定的常数或者是分段的常数,可见,同整数阶PID控制器的参数整定问题一样,分数阶PIλDμ控制器参数的选择依然是一个难题。However, most of the parameters obtained by the existing fractional-order PI λ D μ controller tuning methods are fixed constants or piecewise constants. It can be seen that the fractional-order PI λ D μ is the same as the parameter tuning problem of the integer-order PID controller. The choice of controller parameters is still a difficult problem.
发明内容SUMMARY OF THE INVENTION
为了解决上述背景技术中存在的技术问题,本发明提供了一种自动控制系统。In order to solve the technical problems existing in the above background technology, the present invention provides an automatic control system.
本发明提供了一种自动控制系统,所述系统包括接收模块、处理模块、输出模块及存储模块;其中,The present invention provides an automatic control system, the system includes a receiving module, a processing module, an output module and a storage module; wherein,
所述存储模块,用于存储被控对象模型及自动控制模型;The storage module is used to store the controlled object model and the automatic control model;
所述接收模块,用于接收被控对象的实时数据,并将所述实时数据传输给所述处理模块;The receiving module is used to receive the real-time data of the controlled object, and transmit the real-time data to the processing module;
所述处理模块,用于接收所述实时数据,调用所述被控对象模型、所述自动控制模型,基于所述实时数据所述被控对象模型、所述自动控制模型输出目标控制信号;The processing module is configured to receive the real-time data, call the controlled object model and the automatic control model, and output a target control signal based on the real-time data of the controlled object model and the automatic control model;
所述输出模块,用于将所述目标控制信号输出至被控对象。The output module is used for outputting the target control signal to the controlled object.
可选地,所述自动控制模型基于分数阶自耦PIλDμ控制器构建。Optionally, the automatic control model is constructed based on a fractional-order autocoupling PI λ D μ controller.
可选地,利用matlab中的s-function函数构建所述分数阶自耦PIλDμ控制器。Optionally, the fractional-order autocoupling PI λ D μ controller is constructed using the s-function function in matlab.
可选地,所述分数阶自耦PIλDμ控制器为:Optionally, the fractional-order autocoupling PI λ D μ controller is:
式中,kp、ki、kd为所述分数阶自耦PIλDμ控制器的可调控制参数;λ和μ分别是分数积分阶次和分数微分阶次。In the formula, k p , k i , and k d are the adjustable control parameters of the fractional-order auto-coupled PI λ D μ controller; λ and μ are the fractional integral order and fractional differential order, respectively.
可选地,所述可调控制参数kp、ki、kd采用如下式2)计算得出:Optionally, the adjustable control parameters k p , k i , and k d are calculated by using the following formula 2):
式中,zc为自适应速度因子。In the formula, z c is the adaptive speed factor.
可选地,所述自适应速度因子zc的计算公式为:Optionally, the calculation formula of the adaptive speed factor z c is:
式中,0<α<100,Tt是由动态过渡到稳态的过渡过程时间。In the formula, 0<α<100, T t is the transition time from dynamic to steady state.
可选地,如果被控对象属于快系统,在10<α<100范围内任意取值;如果被控对象属于慢系统,则在1<α≤10范围内任意取值。Optionally, if the controlled object belongs to the fast system, the value can be arbitrarily set within the range of 10<α<100; if the controlled object belongs to the slow system, the value can be arbitrarily set within the range of 1<α≤10.
可选地,所述过渡过程时间Tt基于被控对象的时间尺度特性确定。Optionally, the transition process time T t is determined based on time scale characteristics of the controlled object.
本发明的有益效果在于:The beneficial effects of the present invention are:
本发明所提出的自动控制系统,利用分数阶自耦PIλDμ控制器来构建用于实现良好自动控制目标的自动控制模型。其中,所述分数阶自耦PIλDμ控制器中的比例增益Kp、积分增益Ki、微分增益Kd三个参数是三种连续时变的函数,连续时变的参数具有“软”的特性,时变参数的分数阶PIλDμ控制器更能适应于具有柔性结构特征的分数阶控制系统(即被控对象),使之更有可能达到满意的控制效果。传统分数阶PIλDμ控制器是以误差和误差的微分及积分加权求和来形成控制信号,而本发明中的分数阶自耦PIλDμ控制器通过自适应速度因子zc将比例、积分和微分三个不同属性的物理环节紧密耦合在一起来形成控制信号,具有协同控制思想。The automatic control system proposed by the present invention utilizes a fractional-order autocoupling PI λ D μ controller to construct an automatic control model for realizing a good automatic control goal. Among them, the three parameters of proportional gain K p , integral gain K i , and differential gain K d in the fractional-order auto-coupling PI λ D μ controller are three kinds of continuously time-varying functions, and the continuously time-varying parameters have “soft” ” characteristics, the fractional-order PI λ D μ controller with time-varying parameters is more suitable for the fractional-order control system (that is, the controlled object) with flexible structural characteristics, making it more likely to achieve satisfactory control effects. The traditional fractional-order PI λ D μ controller forms the control signal by the weighted summation of the differential and integral of the error and the error, while the fractional-order auto-coupling PI λ D μ controller in the present invention adjusts the proportional The physical links of three different properties of , integration and differentiation are closely coupled to form control signals, which has the idea of cooperative control.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. It should be understood that the following drawings only show some embodiments of the present invention, and therefore do not It should be regarded as a limitation of the scope, and for those of ordinary skill in the art, other related drawings can also be obtained according to these drawings without any creative effort.
图1是本发明实施例公开的一种自动控制系统的结构示意图;1 is a schematic structural diagram of an automatic control system disclosed in an embodiment of the present invention;
图2是本发明实施例公开的分数阶自耦PIλDμ控制器的结构示意图;2 is a schematic structural diagram of a fractional-order auto-coupled PI λ D μ controller disclosed in an embodiment of the present invention;
图3是本发明实施例二公开的仿真程序的结构示意图;3 is a schematic structural diagram of a simulation program disclosed in
图4是本发明实施例二公开的常规整数阶PID控制器单位阶跃响应曲线图;4 is a unit step response curve diagram of a conventional integer-order PID controller disclosed in
图5本发明实施例二公开的分数阶自耦PIλDμ控制器的单位阶跃响应曲线图。FIG. 5 is a unit step response curve diagram of the fractional-order auto-coupling PIλDμ controller disclosed in the second embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Thus, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.
在本发明的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be noted that, if the terms "upper", "lower", "inner", "outer", etc. appear, the orientation or positional relationship indicated is based on the orientation or positional relationship shown in the drawings, or It is the orientation or positional relationship that the product of the invention is usually placed in use, only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation , so it should not be construed as a limitation of the present invention.
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, where the terms "first", "second" and the like appear, they are only used to differentiate the description, and should not be construed as indicating or implying relative importance.
需要说明的是,在不冲突的情况下,本发明的实施例中的特征可以相互结合。It should be noted that the features in the embodiments of the present invention may be combined with each other without conflict.
实施例一Example 1
请参阅图1,图1是本发明实施例公开的一种自动控制系统的结构示意图。如图1所示,本发明实施例的一种自动控制系统,所述系统包括接收模块、处理模块、输出模块及存储模块;其中,Please refer to FIG. 1. FIG. 1 is a schematic structural diagram of an automatic control system disclosed in an embodiment of the present invention. As shown in FIG. 1, an automatic control system according to an embodiment of the present invention includes a receiving module, a processing module, an output module and a storage module; wherein,
所述存储模块,用于存储被控对象模型及自动控制模型;The storage module is used to store the controlled object model and the automatic control model;
所述接收模块,用于接收被控对象的实时数据,并将所述实时数据传输给所述处理模块;The receiving module is used to receive the real-time data of the controlled object, and transmit the real-time data to the processing module;
所述处理模块,用于接收所述实时数据,调用所述被控对象模型、所述自动控制模型,基于所述实时数据所述被控对象模型、所述自动控制模型输出目标控制信号;The processing module is configured to receive the real-time data, call the controlled object model and the automatic control model, and output a target control signal based on the real-time data of the controlled object model and the automatic control model;
所述输出模块,用于将所述目标控制信号输出至被控对象。The output module is used for outputting the target control signal to the controlled object.
在本发明实施例中,本发明所提出的自动控制系统,利用分数阶自耦PIλDμ控制器来构建用于实现良好自动控制目标的自动控制模型。其中,分数阶自耦PIλDμ控制器中的比例增益Kp、积分增益Ki、微分增益Kd三个参数是三种连续时变的函数,连续时变的参数具有“软”的特性,时变参数的分数阶PIλDμ控制器更能适应于具有柔性结构特征的分数阶控制系统,使之更有可能达到满意的控制效果。In the embodiments of the present invention, the automatic control system proposed by the present invention utilizes a fractional-order autocoupling PI λ D μ controller to construct an automatic control model for achieving a good automatic control goal. Among them, the proportional gain K p , the integral gain K i , and the differential gain K d in the fractional-order auto-coupling PI λ D μ controller are three kinds of continuous time-varying functions, and the continuously time-varying parameters have "soft" The fractional-order PI λ D μ controller with time-varying parameters is more suitable for the fractional-order control system with flexible structural characteristics, making it more likely to achieve satisfactory control effects.
其中,被控对象可以是各种工业自动化系统,例如,汽车生产过程中使用的抓取、焊接、喷漆等工序的工业机器人,对应的实时数据可以是机器人的机械臂空间坐标位置、与预定坐标位置的偏差等等;还可以是电力部门的电网自动调度设备,对应的实时数据可以是电网自动调度设备的目标控制设备的工作状态、发电机的实时输出功率等等;也可以是冶炼厂的电弧炉自动控制设备,对应的实时数据可以是电弧炉炉温、实时电压等等。由于本发明的核心在于控制算法,所以,除上述场景外,还可以是其他任何系统,本发明对此不做限定。Among them, the controlled object can be various industrial automation systems, for example, industrial robots used in the production process of automobiles such as grasping, welding, painting and other processes, and the corresponding real-time data can be the spatial coordinate position of the robot arm, and the predetermined coordinates. Position deviation, etc.; it can also be the power grid automatic dispatching equipment in the power sector, and the corresponding real-time data can be the working status of the target control equipment of the power grid automatic dispatching equipment, the real-time output power of the generator, etc.; it can also be the smelter’s Electric arc furnace automatic control equipment, the corresponding real-time data can be electric arc furnace temperature, real-time voltage and so on. Since the core of the present invention lies in the control algorithm, in addition to the above scenario, any other system may be used, which is not limited in the present invention.
可选地,所述自动控制模型基于分数阶自耦PIλDμ控制器构建。Optionally, the automatic control model is constructed based on a fractional-order autocoupling PI λ D μ controller.
可选地,利用matlab中的s-function函数构建所述分数阶自耦PIλDμ控制器。Optionally, the fractional-order autocoupling PI λ D μ controller is constructed using the s-function function in matlab.
其中,对于一些比较小型化的自动系统来说,可以基于matlab平台进行自动控制模型的构建,而对于工业自动化系统来说,则可以选用更为可靠、专业的编程平台,比如VAL语言、AL语言、SLIM语言、RAPID语言、AML语言KAREL语言等。Among them, for some relatively miniaturized automatic systems, the automatic control model can be constructed based on the matlab platform, while for industrial automation systems, more reliable and professional programming platforms can be selected, such as VAL language, AL language , SLIM language, RAPID language, AML language, KAREL language, etc.
可选地,所述分数阶自耦PIλDμ控制器为:Optionally, the fractional-order autocoupling PI λ D μ controller is:
式中,kp、ki、kd为所述分数阶自耦PIλDμ控制器的可调控制参数;λ和μ分别是分数积分阶次和分数微分阶次。In the formula, k p , k i , and k d are the adjustable control parameters of the fractional-order auto-coupled PI λ D μ controller; λ and μ are the fractional integral order and fractional differential order, respectively.
可选地,所述可调控制参数kp、ki、kd采用如下式2)计算得出:Optionally, the adjustable control parameters k p , k i , and k d are calculated by using the following formula 2):
式中,zc为自适应速度因子。In the formula, z c is the adaptive speed factor.
可选地,所述自适应速度因子zc的计算公式为:Optionally, the calculation formula of the adaptive speed factor z c is:
式中,0<α<100,Tt是由动态过渡到稳态的过渡过程时间。In the formula, 0<α<100, T t is the transition time from dynamic to steady state.
可选地,如果被控对象属于快系统,在10<α<100范围内任意取值;如果被控对象属于慢系统,则在1<α≤10范围内任意取值。Optionally, if the controlled object belongs to the fast system, the value can be arbitrarily set within the range of 10<α<100; if the controlled object belongs to the slow system, the value can be arbitrarily set within the range of 1<α≤10.
可选地,所述过渡过程时间Tt基于所述被控对象的时间尺度特性确定。Optionally, the transition process time T t is determined based on time scale characteristics of the controlled object.
在本发明实施例中,不同的系统,其调节程度是不同的,原则上期望时间调节时间越短,Tt可以取得越小。值得注意的是,α与Tt是存在内在影响的,响应速度过快势必会加剧系统的超调,而响应速度过慢,在一定程度上则会延长调节时间,具体方案的选取需权衡利弊,根据实际情况进行选择。In the embodiment of the present invention, different systems have different adjustment degrees. In principle, it is expected that the shorter the adjustment time, the smaller T t can be obtained. It is worth noting that α and T t have an inherent influence. Too fast response speed will inevitably aggravate the overshoot of the system, while too slow response speed will prolong the adjustment time to a certain extent. The selection of specific solutions needs to weigh the advantages and disadvantages. , choose according to the actual situation.
另外,本发明中的处理模块的功能可以基于计算机程序实现,而对于计算程序,可以进一步以电子设备、计算机存储介质的形式进行具体实现,而对于电子设备、计算机存储介质可以直接设置于处理模块内,也可以单独设置并由处理模块调用。In addition, the function of the processing module in the present invention can be implemented based on a computer program, and the calculation program can be further implemented in the form of an electronic device or a computer storage medium, and for the electronic device and the computer storage medium can be directly provided in the processing module can also be set separately and called by the processing module.
实施例二
另外,本发明还对自动控制模型进行了仿真实现,其中的仿真方法借助matlab/simulink平台实现。请参阅图3,图3是本发明实施例公开的结构图的结构示意图。在simulink中编写结构图程序,simulink结构图的编写采用公开的分数阶工具包,其中控制器部分借助s-function函数在matlab中编写m文件代码。In addition, the present invention also implements the simulation of the automatic control model, and the simulation method is realized by means of the matlab/simulink platform. Please refer to FIG. 3 , which is a schematic structural diagram of a structural diagram disclosed in an embodiment of the present invention. The structure diagram program is written in simulink, and the open fractional order toolkit is used to write the structure diagram of simulink, in which the controller part uses the s-function function to write the m file code in matlab.
s-function函数程序包括kp模块、ki模块、kd模块的建立过程,具体如下:The s-function function program includes the establishment process of the k p module, the k i module, and the k d module, as follows:
1.kp模块的建立1. Establishment of kp module
function[sys,x0,str,ts]=sfexample(t,x,u,flag,x_initial)function[sys,x0,str,ts]=sfexample(t,x,u,flag,x_initial)
%其中t代表时间,x代表状态向量,u代表输入向量,flag代表子程序调用标志,x_initial代表用户初始化。% Where t represents time, x represents state vector, u represents input vector, flag represents subroutine call flag, and x_initial represents user initialization.
global kp;%设置全局变量,保持kp是时变的。global kp; % set a global variable, keeping kp time-varying.
%判断flag,根据flag值执行相应程序。% Judge the flag and execute the corresponding program according to the flag value.
function[sys,x0,str,ts]=mdlInitializeSizes(x_initial)function[sys,x0,str,ts]=mdlInitializeSizes(x_initial)
sizes=simsizes;sizes = simsizes;
sizes.NumContStates =0;sizes.NumContStates = 0;
sizes.NumDiscStates =0;sizes.NumDiscStates = 0;
sizes.NumOutputs =1;sizes.NumOutputs = 1;
sizes.NumInputs =1;sizes.NumInputs = 1;
sizes.DirFeedthrough =1;sizes.DirFeedthrough = 1;
sizes.NumSampleTimes =1;sizes.NumSampleTimes = 1;
sys=simsizes(sizes);sys = simsizes(sizes);
x0=[];x0 = [];
str=[];str = [];
ts=[00];ts = [00];
simStateCompliance='UnknownSimState';simStateCompliance = 'UnknownSimState';
%初始化操作。根据模型要求:单输入单输出系统,无其它连续或离散变量,设置为连续系统。%Initialize operation. According to the model requirements: single-input single-output system, no other continuous or discrete variables, set as continuous system.
functionsys=mdlOutputs(t,x,u)functionsys=mdlOutputs(t,x,u)
zc=30/1*(1-0.9*exp(-1*t));zc=30/1*(1-0.9*exp(-1*t));
kp=zc*zc*3*0.2;kp=zc*zc*3*0.2;
sys=kp*u;sys=kp*u;
%根据公式(2)及公式(3)设置kp并将结果输出。% Set k p according to formula (2) and formula (3) and output the result.
function sys=mdlGetTimeOfNextVarHit(t,x,u)function sys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime=1;sampleTime = 1;
sys=t+sampleTime;sys=t+sampleTime;
%设置采样时间。% Set the sampling time.
2.ki模块的建立2. The establishment of the ki module
function[sys,x0,str,ts]=sfexample(t,x,u,flag,x_initial)function[sys,x0,str,ts]=sfexample(t,x,u,flag,x_initial)
%其中t代表时间,x代表状态向量,u代表输入向量,flag代表子程序调用标志,x_initial代表用户初始化。% Where t represents time, x represents state vector, u represents input vector, flag represents subroutine call flag, and x_initial represents user initialization.
global ki;%设置全局变量,保持ki是时变的。global ki; % set a global variable, keeping ki time-varying.
%判断flag值,根据flag值执行相应程序。% Determine the flag value and execute the corresponding program according to the flag value.
function[sys,x0,str,ts]=mdlInitializeSizes(x_initial)function[sys,x0,str,ts]=mdlInitializeSizes(x_initial)
sizes=simsizes;sizes = simsizes;
sizes.NumContStates =0;sizes.NumContStates = 0;
sizes.NumDiscStates =0;sizes.NumDiscStates = 0;
sizes.NumOutputs =1;sizes.NumOutputs = 1;
sizes.NumInputs =1;sizes.NumInputs = 1;
sizes.DirFeedthrough =1;sizes.DirFeedthrough = 1;
sizes.NumSampleTimes=1;sizes.NumSampleTimes = 1;
sys=simsizes(sizes);sys = simsizes(sizes);
x0=[];x0 = [];
str=[];str = [];
ts=[00];ts = [00];
simStateCompliance='UnknownSimState';simStateCompliance = 'UnknownSimState';
%初始化根据模型要求:一个输入量一个输出量,没有添加其他连续或离散变量,设置为连续系统。% Initialization is based on model requirements: one input and one output, no other continuous or discrete variables are added, and a continuous system is set.
functionsys=mdlOutputs(t,x,u)functionsys=mdlOutputs(t,x,u)
zc=30/1*(1-0.9*exp(-1*t));zc=30/1*(1-0.9*exp(-1*t));
ki=zc*zc*zc;ki=zc*zc*zc;
sys=ki*u;sys=ki*u;
%根据公式(2)及公式(3)设置ki并将结果输出。% Set k i according to formula (2) and formula (3) and output the result.
functionsys=mdlGetTimeOfNextVarHit(t,x,u)functionsys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime=1;sampleTime = 1;
sys=t+sampleTime;sys=t+sampleTime;
%设置采样时间。% Set the sampling time.
3.kd模块的建立3. Establishment of kd module
function[sys,x0,str,ts]=sfexample(t,x,u,flag,x_initial)function[sys,x0,str,ts]=sfexample(t,x,u,flag,x_initial)
%其中t代表时间,x代表状态向量,u代表输入向量,flag代表子程序调用标志,x_initial代表用户初始化。% Where t represents time, x represents state vector, u represents input vector, flag represents subroutine call flag, and x_initial represents user initialization.
global kd;%设置全局变量,保持kd是时变的。global kd; % set a global variable, keeping kd time-varying.
%判断flag,根据flag值执行相应程序。% Judge the flag and execute the corresponding program according to the flag value.
function[sys,x0,str,ts]=mdlInitializeSizes(x_initial)function[sys,x0,str,ts]=mdlInitializeSizes(x_initial)
sizes=simsizes;sizes = simsizes;
sizes.NumContStates =0;sizes.NumContStates = 0;
sizes.NumDiscStates =0;sizes.NumDiscStates = 0;
sizes.NumOutputs =1;sizes.NumOutputs = 1;
sizes.NumInputs =1;sizes.NumInputs = 1;
sizes.DirFeedthrough =1;sizes.DirFeedthrough = 1;
sizes.NumSampleTimes =1;sizes.NumSampleTimes = 1;
sys=simsizes(sizes);sys = simsizes(sizes);
x0=[];x0 = [];
str=[];str = [];
ts=[0 0];ts = [0 0];
simStateCompliance='UnknownSimState';simStateCompliance = 'UnknownSimState';
%初始化根据模型要求:一个输入量一个输出量,没有添加其他连续或离散变量,设置为连续系统。% Initialization is based on model requirements: one input and one output, no other continuous or discrete variables are added, and a continuous system is set.
functionsys=mdlOutputs(t,x,u)functionsys=mdlOutputs(t,x,u)
zc=30/1*(1-0.9*exp(-1*t));zc=30/1*(1-0.9*exp(-1*t));
kd=6*zc/1.1;kd=6*zc/1.1;
sys=kd*u;sys=kd*u;
%根据公式(2)及公式(3)设置kd并将结果输出。% Set k d according to formula (2) and formula (3) and output the result.
functionsys=mdlGetTimeOfNextVarHit(t,x,u)functionsys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime=1;sampleTime = 1;
sys=t+sampleTime;sys=t+sampleTime;
%设置采样时间。% Set the sampling time.
然后,将可视化的仿真结果与常规整数阶PID控制器(比如:进行了比较,参照图4-5所示的单位阶跃响应曲线图,从图中可以明显看出,本发明的分数阶自耦PIλDμ控制器可以获得更为良好的控制效果。Then, compare the visualized simulation results with a conventional integer-order PID controller (eg: After comparison, referring to the unit step response curves shown in Figures 4-5, it can be clearly seen from the figures that the fractional-order autocoupling PI λ D μ controller of the present invention can obtain better control effects.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical scope disclosed by the present invention can easily think of changes or substitutions. All should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110656812.1A CN113325697B (en) | 2021-06-11 | 2021-06-11 | Automatic control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110656812.1A CN113325697B (en) | 2021-06-11 | 2021-06-11 | Automatic control system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113325697A CN113325697A (en) | 2021-08-31 |
CN113325697B true CN113325697B (en) | 2022-10-14 |
Family
ID=77420695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110656812.1A Active CN113325697B (en) | 2021-06-11 | 2021-06-11 | Automatic control system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113325697B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102566426A (en) * | 2011-12-29 | 2012-07-11 | 大连交通大学 | A Controller Algorithm for Fractional Parameter Tuning of PIαDβ Controller |
CN103558755A (en) * | 2013-11-05 | 2014-02-05 | 四川理工学院 | Fractional order integration PID controller setting and self-setting method |
CN105425612A (en) * | 2015-11-10 | 2016-03-23 | 华中科技大学 | Preferred method of water turbine adjustment system control parameter |
CN106054590A (en) * | 2016-06-28 | 2016-10-26 | 云南大学 | Fractional order PID controller of five-degree-of-freedom robot |
CN108803311A (en) * | 2018-08-03 | 2018-11-13 | 佛山科学技术学院 | A kind of PID controller design method |
CN109164662A (en) * | 2018-10-23 | 2019-01-08 | 长春理工大学 | Light beam based on liquid crystal optical phased array deflects control method |
GB202018633D0 (en) * | 2019-12-16 | 2021-01-13 | Chongqing Aerospace Polytechnic | Optimal sychronization control method for coupled fractional-order chaotic electromechanical device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110703606A (en) * | 2019-10-30 | 2020-01-17 | 曾喆昭 | Novel self-coupling PID cooperative control theory method |
-
2021
- 2021-06-11 CN CN202110656812.1A patent/CN113325697B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102566426A (en) * | 2011-12-29 | 2012-07-11 | 大连交通大学 | A Controller Algorithm for Fractional Parameter Tuning of PIαDβ Controller |
CN103558755A (en) * | 2013-11-05 | 2014-02-05 | 四川理工学院 | Fractional order integration PID controller setting and self-setting method |
CN105425612A (en) * | 2015-11-10 | 2016-03-23 | 华中科技大学 | Preferred method of water turbine adjustment system control parameter |
CN106054590A (en) * | 2016-06-28 | 2016-10-26 | 云南大学 | Fractional order PID controller of five-degree-of-freedom robot |
CN108803311A (en) * | 2018-08-03 | 2018-11-13 | 佛山科学技术学院 | A kind of PID controller design method |
CN109164662A (en) * | 2018-10-23 | 2019-01-08 | 长春理工大学 | Light beam based on liquid crystal optical phased array deflects control method |
GB202018633D0 (en) * | 2019-12-16 | 2021-01-13 | Chongqing Aerospace Polytechnic | Optimal sychronization control method for coupled fractional-order chaotic electromechanical device |
Non-Patent Citations (2)
Title |
---|
Optimal fractional-order PID control for plasma shape, position, and current in Tokamaks;Meena E.Girgis 等;《FUSION ENGINEERING AND DESIGN》;20200131;第150卷;1-7 * |
交流伺服系统分数阶PID改进型自抗扰控制;王荣林 等;《中国机械工程》;20190813;第30卷(第16期);1989-1995 * |
Also Published As
Publication number | Publication date |
---|---|
CN113325697A (en) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Urrea et al. | Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot | |
Zhang et al. | Neural-network-based iterative learning control for multiple tasks | |
CN110134165B (en) | Reinforced learning method and system for environmental monitoring and control | |
JP2017102617A (en) | Correction device, control method of correction device, information processing program, and record medium | |
Iacca et al. | Memory-saving memetic computing for path-following mobile robots | |
CN114147710A (en) | Robot control method, device, robot and storage medium | |
CN111930010A (en) | LSTM network-based general MFA controller design method | |
CN113325697B (en) | Automatic control system | |
CN112292239B (en) | Method and device for computer-aided determination of control parameters for a suitable operating technical system | |
Trujillo et al. | Trajectory tracking control of a mobile robot using neural networks | |
CN104423321B (en) | For identifying the position control of low-frequency disturbance | |
US20230221686A1 (en) | Controlling a technical system by data-based control model | |
CN115600875B (en) | Environmental parameter calibration method and device, electronic equipment and storage medium | |
CN115958591B (en) | Robot end load mass identification method, computer equipment and storage medium | |
US12253835B2 (en) | Learning processing apparatus, control apparatus, learning processing method, control method, non-transitory computer-readable medium having learning program recorded thereon, and non-transitory computer-readable medium having control program recorded thereon | |
CN116755339A (en) | Self-adaptive non-backstepping control method and system for nonlinear strict feedback system | |
JP6870284B2 (en) | Plant control regulator | |
Mohammad et al. | An optimal nonlinear type-2 fuzzy FOPID control design based on integral performance criteria using FSM | |
CN118512232B (en) | A fuzzy control method and device for osteotomy of a joint replacement surgery robot | |
Kumar et al. | Design of input shapers using modal cost for multi-mode systems | |
Gül et al. | Adaptive internal model based formation control of a class of multi-agent systems | |
CN103064286A (en) | Control method of industrial process and equipment | |
CN119077752B (en) | A robot arm control method, device, electronic device and storage medium | |
CN114721268B (en) | Robust heuristic iterative learning control method for injection molding nozzle pressure | |
JPH03201008A (en) | Gain scheduling controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |