CN113315408A - 面向限域空间的高度集成复合式振动能量转化模块 - Google Patents
面向限域空间的高度集成复合式振动能量转化模块 Download PDFInfo
- Publication number
- CN113315408A CN113315408A CN202110560720.3A CN202110560720A CN113315408A CN 113315408 A CN113315408 A CN 113315408A CN 202110560720 A CN202110560720 A CN 202110560720A CN 113315408 A CN113315408 A CN 113315408A
- Authority
- CN
- China
- Prior art keywords
- power generation
- generation unit
- energy conversion
- piezoelectric chip
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 59
- 238000010248 power generation Methods 0.000 claims abstract description 144
- 238000004806 packaging method and process Methods 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 25
- 239000011889 copper foil Substances 0.000 claims description 25
- 230000006698 induction Effects 0.000 claims description 23
- 239000011888 foil Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 239000000919 ceramic Substances 0.000 claims description 16
- 229910000889 permalloy Inorganic materials 0.000 claims description 16
- 238000005498 polishing Methods 0.000 claims description 16
- 239000002131 composite material Substances 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims description 6
- 239000012188 paraffin wax Substances 0.000 claims description 6
- 229920006254 polymer film Polymers 0.000 claims description 6
- 239000004809 Teflon Substances 0.000 claims description 4
- 229920006362 Teflon® Polymers 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000010287 polarization Effects 0.000 claims description 4
- 229920000052 poly(p-xylylene) Polymers 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 4
- 238000004544 sputter deposition Methods 0.000 claims description 4
- 239000002390 adhesive tape Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 3
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000005389 magnetism Effects 0.000 claims description 3
- 238000007517 polishing process Methods 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 238000009434 installation Methods 0.000 abstract description 2
- 230000008901 benefit Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000003750 conditioning effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K35/00—Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
- H02K35/02—Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/18—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
- H02N2/186—Vibration harvesters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明一种面向限域空间的高度集成复合式振动能量转化模块,属于微能源系统的振动能量转化领域;包括封装外壳、封装底座、压电芯片发电单元、驻极体静电发电单元、电感线圈电磁发电单元和能量管理电路;所述封装外壳和封装底座构成封闭的盒体结构,压电芯片发电单元、驻极体静电发电单元和电感线圈电磁发电单元依次从上到下设置于盒体结构内;所述能量管理电路设置于封装外壳内,与三种发电单元连接,对三种发电单元的输出进行集成并输出直流电压。本发明提出一种面向限域空间的高度集成复合式振动能量转化模块,具有安装方便,尺寸较小,内部发电结构弹性较好,发电效率高等特点。本发明可广泛用于收集各频段振动频率,可用作传感器及传感网络供电。
Description
技术领域
本发明属于微能源系统的振动能量转化领域,具体涉及一种面向限域空间的高度集成复合式振动能量转化模块。
背景技术
随着无线传感网络在便携式电子产品等领域的广泛应用,其器件要求使用寿命相对较长且分布广泛,更换电池或采用电力线供电显得不切实际,这就对器件的电源供应提出了新的挑战。从环境中收集已存在的机械能量的方法逐渐成为自供电微机电系统的电源系统方案,这种方式也更有利于微机电系统的进一步微型化。可将自然环境广泛存在的如振动、风能等能量转换为可以带动传感器等工作的电能。
最近,压电,摩擦电、驻极体、电磁发电机已经被开发出来以解决以上问题。拥有易于制造,低成本,高转换效率和环保无化学处理等优点,能适合众多复杂环境,且能与无线电子器件融合,因此有着广泛的应用前景。
经过对现有技术的检索发现,V.R.Challa等人在“A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased poweroutput through damping matching”(Smart Mater.Struct.18(2009)095029(11pp))(中文题目:“通过阻尼匹配来增加功率输出的压电-电磁耦合能量收集技术”国际期刊:智能材料与结构)文章中报道了一种集成压电发电方式以及电磁发电方式的振动能量收集技术,将压电芯片夹持在固定装置上,压电芯片尖端下方装有一个圆柱形质量块,质量块处于下方电感线圈中心位置。当振动时可以实现压电发电方式以及电磁发电方式同时进行发电,相较于单一发电增强了性能输出。但是这集成方式发电功率仅能达到μW级别,没有对能量进行调理,能量转化效率比较低。
发明内容
要解决的技术问题:
为了避免现有技术的不足之处,本发明提出一种面向限域空间的高度集成复合式振动能量转化模块,本发明提出一种面向限域空间的高度集成复合式振动能量转化模块,集成了三种发电单元并且加入了能量调理工作电路。当模块受到外界振动时,压电芯片发电单元受到激励在器件内部进行上下运动,从而带动压电芯片悬臂梁进行上下往复运动,压电芯片发电单元,驻极体静电发电单元,电感线圈电磁发电单元会分别产生持续的输出电压,将机械振动能转换为电能。压电芯片发电单元基于压电效应,驻极体静电发电单元发电原理基于驻极体的薄膜摩擦/静电感应原理,电感线圈电磁发电单元基于电磁感应原理。
本发明的技术方案是:一种面向限域空间的高度集成复合式振动能量转化模块,其特征在于:包括封装外壳、封装底座、压电芯片发电单元、驻极体静电发电单元、电感线圈电磁发电单元和能量管理电路;所述封装外壳和封装底座构成封闭的盒体结构,压电芯片发电单元、驻极体静电发电单元和电感线圈电磁发电单元依次从上到下设置于盒体结构内;
所述压电芯片发电单元是以金属铜箔为基底,压电陶瓷层附于金属铜箔上表面作为压电发电层;所述金属铜箔为压电芯片悬臂梁,其一端通过凸块固定于封装底座的上方作为固定端,另一端作为自由端,构成悬臂梁结构;
所述驻极体发电单元是由两个片状结构的柔性电极构成,分别为固定电极和可动电极;所述可动电极为驻极体层,黏合于压电陶瓷层的上表面;所述固定电极为金属铜箔层,贴附于所述封装外壳顶部的内表面,与可动电极相对设置;
所述电感线圈电磁发电单元包括圆柱形永磁铁、电感线圈以及坡莫合金片;所述圆柱形永磁体固定于悬臂梁结构的自由端端头处下表面,同时作为压电芯片悬臂梁的质量块;所述电感线圈设置于封装底座的上方,与圆柱形永磁体同轴设置;所述坡莫合金片同轴设置于电感线圈下方,具有导磁作用;
所述能量转化模块受外部激励,使得悬臂结构上的圆柱形永磁铁振动,并导致压电芯片悬臂梁产生变形,进而影响压电芯片悬臂梁内部电荷分布使片内极化强度变化从而产生输出电压;同时引起驻极体静电发电单元的可动电极与固定电极之间的距离发生变化,引起两极板间的电容变化进而产生输出电压;还同时引起电感线圈电磁发电单元的圆柱形永磁体产生磁场使电感线圈切割磁感线,进而输出电压;所述坡莫合金薄片进行导磁提升单元能量转化效率;
所述能量管理电路设置于封装外壳内,与三种发电单元连接,对三种发电单元的输出进行集成并输出直流电压。
本发明的进一步技术方案是:所述封装外壳和封装底座的材料均为树脂材料,壁厚均为2mm;封装底座放置于封装外壳内,成包覆结构。
本发明的进一步技术方案是:所述压电芯片发电单元的加工工艺步骤为:
步骤一:将金属铜箔通过抛光工艺得到压电芯片悬臂梁;所述抛光工艺为:用石蜡将切好的金属箔片固定在洁净的玻璃片中央,加热台温度设置在150℃;固定时注意金属箔片与玻璃片之间的平整性,防止有气泡存在;待石蜡完全融化后将贴附有金属箔片的玻璃片置于平整的常温试验台上,在金属箔片上表面用质量块施加压力使得贴附紧密、均匀;利用双面胶将固定有金属箔片的玻璃片粘接在磨头上,在抛光盘表面涂敷W5研磨膏进行金属箔表面抛光;抛光盘速为150r/min,磨头摆动转速为80r/min,抛光时间为10分钟;
步骤二:压电陶瓷层依次经过抛光、电极溅射、机械减薄作为压电发电层;
步骤三:将步骤二得到的压电发电层与步骤一得到的压电芯片悬臂梁进行键合,构成厚度0.12mm的压电芯片发电单元。
本发明的进一步技术方案是:所述压电芯片悬臂梁的固定端与自由端的长度比例为1:4;所述压电芯片悬臂梁的振幅与压电芯片悬臂梁自由端长度的比例为1:3。
本发明的进一步技术方案是:所述固定电极和可动电极之间的距离小于或等于压电芯片悬臂梁的振幅。
本发明的进一步技术方案是:所述电感线圈与压电芯片悬臂梁之间的距离等于压电芯片的极限振幅减去圆柱形永磁体的高度尺寸,所述圆柱形磁体的高度尺寸小于电感线圈的轴向高度。
本发明的进一步技术方案是:所述驻极体发电单元中,可动电极为驻极体聚合物薄膜为派瑞林Parylene或特氟龙Teflon;依次采用化学气象沉积、旋涂、深涂、浇灌的方法进行表面覆盖到柔性衬底电极上,并且与压电芯片发电单元的压电发电层进行黏合;所述驻极体聚合物薄膜的荷电植入方法,采用电晕充电或电子束辐射方式完成驻极体偶极子预注入。
本发明的进一步技术方案是:所述电感线圈电磁发电单元中电感线圈的线径为50μm,高度2-4mm;坡莫合金薄片的厚度为1mm。
本发明的进一步技术方案是:所述能量管理电路采用LET3588-1整流稳压芯片,经过调理的能量输出为直流电压,在外接3kΩ负载时能量转化效率最大,输出能够达到3.63mW,达到mW量级。
一种面向限域空间的高度集成复合式振动能量转化模块作为可穿戴设备供电、海洋预警传感器供电的应用,能够采集人体运动和海洋波浪所产生的的振动能量。
有益效果
本发明的有益效果在于:本发明提出一种面向限域空间的高度集成复合式振动能量转化模块,具有安装方便,尺寸较小,内部发电结构弹性较好,发电效率高等特点。本发明可广泛用于收集各频段振动频率。本发明所述的发电模块的电能可用作传感器及传感网络供电。
与现有技术相比,本发明的面向限域空间的高度集成复合式振动能量转化模块具有以下几个优点:
1.本发明所述的面向限域空间的高度集成复合式振动能量转化模块的内部集成了三种发电方式分别为三种不同的能量采集单元,较单一的能量采集单元,如压电发电不易于微小型器件结合,电磁发电低阻抗,静电发电低电流等难点,实现不同能量采集单元间的优缺互补,使得三种发电方式能够积极参与贡献,实现高电压、高电流的特点,能量捕获效率高。在限域空间内将三种能量采集单元集成,通过工艺依托压电芯片单元悬臂梁制成多功能悬臂梁结构,静电能量采集单元的驻极体层和电磁能量采集单元的永磁体直接制作在多功能悬臂梁上。在低频下电磁积极参与贡献,在高频下静电,压电积极参与贡献,实现一个较宽的工作频域,实现在多振动频段均有较高的能量转化效率。
2.本发明所述的压电芯片发电单元的悬臂梁结构充当三个发电单元的主要的驱动部件,压电芯片悬臂梁在圆柱形永磁体的驱使下产生上下振动,压电层发生压电效应输出电信号;使压电层上键合的驻极体静电发电单元可动电极与顶端固定电极两极板间间距发生变化,导致电容变化输出电信号;同时黏合在芯片悬臂梁下部的圆柱形永磁体随之上下运动,产生磁场使电感线圈电磁发电单元利用电磁感应原理输出电信号。集成三种发电单元及能量管理电路的振动能量转化模块体积较小、结构易于制作、质量轻便,易于安装,克服了传统的大型波浪能发电装置安装困难,结构复杂的问题。压电芯片发电单元置于封装底座所设计的凸台上,压电芯片悬臂梁的固定端与自由端的长度比例为1:4,,静电驻极体单元的可动电极以及电感线圈发电单元的永磁体都与压电芯片悬臂梁紧密黏合,减少了这些单元的驱动结构。
3.本发明所述的面向限域空间的高度集成复合式振动能量转化模块可以采集各种频段的振动信号。可应用于多种领域,可穿戴设备的供电,海洋预警传感器供电,采集人体运动和海洋波浪等所产生的的振动能量。能量管理电路低功耗,高转换效率,对三种发电单元的各自输出信号特征进行管理,集成优势输出。
能量管理电路可以很好的对三种发电单元的输出进行集成,输出后端需电方所需要的直流电压,能量管理电路输入端电压值及电流值分别与输出端电压值及电流值需成3:1的关系。本文三种发电单元的输出经过能量管理电路的调理可达到3.3V的直流输出,可为市面上大多数传感器进行供电,并且我们在输出端接入3kΩ的负载时,经能量管理电路调理之后的输出能够达到最优,瞬时功率能够达到3.63mW,达到mW量级。能量转化效率为25%。
附图说明
图1为本发明一种面向限域空间的高度集成复合式振动能量转化模块示意图。
图2为面向限域空间的高度集成复合式振动能量转化模块内部压电芯片发电单元示意图。
图3为面向限域空间的高度集成复合式振动能量转化模块内部驻极体发电模块示意图。
图4为面向限域空间的高度集成复合式振动能量转化模块电感线圈电磁发电单元示意图。
图5为面向限域空间的高度集成复合式振动能量转化模块内部多功能悬臂梁制作过程示意图。
图6为面向限域空间的高度集成复合式振动能量转化模块压电芯片发电单元,驻极体静电发电单元以及电感线圈电磁发电单元发电原理示意图。
图7为面向限域空间的高度集成复合式振动能量转化模块能量管理电路输出图及能量管理电路示意图。
附图标记说明:1.封装外壳,2.封装底座,3.压电芯片发电单元,4.驻极体静电发电单元,5.电感线圈电磁发电单元,6.能量管理电路,7.悬臂梁结构,8.压电陶瓷层,9.圆柱形永磁体,10.可动电极驻极体层,11.固定电极层,12.电感线圈,13.坡莫合金薄片。
具体实施方式
下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明一种面向限域空间的高度集成复合式振动能量转化模块,包括封装外壳、封装底座、压电芯片发电单元、驻极体静电发电单元、电感线圈电磁发电单元和能量管理电路;所述封装外壳和封装底座构成封闭的盒体结构,压电芯片发电单元、驻极体静电发电单元和电感线圈电磁发电单元依次从上到下设置于盒体结构内;该能量转化模块的内部集成了三种发电方式分别为三种不同的能量采集单元,较单一的能量采集单元,如压电发电不易于微小型器件结合,电磁发电低阻抗,静电发电低电流等难点,实现不同能量采集单元间的优缺互补,使得三种发电方式能够积极参与贡献,实现高电压、高电流的特点,能量捕获效率高。
所述压电芯片发电单元是以金属铜箔为基底,压电陶瓷层附于金属铜箔上表面作为压电发电层;所述金属铜箔为压电芯片悬臂梁,其一端通过凸块固定于封装底座的上方作为固定端,另一端作为自由端,构成悬臂梁结构;
所述驻极体发电单元是由两个片状结构的柔性电极构成,分别为固定电极和可动电极;所述可动电极为驻极体层,黏合于压电陶瓷层的上表面;所述固定电极为金属铜箔层,贴附于所述封装外壳顶部的内表面,与可动电极相对设置;
所述电感线圈电磁发电单元包括圆柱形永磁铁、电感线圈以及坡莫合金片;所述圆柱形永磁体固定于悬臂梁结构的自由端端头处下表面,同时作为压电芯片悬臂梁的质量块;所述电感线圈设置于封装底座的上方,与圆柱形永磁体同轴设置;所述坡莫合金片同轴设置于电感线圈下方,具有导磁作用;
在限域空间内将三种能量采集单元集成,通过工艺依托压电芯片单元悬臂梁制成多功能悬臂梁结构,静电能量采集单元的驻极体层和电磁能量采集单元的永磁体直接制作在多功能悬臂梁上。在低频下电磁积极参与贡献,在高频下静电,压电积极参与贡献,实现一个较宽的工作频域,实现在多振动频段均有较高的能量转化效率。
所述能量转化模块受外部激励,使得悬臂结构上的圆柱形永磁铁振动,并导致压电芯片悬臂梁产生变形,进而影响压电芯片悬臂梁内部电荷分布使片内极化强度变化从而产生输出电压;同时引起驻极体静电发电单元的可动电极与固定电极之间的距离发生变化,引起两极板间的电容变化进而产生输出电压;还同时引起电感线圈电磁发电单元的圆柱形永磁体产生磁场使电感线圈切割磁感线,进而输出电压;所述坡莫合金薄片进行导磁提升单元能量转化效率;本文三种发电单元的输出经过能量管理电路的调理可达到3.3V的直流输出,可为市面上大多数传感器进行供电,并且我们在输出端接入3kΩ的负载时,经能量管理电路调理之后的输出能够达到最优,瞬时功率能够达到3.63mW,达到mW量级。能量转化效率为25%。
所述能量管理电路设置于封装外壳内,与三种发电单元连接,对三种发电单元的输出进行集成并输出直流电压。
优选的:所述封装外壳和封装底座的材料均为树脂材料,壁厚均为2mm;封装底座放置于封装外壳内,成包覆结构。
优选的:所述压电芯片发电单元的加工工艺步骤为:
步骤一:将金属铜箔通过抛光工艺得到压电芯片悬臂梁;所述抛光工艺为:用石蜡将切好的金属箔片固定在洁净的玻璃片中央,加热台温度设置在150℃;固定时注意金属箔片与玻璃片之间的平整性,防止有气泡存在;待石蜡完全融化后将贴附有金属箔片的玻璃片置于平整的常温试验台上,在金属箔片上表面用质量块施加压力使得贴附紧密、均匀;利用双面胶将固定有金属箔片的玻璃片粘接在磨头上,在抛光盘表面涂敷W5研磨膏进行金属箔表面抛光;抛光盘速为150r/min,磨头摆动转速为80r/min,抛光时间为10分钟;
步骤二:压电陶瓷层依次经过抛光、电极溅射、机械减薄作为压电发电层;
步骤三:将步骤二得到的压电发电层与步骤一得到的压电芯片悬臂梁进行键合,构成厚度0.12mm的压电芯片发电单元。
优选的:所述压电芯片悬臂梁的固定端与自由端的长度比例为1:4;所述压电芯片悬臂梁的振幅与压电芯片悬臂梁自由端长度的比例为1:3。静电驻极体单元的可动电极以及电感线圈发电单元的永磁体都与压电芯片悬臂梁紧密黏合,减少了这些单元的驱动结构。
优选的:所述固定电极和可动电极之间的距离小于或等于压电芯片悬臂梁的振幅。
优选的:所述电感线圈与压电芯片悬臂梁之间的距离等于压电芯片的极限振幅减去圆柱形永磁体的高度尺寸,所述圆柱形磁体的高度尺寸小于电感线圈的轴向高度。
优选的:所述驻极体发电单元中,可动电极为驻极体聚合物薄膜为派瑞林Parylene或特氟龙Teflon;依次采用化学气象沉积、旋涂、深涂、浇灌的方法进行表面覆盖到柔性衬底电极上,并且与压电芯片发电单元的压电发电层进行黏合;所述驻极体聚合物薄膜的荷电植入方法,采用电晕充电或电子束辐射方式完成驻极体偶极子预注入。
优选的:所述电感线圈电磁发电单元中电感线圈的线径为50μm,高度2-4mm;坡莫合金薄片的厚度为1mm。
优选的:所述能量管理电路采用LET3588-1整流稳压芯片,经过调理的能量输出为直流电压,在外接3kΩ负载时能量转化效率最大,输出能够达到3.63mW,达到mW量级。
一种面向限域空间的高度集成复合式振动能量转化模块作为可穿戴设备供电、海洋预警传感器供电的应用,能够采集人体运动和海洋波浪所产生的的振动能量。本发明所述的面向限域空间的高度集成复合式振动能量转化模块可以采集各种频段的振动信号。可应用于多种领域,采集人体运动和海洋波浪等所产生的的振动能量。能量管理电路低功耗,高转换效率,对三种发电单元的各自输出信号特征进行管理,集成优势输出。
实施例1
参照图1所示,本发明的面向限域空间的高度集成复合式振动能量转化模块由压电芯片发电单元3,驻极体静电发电单元4,电感线圈电磁发电单元5和能量管理电路6,在封装外壳1与封装底座2内集成而形成的封闭结构。
参照图2所示,压电芯片发电单元3包括矩形长条悬臂梁结构7和压电陶瓷层8以及悬臂梁尖端质量块圆柱形永磁体9,悬臂梁结构7是经过特殊工艺抛光的金属铜箔。参照图3所示,驻极体静电发电单元包括可动电极驻极体层10以及固定电极层11,其中驻极体层采用的驻极体薄膜是采用派瑞林Parylene或者特氟龙Teflon,采用化学气象沉积,旋涂,深涂,浇灌的方法进行表面覆盖到柔性衬底电极上,并且与悬臂梁结构7黏合。通过电晕极化为驻极体薄膜充上预置电荷,形成表面偏置电压。固定电极11为金属铜箔,附于封装外壳1内部顶端。
压电陶瓷层8经过特殊工艺抛光、电极溅射、机械减薄作为压电发电层,压电发电层与悬臂梁结构7进行键合形成厚度0.12mm的压电芯片发电单元。
所述的封装外壳1上开设方形孔,孔大小为2mm×2mm,,起到引线作用将单元输出端外置,并且起到降低单元内空气阻尼作用。
参照图4所示,所述的电感线圈电磁发电单元5,由参照图2中标注黏合在悬臂梁结构7上的圆柱形永磁体9,电感线圈12以及导磁作用的坡莫合金薄片13组成。
所述的圆柱形永磁体9为钕铁硼制作,半径为3mm。坡莫合金薄片13,半径为3.5mm,厚度为1mm。
具有上、下两个外部固定组件构成的一个面向限域空间的高度集成复合式振动能量转化模块。
如图1所示面向限域空间的高度集成复合式振动能量转化模块是由封装外壳1,封装底座2,压电芯片发电单元3,驻极体静电发电单元4,电感线圈电磁发电单元5,以及能量管理电路6组成。压电芯片发电单元置于封装底座所设计的凸台上。
如图2所示,所述压电芯片发电单元由金属铜箔作为悬臂梁结构7,压电陶瓷层8黏合在悬臂梁结构7上,悬臂梁结构7尖端放置有圆柱形永磁体9充当的质量块.
如图3所示,所述驻极体静电发电单元将可动电极驻极体层10黏合在压电陶瓷层8上方,固定电极金属铜箔层11附于封装外壳1内部顶端。
如图4所示,所述电感线圈电磁发电单元,圆柱形永磁体9黏合在悬臂梁结构7下方与电感线圈12成同心轴关系,电感线圈12中心位置位于压电芯片发电单元3悬臂梁尖端的正下方,在电感线圈12下方放置有具有导磁作用的坡莫合金薄片13用来提升性能。
如图5所示为本发明多功能悬臂梁的制作过程示意图,在限域空间内将三种能量采集单元集成,通过工艺依托压电芯片单元悬臂梁制成多功能悬臂梁结构,驻极体静电发电单元的驻极体层和电感线圈电磁发电单元的圆柱形永磁体直接制作在多功能悬臂梁上。
如图6所示为本发明的压电芯片发电单元,驻极体静电发电单元和电感线圈电磁发电单元的发电原理。当受到外部振动,质量块圆柱形永磁体9使得悬臂梁结构7在封装外壳1内产生上下运动,分别使得黏合于悬臂梁结构7的可动电极驻极体层10发生上下运动。压电陶瓷层8产生压电效应发电,可动电极驻极体层10与固定电极11间距变化产生静电感应发电,圆柱形永磁体9本身的上下运动使电感线圈12切割磁感线,由于电磁感应原理产生感应电压。
如图7所示为本发明的能量管理电路6以及电路工作效果。当受到外部振动,集成的三种发电单元开始工作,产生的电压将通过能量管理电路6,经过电路调理达到AC-DC的效果,并且实现一个可靠的能量转化效率。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (10)
1.一种面向限域空间的高度集成复合式振动能量转化模块,其特征在于:包括封装外壳、封装底座、压电芯片发电单元、驻极体静电发电单元、电感线圈电磁发电单元和能量管理电路;所述封装外壳和封装底座构成封闭的盒体结构,压电芯片发电单元、驻极体静电发电单元和电感线圈电磁发电单元依次从上到下设置于盒体结构内;
所述压电芯片发电单元是以金属铜箔为基底,压电陶瓷层附于金属铜箔上表面作为压电发电层;所述金属铜箔为压电芯片悬臂梁,其一端通过凸块固定于封装底座的上方作为固定端,另一端作为自由端,构成悬臂梁结构;
所述驻极体发电单元是由两个片状结构的柔性电极构成,分别为固定电极和可动电极;所述可动电极为驻极体层,黏合于压电陶瓷层的上表面;所述固定电极为金属铜箔层,贴附于所述封装外壳顶部的内表面,与可动电极相对设置;
所述电感线圈电磁发电单元包括圆柱形永磁铁、电感线圈以及坡莫合金片;所述圆柱形永磁体固定于悬臂梁结构的自由端端头处下表面,同时作为压电芯片悬臂梁的质量块;所述电感线圈设置于封装底座的上方,与圆柱形永磁体同轴设置;所述坡莫合金片同轴设置于电感线圈下方,具有导磁作用;
所述能量转化模块受外部激励,使得悬臂结构上的圆柱形永磁铁振动,并导致压电芯片悬臂梁产生变形,进而影响压电芯片悬臂梁内部电荷分布使片内极化强度变化从而产生输出电压;同时引起驻极体静电发电单元的可动电极与固定电极之间的距离发生变化,引起两极板间的电容变化进而产生输出电压;还同时引起电感线圈电磁发电单元的圆柱形永磁体产生磁场使电感线圈切割磁感线,进而输出电压;所述坡莫合金薄片进行导磁提升单元能量转化效率;
所述能量管理电路设置于封装外壳内,与三种发电单元连接,对三种发电单元的输出进行集成并输出直流电压。
2.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述封装外壳和封装底座的材料均为树脂材料,壁厚均为2mm;封装底座放置于封装外壳内,成包覆结构。
3.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述压电芯片发电单元的加工工艺步骤为:
步骤一:将金属铜箔通过抛光工艺得到压电芯片悬臂梁;所述抛光工艺为:用石蜡将切好的金属箔片固定在洁净的玻璃片中央,加热台温度设置在150℃;固定时注意金属箔片与玻璃片之间的平整性,防止有气泡存在;待石蜡完全融化后将贴附有金属箔片的玻璃片置于平整的常温试验台上,在金属箔片上表面用质量块施加压力使得贴附紧密、均匀;利用双面胶将固定有金属箔片的玻璃片粘接在磨头上,在抛光盘表面涂敷W5研磨膏进行金属箔表面抛光;抛光盘速为150r/min,磨头摆动转速为80r/min,抛光时间为10分钟;
步骤二:压电陶瓷层依次经过抛光、电极溅射、机械减薄作为压电发电层;
步骤三:将步骤二得到的压电发电层与步骤一得到的压电芯片悬臂梁进行键合,构成厚度0.12mm的压电芯片发电单元。
4.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述压电芯片悬臂梁的固定端与自由端的长度比例为1:4;所述压电芯片悬臂梁的振幅与压电芯片悬臂梁自由端长度的比例为1:3。
5.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述固定电极和可动电极之间的距离小于或等于压电芯片悬臂梁的振幅。
6.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述电感线圈与压电芯片悬臂梁之间的距离等于压电芯片的极限振幅减去圆柱形永磁体的高度尺寸,所述圆柱形磁体的高度尺寸小于电感线圈的轴向高度。
7.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述驻极体发电单元中,可动电极为驻极体聚合物薄膜为派瑞林Parylene或特氟龙Teflon;依次采用化学气象沉积、旋涂、深涂、浇灌的方法进行表面覆盖到柔性衬底电极上,并且与压电芯片发电单元的压电发电层进行黏合;所述驻极体聚合物薄膜的荷电植入方法,采用电晕充电或电子束辐射方式完成驻极体偶极子预注入。
8.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述电感线圈电磁发电单元中电感线圈的线径为50μm,高度2-4mm;坡莫合金薄片的厚度为1mm。
9.根据权利要求1所述面向限域空间的高度集成复合式振动能量转化模块,其特征在于:所述能量管理电路采用LET3588-1整流稳压芯片,经过调理的能量输出为直流电压,在外接3kΩ负载时能量转化效率最大,输出能够达到3.63mW,达到mW量级。
10.一种权利要求1-9任一项权利要求所述面向限域空间的高度集成复合式振动能量转化模块作为可穿戴设备供电、海洋预警传感器供电的应用,能够采集人体运动和海洋波浪所产生的的振动能量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110560720.3A CN113315408B (zh) | 2021-05-21 | 2021-05-21 | 面向限域空间的高度集成复合式振动能量转化模块 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110560720.3A CN113315408B (zh) | 2021-05-21 | 2021-05-21 | 面向限域空间的高度集成复合式振动能量转化模块 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113315408A true CN113315408A (zh) | 2021-08-27 |
CN113315408B CN113315408B (zh) | 2022-12-06 |
Family
ID=77374160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110560720.3A Active CN113315408B (zh) | 2021-05-21 | 2021-05-21 | 面向限域空间的高度集成复合式振动能量转化模块 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113315408B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114061827A (zh) * | 2021-11-11 | 2022-02-18 | 西人马联合测控(泉州)科技有限公司 | 一种传感器芯片及其制备方法 |
CN114337372A (zh) * | 2022-02-21 | 2022-04-12 | 上海声动微科技有限公司 | Mems能量采集器及其制作方法 |
CN114759825A (zh) * | 2022-04-21 | 2022-07-15 | 西南交通大学 | 一种压电-摩擦-电磁悬浮式复合能量采集及管理装置 |
CN116419137A (zh) * | 2023-04-14 | 2023-07-11 | 郑州大学 | 基于镂空微悬臂梁的光学传声器及传声系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090261689A1 (en) * | 2008-04-22 | 2009-10-22 | Honeywell International Inc. | System and method for providing a piezoelectric electromagnetic hybrid vibrating energy harvester |
US20110215590A1 (en) * | 2007-09-18 | 2011-09-08 | University Of Florida Research Foundation, Inc. | Dual-Mode Piezoelectric/Magnetic Vibrational Energy Harvester |
CN102185523A (zh) * | 2011-05-30 | 2011-09-14 | 华北电力大学 | 微型复合式振动发电机 |
CN109818522A (zh) * | 2019-03-25 | 2019-05-28 | 北京理工大学 | 静电-压电-电磁复合式俘能器 |
CN110289786A (zh) * | 2019-06-28 | 2019-09-27 | 北京理工大学 | 多模复合式上变频振动式环境能量采集器 |
CN110912371A (zh) * | 2019-11-15 | 2020-03-24 | 北京机械设备研究所 | 一种多机理复合式宽频带振动俘能器 |
CN112290769A (zh) * | 2020-10-19 | 2021-01-29 | 西北工业大学 | 一种集成三种发电方式的振动能量收集装置 |
-
2021
- 2021-05-21 CN CN202110560720.3A patent/CN113315408B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110215590A1 (en) * | 2007-09-18 | 2011-09-08 | University Of Florida Research Foundation, Inc. | Dual-Mode Piezoelectric/Magnetic Vibrational Energy Harvester |
US20090261689A1 (en) * | 2008-04-22 | 2009-10-22 | Honeywell International Inc. | System and method for providing a piezoelectric electromagnetic hybrid vibrating energy harvester |
CN102185523A (zh) * | 2011-05-30 | 2011-09-14 | 华北电力大学 | 微型复合式振动发电机 |
CN109818522A (zh) * | 2019-03-25 | 2019-05-28 | 北京理工大学 | 静电-压电-电磁复合式俘能器 |
CN110289786A (zh) * | 2019-06-28 | 2019-09-27 | 北京理工大学 | 多模复合式上变频振动式环境能量采集器 |
CN110912371A (zh) * | 2019-11-15 | 2020-03-24 | 北京机械设备研究所 | 一种多机理复合式宽频带振动俘能器 |
CN112290769A (zh) * | 2020-10-19 | 2021-01-29 | 西北工业大学 | 一种集成三种发电方式的振动能量收集装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114061827A (zh) * | 2021-11-11 | 2022-02-18 | 西人马联合测控(泉州)科技有限公司 | 一种传感器芯片及其制备方法 |
CN114337372A (zh) * | 2022-02-21 | 2022-04-12 | 上海声动微科技有限公司 | Mems能量采集器及其制作方法 |
CN114759825A (zh) * | 2022-04-21 | 2022-07-15 | 西南交通大学 | 一种压电-摩擦-电磁悬浮式复合能量采集及管理装置 |
CN116419137A (zh) * | 2023-04-14 | 2023-07-11 | 郑州大学 | 基于镂空微悬臂梁的光学传声器及传声系统 |
CN116419137B (zh) * | 2023-04-14 | 2024-06-04 | 郑州大学 | 基于镂空微悬臂梁的光学传声器及传声系统 |
Also Published As
Publication number | Publication date |
---|---|
CN113315408B (zh) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113315408B (zh) | 面向限域空间的高度集成复合式振动能量转化模块 | |
CN104836478A (zh) | 一种压电-电磁复合式低频宽带俘能器 | |
CN103107739B (zh) | 基于mems的动磁铁型电磁-压电复合式宽频俘能器 | |
CN106921310B (zh) | 一种电场能量收集装置 | |
Han et al. | A study on piezoelectric energy-harvesting wireless sensor networks deployed in a weak vibration environment | |
CN103346696A (zh) | 阵列式复合能量采集器 | |
CN112821708A (zh) | 双稳态电磁-压电混合振动能量收集器及自供电感知系统 | |
CN111371277B (zh) | 一种锥形腔体梁复合式振动能量收集器 | |
CN101710744A (zh) | 一种纳米发电机 | |
CN112290769A (zh) | 一种集成三种发电方式的振动能量收集装置 | |
CN109428515A (zh) | 一种微型复合振动发电机 | |
CN110572074A (zh) | 一种多功能磁铁诱导的复合式摩擦-压电-电磁俘能装置 | |
CN112072952A (zh) | 一种双谐振式低频延伸振动发电装置和方法 | |
CN113746376A (zh) | 一种压电与电磁复合能量环形俘获装置 | |
CN102510239A (zh) | 复合式振动发电机 | |
CN206370787U (zh) | 一种可自动调频压电电磁集成发电装置 | |
CN110323961A (zh) | 摩擦纳米发电机磁耦合谐振式无线能量传输与收集系统 | |
CN105811805A (zh) | 一种基于列车转向架轨道振动能收集的微型发电机 | |
CN111371278B (zh) | 一种电磁-压电复合式换能器 | |
CN113746377A (zh) | 磁致伸缩式旋转振动收集利用装置及其收集方法 | |
CN105634331A (zh) | 一种磁电压电组合发电机 | |
CN111865142A (zh) | 一种基于多悬臂梁能量采集器的自供能传感器 | |
CN111525769A (zh) | 一种磁钟摆式电磁-压电复合能量收集器 | |
CN113422490B (zh) | 一种宽频振动能量搜集装置 | |
CN212343604U (zh) | 一种电磁-压电复合式换能器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |