CN113310958B - Preparation method of a hierarchical porous metal-organic framework chiral sensing probe and the resulting probe and its application - Google Patents
Preparation method of a hierarchical porous metal-organic framework chiral sensing probe and the resulting probe and its application Download PDFInfo
- Publication number
- CN113310958B CN113310958B CN202110547833.XA CN202110547833A CN113310958B CN 113310958 B CN113310958 B CN 113310958B CN 202110547833 A CN202110547833 A CN 202110547833A CN 113310958 B CN113310958 B CN 113310958B
- Authority
- CN
- China
- Prior art keywords
- organic framework
- porous metal
- hierarchical porous
- amino acid
- sensing probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 103
- 239000000523 sample Substances 0.000 title claims abstract description 92
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 150000001413 amino acids Chemical class 0.000 claims abstract description 46
- 239000004005 microsphere Substances 0.000 claims abstract description 33
- 239000011148 porous material Substances 0.000 claims abstract description 28
- 102000004316 Oxidoreductases Human genes 0.000 claims abstract description 27
- 108090000854 Oxidoreductases Proteins 0.000 claims abstract description 27
- 102000004190 Enzymes Human genes 0.000 claims abstract description 18
- 108090000790 Enzymes Proteins 0.000 claims abstract description 18
- 238000001179 sorption measurement Methods 0.000 claims abstract description 12
- 229940024606 amino acid Drugs 0.000 claims description 67
- 102000007070 L-amino-acid oxidase Human genes 0.000 claims description 40
- 108010008292 L-Amino Acid Oxidase Proteins 0.000 claims description 39
- 239000000243 solution Substances 0.000 claims description 32
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-Glutamic acid Natural products OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 23
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 18
- IVWWFWFVSWOTLP-YVZVNANGSA-N (3'as,4r,7'as)-2,2,2',2'-tetramethylspiro[1,3-dioxolane-4,6'-4,7a-dihydro-3ah-[1,3]dioxolo[4,5-c]pyran]-7'-one Chemical compound C([C@@H]1OC(O[C@@H]1C1=O)(C)C)O[C@]21COC(C)(C)O2 IVWWFWFVSWOTLP-YVZVNANGSA-N 0.000 claims description 12
- 229960002989 glutamic acid Drugs 0.000 claims description 12
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-Tryptophan Natural products C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 8
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 8
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 8
- 229960004799 tryptophan Drugs 0.000 claims description 8
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 7
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 7
- 229960000310 isoleucine Drugs 0.000 claims description 7
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 6
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 6
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 6
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 6
- 229930182817 methionine Natural products 0.000 claims description 6
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 6
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 5
- 239000007995 HEPES buffer Substances 0.000 claims description 5
- 229920001400 block copolymer Polymers 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 230000003100 immobilizing effect Effects 0.000 claims description 3
- 238000011534 incubation Methods 0.000 claims description 2
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 229960003067 cystine Drugs 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 235000001014 amino acid Nutrition 0.000 description 55
- 239000000463 material Substances 0.000 description 20
- 238000001228 spectrum Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 239000008367 deionised water Substances 0.000 description 13
- 229910021641 deionized water Inorganic materials 0.000 description 13
- 150000008575 L-amino acids Chemical class 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 229960005190 phenylalanine Drugs 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000004448 titration Methods 0.000 description 9
- 108010069325 L-glutamate oxidase Proteins 0.000 description 8
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 7
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 7
- 239000013207 UiO-66 Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- -1 Amino acid enantiomers Chemical class 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 6
- 229960002433 cysteine Drugs 0.000 description 6
- 229960002885 histidine Drugs 0.000 description 6
- 229960003136 leucine Drugs 0.000 description 6
- 229960004452 methionine Drugs 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 229960004441 tyrosine Drugs 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 5
- 235000018417 cysteine Nutrition 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000008574 D-amino acids Chemical class 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005557 chiral recognition Methods 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 4
- 239000013248 hierarchically porous metal-organic framework Substances 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- 229930182832 D-phenylalanine Natural products 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- XMPZTFVPEKAKFH-UHFFFAOYSA-P ceric ammonium nitrate Chemical compound [NH4+].[NH4+].[Ce+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O XMPZTFVPEKAKFH-UHFFFAOYSA-P 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 239000012890 simulated body fluid Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QDGAVODICPCDMU-UHFFFAOYSA-N 2-amino-3-[3-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)C(N)CC1=CC=CC(N(CCCl)CCCl)=C1 QDGAVODICPCDMU-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 2
- 229930182847 D-glutamic acid Natural products 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229960003180 glutathione Drugs 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- MNOJRWOWILAHAV-UHFFFAOYSA-N 3-bromophenol Chemical compound OC1=CC=CC(Br)=C1 MNOJRWOWILAHAV-UHFFFAOYSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- FFEARJCKVFRZRR-UHFFFAOYSA-N L-Methionine Natural products CSCCC(N)C(O)=O FFEARJCKVFRZRR-UHFFFAOYSA-N 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- 229930182844 L-isoleucine Natural products 0.000 description 1
- 239000004395 L-leucine Substances 0.000 description 1
- 235000019454 L-leucine Nutrition 0.000 description 1
- 229930195722 L-methionine Natural products 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- GMQUEDBQYNHEEM-UHFFFAOYSA-N [B].[B].CC(C)(O)C(C)(C)O.CC(C)(O)C(C)(C)O Chemical compound [B].[B].CC(C)(O)C(C)(C)O.CC(C)(O)C(C)(C)O GMQUEDBQYNHEEM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- HKVFISRIUUGTIB-UHFFFAOYSA-O azanium;cerium;nitrate Chemical compound [NH4+].[Ce].[O-][N+]([O-])=O HKVFISRIUUGTIB-UHFFFAOYSA-O 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000010523 cascade reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 238000002983 circular dichroism Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 229940049906 glutamate Drugs 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000013337 mesoporous metal-organic framework Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007833 oxidative deamination reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- IFGCUJZIWBUILZ-UHFFFAOYSA-N sodium 2-[[2-[[hydroxy-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyphosphoryl]amino]-4-methylpentanoyl]amino]-3-(1H-indol-3-yl)propanoic acid Chemical compound [Na+].C=1NC2=CC=CC=C2C=1CC(C(O)=O)NC(=O)C(CC(C)C)NP(O)(=O)OC1OC(C)C(O)C(O)C1O IFGCUJZIWBUILZ-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 description 1
- 229910001488 sodium perchlorate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及酶固定化和分析化学,更具体地涉及一种分级多孔金属有机骨架手性传感探针的制备方法和由此得到的探针及其应用。The invention relates to enzyme immobilization and analytical chemistry, more specifically to a preparation method of a hierarchical porous metal-organic framework chiral sensing probe, the resulting probe and its application.
背景技术Background technique
氨基酸是自然界中最主要和最重要的手性化合物之一(Angew.Chem.Int.Ed.2017,56,7276-7281)。L-氨基酸和D-氨基酸并不是互相排斥的,并且通常以非外消旋混合物的形式共存。在哺乳动物和人体中,氨基酸通常以游离形式或者以蛋白质的形式存在。在一般情况下,有机体和自然界中的氨基酸多数以L形式存在,而D形式的大量存在通常表示阴性症状、衰老或疾病(ACS Appl.Mater.Interfaces 2017,9,20991-20999)。氨基酸的产生、消旋在生命科学中具有重要价值(Amino Acids 2012,42,1553-1582)。氨基酸对映异构体也被广泛用作不对称性的手性来源。中枢神经系统中氨基酸的总量,以及对映体的比率通常表现出不同的生物学功能,与人类生理和病理中起着至关重要的作用,特定手性氨基酸在生物系统中的表达水平通常与许多疾病的早期阶段有关,例如,慢性肾脏病,阿尔茨海默氏病和癌症(J.Am.Chem.Soc.2016,138,12099-12111)。因此,快速、准确对氨基酸进行手性分析具有重要的意义。迄今为止,氨基酸对映体的选择性识别和检测有多种方法,包括色谱法、毛细管电泳、荧光法,圆二色性等(Biosens.Bioelectron.2020,151,111971)。然而,用于对映体识别和分离的常规色谱法、毛细管电泳方法等,虽然对氨基酸手性检测是有效的,但是测试费用高、测试所需的程序和步骤较为繁琐,检测时间长。而荧光传感器可以规避这些缺点,可以快速、有效、简单、方便地对手性氨基酸进行检测。该方法适用于生物样品中氨基酸对映体的高通量筛选和实时成像。然而,手性结合/反应位点的设计是荧光探针对映选择性识别的关键和巨大挑战。Amino acids are one of the most dominant and important chiral compounds in nature (Angew. Chem. Int. Ed. 2017, 56, 7276-7281). L-amino acids and D-amino acids are not mutually exclusive and usually coexist as a non-racemic mixture. In mammals and humans, amino acids usually exist in free form or in the form of protein. In general, the majority of amino acids in organisms and nature exist in the L form, while a large amount of the D form usually indicates negative symptoms, aging or disease (ACS Appl. Mater.
要实现底物与探针分子之间的立体化学相互作用,需要一个复杂而精确的化学合成过程。同时,荧光探针很少能同时对特定氨基酸进行对映选择性和化学选择性识别,并且可能受到其他类似生物化学分子的干扰。因此,开发一种适用于手性氨基酸广谱检测的通用荧光传感策略,无论是对映选择性还是化学选择性,都具有重要意义。To achieve the stereochemical interaction between the substrate and the probe molecule requires a complex and precise chemical synthesis process. At the same time, fluorescent probes are rarely capable of simultaneous enantioselective and chemoselective recognition of specific amino acids, and may be interfered by other similar biochemical molecules. Therefore, it is of great significance to develop a general fluorescent sensing strategy suitable for broad-spectrum detection of chiral amino acids, whether enantioselective or chemoselective.
发明内容Contents of the invention
为了实现荧光探针对氨基酸进行对映选择性和化学选择性识别,本发明提供一种分级多孔金属有机骨架手性传感探针的制备方法和由此得到的探针及其应用。In order to realize the enantioselective and chemoselective recognition of amino acids by fluorescent probes, the present invention provides a preparation method of hierarchical porous metal-organic framework chiral sensing probes, the obtained probes and applications thereof.
根据本发明的分级多孔金属有机骨架手性传感探针的制备方法,其包括步骤:S1,提供分级多孔金属有机骨架微球(HPUiO-66),其具有规整的孔道结构;S2,将氨基酸氧化酶(AAO)固定到分级多孔金属有机骨架微球(HPUiO-66)上,得到固定有酶的分级多孔金属有机骨架微球(AAO@HPUiO-66),其中,氨基酸氧化酶(AAO)通过吸附装载在分级多孔金属有机骨架微球(HPUiO-66)的孔道中;S3,将荧光分子(PF)固定到固定有酶的分级多孔金属有机骨架微球(AAO@HPUiO-66)上,得到分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66),其中,荧光分子(PF)通过吸附装载在分级多孔金属有机骨架微球(HPUiO-66)的孔道中。According to the preparation method of the hierarchical porous metal organic framework chiral sensing probe of the present invention, it comprises the steps: S1, providing the hierarchical porous metal organic framework microsphere (HPUiO-66), which has a regular pore structure; S2, the amino acid Oxidase (AAO) was immobilized on hierarchical porous metal-organic framework microspheres (HPUiO-66) to obtain enzyme-immobilized hierarchical porous metal-organic framework microspheres (AAO@HPUiO-66), in which amino acid oxidase (AAO) passed Adsorbed and loaded in the pores of hierarchical porous metal-organic framework microspheres (HPUiO-66); S3, immobilized fluorescent molecules (PF) on hierarchical porous metal-organic framework microspheres immobilized with enzymes (AAO@HPUiO-66), and obtained Hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66), in which fluorescent molecules (PF) are loaded into the pores of hierarchical porous metal-organic framework microspheres (HPUiO-66) by adsorption.
优选地,氨基酸氧化酶(AAO)为具有手性识别功能的氨基酸氧化酶。更优选地,氨基酸氧化酶(AAO)选自由L-氨基酸氧化酶、L-谷氨酸氧化酶和L-色氨酸氧化酶组成的组中的至少一种。Preferably, the amino acid oxidase (AAO) is an amino acid oxidase with chiral recognition function. More preferably, the amino acid oxidase (AAO) is at least one selected from the group consisting of L-amino acid oxidase, L-glutamic acid oxidase and L-tryptophan oxidase.
优选地,荧光分子(PF)为具有H2O2响应的荧光分子。更优选地,荧光分子(PF)为3-Oxo-3',6'-双(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)-3H-螺[异苯并呋喃-1,9'-吨]-6-羧酸。Preferably, the fluorescent molecule (PF) is a fluorescent molecule that responds to H 2 O 2 . More preferably, the fluorescent molecule (PF) is 3-Oxo-3',6'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -3H-spiro[isobenzofuran-1,9'-ton]-6-carboxylic acid.
优选地,所述步骤S1包括:S11,利用嵌段共聚物PEO106PPO70PEO106(F127)为模板剂提供金属有机骨架(Metal organic Framework,MOFs)前驱体溶液;S12,通过溶剂热生成分级多孔金属有机骨架前驱体(HPUiO-66-as);S13,通过活化和去模板得到大孔径的分级多孔金属有机骨架微球(HPUiO-66)。更优选地,分级多孔金属有机骨架微球(HPUiO-66)的孔径为8-10nm。在优选的实施例中,分级多孔金属有机骨架微球(HPUiO-66)的孔径为9.2nm。更优选地,将嵌段共聚物F127搅拌溶解于去离子水中,添加高氯酸钠和乙酸,超声溶解;然后添加硝酸铈铵和对苯二甲酸,搅拌分散;在60℃下搅拌反应20min;经过离心分离、洗涤、活化、干燥后得到分级多孔金属有机骨架微球(HPUiO-66)。具体地,将150mg的F127溶解于9mL去离子水中,然后将750mg的NaClO4·H2O和450μL的乙酸超声分散于上述F127溶液中;随后,将249mg的对苯二甲酸和274mg的硝酸铈铵搅拌分散于上述溶液中;然后,将混合液体在60℃下搅拌反应20分钟;离心分离混合物得到固体产物;接着用去离子水、N,N-二甲基甲酰胺、无水乙醇洗涤材料,并将材料在60℃下浸泡于无水乙醇中48h,期间不断更换乙醇,将材料孔道中的F127全部去除,经洗涤干燥后,最后得到尺寸为600nm~1000nm的分级多孔金属有机骨架微球(HPUiO-66)。本发明利用嵌段共聚物F127为模板,利用的Hofmeister盐溶介导作用,合成出具有9nm左右大孔径的分级多孔金属有机骨架微球(HPUiO-66),合成步骤简单、制备周期短。Preferably, the step S1 includes: S11, using the block copolymer PEO 106 PPO 70 PEO 106 (F127) to provide a metal organic framework (Metal organic Framework, MOFs) precursor solution for the template; S12, generating a graded by solvothermal Porous metal-organic framework precursor (HPUiO-66-as); S13, Hierarchical porous metal-organic framework microspheres (HPUiO-66) with large pore size obtained by activation and detemplating. More preferably, the pore size of the hierarchically porous metal-organic framework microspheres (HPUiO-66) is 8-10 nm. In a preferred embodiment, the pore size of the hierarchically porous metal organic framework microspheres (HPUiO-66) is 9.2 nm. More preferably, stir and dissolve the block copolymer F127 in deionized water, add sodium perchlorate and acetic acid, and ultrasonically dissolve; then add cerium ammonium nitrate and terephthalic acid, stir and disperse; stir and react at 60°C for 20 minutes; Hierarchical porous metal-organic framework microspheres (HPUiO-66) were obtained after centrifugal separation, washing, activation and drying. Specifically, 150 mg of F127 was dissolved in 9 mL of deionized water, and then 750 mg of NaClO 4 ·H 2 O and 450 μL of acetic acid were ultrasonically dispersed in the above F127 solution; subsequently, 249 mg of terephthalic acid and 274 mg of cerium nitrate Ammonium was stirred and dispersed in the above solution; then, the mixed liquid was stirred and reacted at 60°C for 20 minutes; the mixture was centrifuged to obtain a solid product; then the material was washed with deionized water, N,N-dimethylformamide, and absolute ethanol , and soak the material in absolute ethanol at 60°C for 48 hours, during which the ethanol is constantly replaced to remove all the F127 in the pores of the material. After washing and drying, hierarchical porous metal-organic framework microspheres with a size of 600nm-1000nm are finally obtained (HPUiO-66). The present invention utilizes block copolymer F127 as template, utilizes Hofmeister salt-mediated effect, synthesized hierarchical porous metal-organic framework microspheres (HPUiO-66) with a large pore size of about 9 nm, the synthesis steps are simple and the preparation cycle is short.
优选地,所述步骤S2包括:将具有手性催化功能的氨基酸氧化酶(AAO)溶解于去离子水中,添加分级多孔金属有机骨架微球(HPUiO-66),在25℃下搅拌4h,并通过离心收集固定有酶的分级多孔金属有机骨架微球(AAO@HPUiO-66)。Preferably, the step S2 includes: dissolving amino acid oxidase (AAO) with chiral catalytic function in deionized water, adding hierarchical porous metal-organic framework microspheres (HPUiO-66), stirring at 25°C for 4h, and Hierarchical porous metal-organic framework microspheres (AAO@HPUiO-66) immobilized with enzymes were collected by centrifugation.
优选地,所述步骤S3包括:将荧光分子(PF)溶解于去离子水中,添加固定有酶的分级多孔金属有机骨架微球(AAO@HPUiO-66),在25℃下避光搅拌30min,并通过离心收集分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)。Preferably, the step S3 includes: dissolving fluorescent molecules (PF) in deionized water, adding hierarchically porous metal-organic framework microspheres (AAO@HPUiO-66) immobilized with enzymes, stirring at 25°C for 30 minutes in the dark, And the hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66) was collected by centrifugation.
在本发明中,氨基酸氧化酶(AAO)为天然酶,荧光分子(PF)为荧光小分子,两者通过温和的后负载方法依次固定到分级多孔金属有机骨架微球(HPUiO-66)的介孔孔道中,制备一系列具有高特异性传感性能的荧光探针。具体地,在室温下,将氨基酸氧化酶(AAO)和荧光分子(PF)通过后吸附的方式依次固定在分级多孔金属有机骨架微球(HPUiO-66)的分级介孔中,合成出分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66),氨基酸氧化酶(AAO)的装载量为151mg g-1,荧光分子(PF)的固定量为374mg g-1,制备过程条件温和、操作简便。In the present invention, amino acid oxidase (AAO) is a natural enzyme, fluorescent molecule (PF) is a fluorescent small molecule, and the two are sequentially immobilized on the intermediary of hierarchical porous metal-organic framework microspheres (HPUiO-66) through a mild afterloading method. In the pore channel, a series of fluorescent probes with high specificity sensing performance were prepared. Specifically, amino acid oxidase (AAO) and fluorescent molecules (PF) were sequentially immobilized in the hierarchical mesopores of hierarchical porous metal-organic framework microspheres (HPUiO-66) by post-adsorption at room temperature, and a hierarchically porous Metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66), amino acid oxidase (AAO) loaded at 151 mg g -1 , fluorescent molecule (PF) immobilized at 374 mg g -1 , prepared under mild conditions , Easy to operate.
本发明还提供一种由上述制备方法得到的分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66),其中,氨基酸氧化酶(AAO)和荧光分子(PF)偶联在分级多孔金属有机骨架微球(HPUiO-66)的载体上。The present invention also provides a hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66) obtained by the above preparation method, wherein amino acid oxidase (AAO) and fluorescent molecule (PF) are coupled in the hierarchical porous Metal-organic framework microspheres (HPUiO-66) on the support.
本发明又提供一种上述的分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)的应用,其对氨基酸具有手性传感响应。据此,分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)通过氨基酸氧化酶(AAO)和荧光分子(PF)构建的联级响应体系用于手性氨基酸的识别。The present invention further provides an application of the above-mentioned hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66), which has a chiral sensing response to amino acids. Accordingly, the hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66) was used for the recognition of chiral amino acids through the cascade response system constructed by amino acid oxidase (AAO) and fluorescent molecules (PF).
优选地,该氨基酸为苯丙氨酸、亮氨酸、蛋氨酸、色氨酸、组氨酸、异亮氨酸、酪氨酸、和/或半胱氨酸。Preferably, the amino acid is phenylalanine, leucine, methionine, tryptophan, histidine, isoleucine, tyrosine, and/or cysteine.
优选地,分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)对氨基酸的L-对映体显示荧光增强,而对氨基酸的D-对映体无响应。Preferably, the hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66) showed fluorescence enhancement for the L-enantiomer of amino acids, but no response for the D-enantiomer of amino acids.
优选地,分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)分散在HEPES缓冲液中形成探针溶液,将氨基酸溶液加入探针溶液中孵育,利用荧光光谱仪测其荧光强度。Preferably, the hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66) is dispersed in HEPES buffer to form a probe solution, the amino acid solution is added to the probe solution for incubation, and the fluorescence intensity is measured by a fluorescence spectrometer.
优选地,在氨基酸溶液为0~100μM的浓度范围内,利用分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)对氨基酸进行线性分析。据此,分级多孔金属有机骨架手性传感探针(AAO&PF@HPUiO-66)可用于手性氨基酸的定量分析。Preferably, amino acids are linearly analyzed using hierarchical porous metal-organic framework chiral sensing probes (AAO&PF@HPUiO-66) within the concentration range of 0-100 μM in the amino acid solution. Accordingly, the hierarchical porous metal-organic framework chiral sensing probe (AAO&PF@HPUiO-66) can be used for the quantitative analysis of chiral amino acids.
优选地,氨基酸溶液的检测下限为0.38μM~0.44μM。Preferably, the lower detection limit of the amino acid solution is 0.38 μM-0.44 μM.
本发明将酶和荧光分子通过后固定的方式,依次装载进入分级多孔金属有机骨架中,金属有机骨架材料坚固的外骨骼保护了酶的蛋白结构,改善酶的稳定性,其分级多孔结构也将荧光分子分隔固定在金属节点上,避免了荧光分子的聚集淬灭;其较大的孔径以及高的孔隙率有利于物质的快速扩散和反应,检测过程中利用联级反应,即L-氨基酸氧化酶与L-氨基酸之间的氧化脱氨反应生成H2O2,接着H2O2与荧光分子PF发生开环反应生成强烈荧光,并使用荧光分光光度计进行检测,达到氨基酸手性检测的目的。根据本发明的制备方法具有高度的延展性,通过负载不同的天然氨基酸氧化酶,实现对不同氨基酸的手性识别和定量分析,为设计对映选择性和化学选择性荧光传感器提供了一条简单而有效的途径,对于实现快速、准确的氨基酸手性识别和定量分析具有重要的意义。本发明通过固定不同的氨基酸氧化酶作为手性识别中心,可以高灵敏性、高特异性对手性氨基酸进行识别与含量分析。该方法合成方法便捷,制备条件温和,仪器操作方便,技术要求低,分析灵敏度高、特异性强、抗干扰能力优异。本发明的分级多孔金属有机骨架手性传感探针在HEPES缓冲溶液中可以对8种氨基酸,即苯丙氨酸、亮氨酸、蛋氨酸、色氨酸、组氨酸、异亮氨酸、酪氨酸、半胱氨酸的L-对映体进行特异选择性识别,可以在100μM以下的低浓度范围内对L-氨基酸进行线性测定,且具有低检测限(0.38μM-0.44μM)、高灵敏性、强特异性、抗干扰能力优异;且检测仪器简单,操作方便,技术要求低。本发明提供的策略具有普遍适用性,简单地将L-氨基酸氧化酶替换为L-谷氨酸氧化酶,可以实现水相中游离L-谷氨酸的选择性识别和含量分析。且同样具备高特异性、低检测限、强抗干扰能力。In the present invention, enzymes and fluorescent molecules are sequentially loaded into hierarchical porous metal-organic frameworks by means of post-fixation. The strong exoskeleton of metal-organic framework materials protects the protein structure of enzymes, improves the stability of enzymes, and its hierarchical porous structure will also The fluorescent molecules are separated and fixed on the metal nodes, which avoids the aggregation and quenching of fluorescent molecules; its large pore size and high porosity are conducive to the rapid diffusion and reaction of substances, and the cascade reaction is used in the detection process, that is, L-amino acid oxidation The oxidative deamination reaction between the enzyme and L-amino acid generates H 2 O 2 , and then H 2 O 2 undergoes a ring-opening reaction with the fluorescent molecule PF to generate strong fluorescence, which is detected by a fluorescence spectrophotometer to achieve the chiral detection of amino acids. Purpose. The preparation method according to the present invention has a high degree of extensibility, and realizes chiral recognition and quantitative analysis of different amino acids by loading different natural amino acid oxidases, providing a simple and efficient method for designing enantioselective and chemoselective fluorescent sensors. An effective approach is of great significance for the rapid and accurate chiral recognition and quantitative analysis of amino acids. The invention fixes different amino acid oxidases as the chiral recognition center, and can identify and analyze the chiral amino acid with high sensitivity and high specificity. The method has the advantages of convenient synthesis, mild preparation conditions, convenient instrument operation, low technical requirements, high analytical sensitivity, strong specificity and excellent anti-interference ability. The hierarchical porous metal-organic framework chiral sensing probe of the present invention can detect 8 kinds of amino acids in HEPES buffer solution, namely phenylalanine, leucine, methionine, tryptophan, histidine, isoleucine, The L-enantiomer of tyrosine and cysteine can be specifically and selectively recognized, and the L-amino acid can be linearly determined in the low concentration range below 100μM, and has a low detection limit (0.38μM-0.44μM), High sensitivity, strong specificity, and excellent anti-interference ability; and the detection instrument is simple, easy to operate, and low in technical requirements. The strategy provided by the present invention has universal applicability, simply replacing L-amino acid oxidase with L-glutamic acid oxidase can realize the selective recognition and content analysis of free L-glutamic acid in the aqueous phase. And it also has high specificity, low detection limit, and strong anti-interference ability.
附图说明Description of drawings
图1是根据本发明的分级多孔金属有机骨架手性传感探针的制备方法的工艺流程图;Fig. 1 is the process flow diagram of the preparation method of the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图2是根据本发明的分级多孔金属有机骨架手性传感探针的荧光分子(PF)的核磁共振氢谱图;Fig. 2 is the proton nuclear magnetic resonance spectrum figure of the fluorescent molecule (PF) of hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图3是根据本发明的分级多孔金属有机骨架手性传感探针在负载L-氨基酸氧化酶L-AAO和荧光分子PF时的吸附动力学曲线;Fig. 3 is the adsorption kinetic curve of the hierarchical porous metal organic framework chiral sensing probe according to the present invention when loading L-amino acid oxidase L-AAO and fluorescent molecule PF;
图4是根据本发明的分级多孔金属有机骨架手性传感探针的XRD图谱;Fig. 4 is the XRD spectrum of the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图5是根据本发明的分级多孔金属有机骨架手性传感探针的扫描电镜图像;5 is a scanning electron microscope image of a hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图6是根据本发明的分级多孔金属有机骨架手性传感探针的氮气吸附图及其孔径分布图;Fig. 6 is a nitrogen adsorption diagram and a pore size distribution diagram of the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图7是根据本发明的分级多孔金属有机骨架手性传感探针对苯丙氨酸的两种对映体动力学响应图谱;Fig. 7 is the two enantiomeric kinetic response spectra of the hierarchical porous metal organic framework chiral sensing probe to phenylalanine according to the present invention;
图8是根据本发明的分级多孔金属有机骨架手性传感探针对亮氨酸的两种对映体动力学响应图谱;Fig. 8 is the two enantiomeric kinetic response spectra of the hierarchical porous metal organic framework chiral sensing probe to leucine according to the present invention;
图9是根据本发明的分级多孔金属有机骨架手性传感探针对蛋氨酸的两种对映体动力学响应图谱;Fig. 9 is the two enantiomeric kinetic response spectra of the hierarchical porous metal-organic framework chiral sensing probe to methionine according to the present invention;
图10是根据本发明的分级多孔金属有机骨架手性传感探针对色氨酸的两种对映体动力学响应图谱;Fig. 10 is the two enantiomeric kinetic response spectra of the hierarchical porous metal organic framework chiral sensing probe to tryptophan according to the present invention;
图11是根据本发明的分级多孔金属有机骨架手性传感探针对组氨酸的两种对映体动力学响应图谱;Fig. 11 is the two enantiomeric kinetic response spectra of the hierarchical porous metal organic framework chiral sensing probe to histidine according to the present invention;
图12是根据本发明的分级多孔金属有机骨架手性传感探针对异亮氨酸的两种对映体动力学响应图谱;Fig. 12 is the two enantiomeric kinetic response spectra of the hierarchical porous metal organic framework chiral sensing probe to isoleucine according to the present invention;
图13是根据本发明的分级多孔金属有机骨架手性传感探针对酪氨酸的两种对映体动力学响应图谱;Fig. 13 is the two enantiomeric kinetic response spectra of tyrosine according to the hierarchical porous metal organic framework chiral sensing probe of the present invention;
图14是根据本发明的分级多孔金属有机骨架手性传感探针对半胱氨酸的两种对映体动力学响应图谱;Fig. 14 is the two enantiomeric kinetic response spectra of cysteine according to the hierarchical porous metal organic framework chiral sensing probe of the present invention;
图15是根据本发明的分级多孔金属有机骨架手性传感探针对苯丙氨酸的L-对映体的荧光滴定图谱;Fig. 15 is the fluorescence titration spectrum of the L-enantiomer of phenylalanine according to the hierarchical porous metal organic framework chiral sensing probe of the present invention;
图16是根据本发明的分级多孔金属有机骨架手性传感探针对亮氨酸的L-对映体的荧光滴定图谱;Fig. 16 is the fluorescence titration spectrum of the L-enantiomer of leucine according to the hierarchical porous metal organic framework chiral sensing probe of the present invention;
图17是根据本发明的分级多孔金属有机骨架手性传感探针对蛋氨酸的L-对映体的荧光滴定图谱;Fig. 17 is the fluorescence titration spectrum of the L-enantiomer of methionine according to the hierarchical porous metal organic framework chiral sensing probe of the present invention;
图18是根据本发明的分级多孔金属有机骨架手性传感探针对色氨酸的L-对映体的荧光滴定图谱;Fig. 18 is a fluorescence titration spectrum of the L-enantiomer of tryptophan by the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图19是根据本发明的分级多孔金属有机骨架手性传感探针对组氨酸的L-对映体的荧光滴定图谱;Fig. 19 is the fluorescence titration spectrum of the L-enantiomer of histidine for the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图20是根据本发明的分级多孔金属有机骨架手性传感探针对异亮氨酸的L-对映体的荧光滴定图谱;Fig. 20 is the fluorescence titration spectrum of the L-enantiomer of isoleucine according to the hierarchical porous metal organic framework chiral sensing probe of the present invention;
图21是根据本发明的分级多孔金属有机骨架手性传感探针对酪氨酸的L-对映体的荧光滴定图谱;Fig. 21 is the fluorescence titration spectrum of the L-enantiomer of tyrosine according to the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图22是根据本发明的分级多孔金属有机骨架手性传感探针对半胱氨酸的L-对映体的荧光滴定图谱;Fig. 22 is the fluorescence titration spectrum of the L-enantiomer of cysteine according to the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图23是根据本发明的分级多孔金属有机骨架手性传感探针抗干扰、选择性检测结果图像;Fig. 23 is an image of the anti-interference and selective detection results of the hierarchical porous metal organic framework chiral sensing probe according to the present invention;
图24是根据本发明的分级多孔金属有机骨架手性传感探针对谷氨酸的两种对映体响应的荧光动力学曲线,对L-谷氨酸的荧光滴定图谱,以及对L-谷氨酸的选择性检测结果图像。Fig. 24 is the fluorescent kinetic curve of the hierarchical porous metal organic framework chiral sensing probe according to the present invention in response to two enantiomers of glutamic acid, the fluorescence titration spectrum of L-glutamic acid, and the response of L-glutamic acid An image of the selective detection of glutamate.
具体实施方式detailed description
下面结合附图,给出本发明的较佳实施例,并予以详细描述。Below in conjunction with the drawings, preferred embodiments of the present invention are given and described in detail.
如图1所示,根据本发明的分级多孔金属有机骨架手性传感探针的制备方法包括步骤:提供MOFs前驱体溶液;通过溶剂热生成分级多孔UiO-66前驱体(HPUiO-66-as);通过活化和去模板得到分级多孔UiO-66纳米颗粒(HPUiO-66);将L氨基酸氧化酶(L-AAO)固定到分级多孔UiO-66纳米颗粒(HPUiO-66)上,得到固定有酶的分级多孔金属有机骨架(L-AAO@HPUiO-66),其中,L氨基酸氧化酶(L-AAO)通过吸附装载在分级多孔UiO-66纳米颗粒(HPUiO-66)的孔道中;将荧光分子(PF)固定到固定有酶的分级多孔金属有机骨架(L-AAO@HPUiO-66)上,得到分级多孔金属有机骨架手性传感探针(L-AAO&PF@HPUiO-66),其中,荧光分子(PF)通过吸附装载在分级多孔UiO-66纳米颗粒(HPUiO-66)的孔道中。As shown in Figure 1, the preparation method of the hierarchical porous metal-organic framework chiral sensing probe according to the present invention includes the steps of: providing a MOFs precursor solution; generating a hierarchical porous UiO-66 precursor (HPUiO-66-as ); obtain hierarchical porous UiO-66 nanoparticles (HPUiO-66) by activating and removing templates; immobilize L-amino acid oxidase (L-AAO) on hierarchical porous UiO-66 nanoparticles (HPUiO-66), and obtain immobilized Hierarchical porous metal-organic framework for enzymes (L-AAO@HPUiO-66), in which L-amino acid oxidase (L-AAO) is loaded in the pores of hierarchically porous UiO-66 nanoparticles (HPUiO-66) by adsorption; Molecules (PF) were immobilized on the hierarchical porous metal-organic framework (L-AAO@HPUiO-66) immobilized with enzymes to obtain a hierarchical porous metal-organic framework chiral sensing probe (L-AAO&PF@HPUiO-66), in which, Fluorescent molecules (PF) are loaded into the pores of hierarchically porous UiO-66 nanoparticles (HPUiO-66) by adsorption.
实施例1Example 1
1.1荧光分子(PF)的合成1.1 Synthesis of fluorescent molecules (PF)
将质量为3.15g的1,2,4-苯三甲酸和质量为5.19g的3-溴苯酚以及体积量为15mL的甲磺酸添加到三颈烧瓶中。并在135℃下回流加热72小时,自然冷却后将混合物加入到120mL冰去离子水中,搅拌得到绿色固体,随后通过真空过滤收集所得固体。并用吡啶和乙酸酐的混合试剂(v/v=1:3)洗涤数次,并在100℃用乙酸酐和吡啶的混合试剂(v/v=2:1)重结晶3次,然后用浓度为1mol L-1的盐酸洗涤数次,最后,在85℃通过真空干燥12h得到白色固体粉末。3.15 g of 1,2,4-benzenetricarboxylic acid, 5.19 g of 3-bromophenol and 15 mL of methanesulfonic acid were added to the three-necked flask. And heated under reflux at 135° C. for 72 hours, after natural cooling, the mixture was added into 120 mL ice deionized water, stirred to obtain a green solid, and then the obtained solid was collected by vacuum filtration. Wash several times with a mixed reagent of pyridine and acetic anhydride (v/v=1:3), and recrystallize three times at 100°C with a mixed reagent of acetic anhydride and pyridine (v/v=2:1), and then use the concentration Wash with 1 mol L -1 hydrochloric acid for several times, and finally, vacuum-dry at 85°C for 12 hours to obtain a white solid powder.
将质量为400mg的双(频哪醇)二硼,质量为200mg的上述固体粉末,质量为98.9mg的Pd(dppf)Cl2,以及质量为510mg的无水乙酸钾装入到干燥的三颈烧瓶,并将系统抽真空后再回充氮气。此过程至少重复三遍。然后加入体积量为5mL的无水、脱气的N,N-二甲基甲酰胺。随后将混合溶液在室温下搅拌5分钟后于85℃回流加热3h。反应结束自然冷却后,通过旋蒸除去溶剂,并通过二氯甲烷平衡的硅胶色谱柱,用二氯甲烷和甲醇的混合溶剂进行梯度洗涤以纯化粗产物,然后滴加最少量的无水乙醚以沉淀出浅棕色固体,并用无水乙醚洗涤数次,最后在40℃真空干燥12h得到骨白色粉末(PF)。The bis(pinacol) diboron with a quality of 400mg, the above-mentioned solid powder with a quality of 200mg, the Pd(dppf)Cl 2 with a quality of 98.9mg, and the anhydrous potassium acetate with a quality of 510mg are loaded into a dry three-neck The flask was evacuated and then backfilled with nitrogen. This process is repeated at least three times. Then a volume of 5 mL of dry, degassed N,N-dimethylformamide was added. The mixed solution was then stirred at room temperature for 5 minutes and then heated at reflux at 85 °C for 3 h. After the reaction was cooled naturally, the solvent was removed by rotary evaporation, and the silica gel chromatography column equilibrated with dichloromethane was used to carry out gradient washing with a mixed solvent of dichloromethane and methanol to purify the crude product, and then a minimum amount of anhydrous ether was added dropwise to A light brown solid was precipitated, washed several times with anhydrous ether, and finally dried in vacuo at 40° C. for 12 h to obtain a bone white powder (PF).
图2的核磁共振氢谱图证明了PF成功合成。The H NMR spectrum of Figure 2 proves the successful synthesis of PF.
1.2分级多孔UiO-66纳米颗粒的合成1.2 Synthesis of Hierarchically Porous UiO-66 Nanoparticles
在室温条件下,将质量为150mg的F127溶解于9mL去离子水中,然后将质量为750mg的NaClO4·H2O和体积量为450μL的乙酸超声分散于上述F127溶液中。随后,将质量为249mg的对苯二甲酸和质量为274mg的硝酸铈铵搅拌分散于上述溶液中。然后,将混合液体在60℃下搅拌反应20分钟。离心分离混合物得到固体产物。接着用去离子水、N,N-二甲基甲酰胺、无水乙醇洗涤材料,并将材料在60℃下浸泡于无水乙醇中48h,期间不断更换乙醇,将材料孔道中的F127全部去除,经洗涤干燥后,最后得到尺寸为700nm~800nm的分级多孔金属有机骨架材料(HPUiO-66)。At room temperature, 150 mg of F127 was dissolved in 9 mL of deionized water, and then 750 mg of NaClO 4 ·H 2 O and 450 μL of acetic acid were ultrasonically dispersed in the F127 solution. Subsequently, 249 mg of terephthalic acid and 274 mg of ceric ammonium nitrate were stirred and dispersed in the above solution. Then, the mixed liquid was stirred and reacted at 60° C. for 20 minutes. The mixture was centrifuged to give a solid product. Then wash the material with deionized water, N,N-dimethylformamide, and absolute ethanol, and soak the material in absolute ethanol at 60°C for 48 hours. During this period, the ethanol is constantly replaced to remove all F127 in the pores of the material , after washing and drying, a hierarchical porous metal-organic framework material (HPUiO-66) with a size of 700nm-800nm was finally obtained.
1.3固定L氨基酸氧化酶(L-AAO)得到固定有酶的分级多孔金属有机骨架(L-AAO@1.3 Immobilization of L-amino acid oxidase (L-AAO) to obtain a hierarchical porous metal-organic framework (L-AAO@ HPUiO-66)HPUiO-66)
将质量为2.5mg的L-氨基酸氧化酶溶解于2.5mL去离子水中,然后将质量为2.5mg的HPUiO-66纳米颗粒分散于上述酶溶液中。并在25℃下搅拌4小时。通过离心收集固定有酶的HPUiO-66材料(L-AAO@HPUiO-66),并用去离子水洗涤数次,达到除去吸附在HPUiO-66表面的酶的目的。Dissolve 2.5 mg of L-amino acid oxidase in 2.5 mL of deionized water, and then disperse 2.5 mg of HPUiO-66 nanoparticles in the above enzyme solution. and stirred at 25°C for 4 hours. The enzyme-immobilized HPUiO-66 material (L-AAO@HPUiO-66) was collected by centrifugation and washed several times with deionized water to remove the enzyme adsorbed on the surface of HPUiO-66.
1.4固定荧光分子(PF)得到分级多孔金属有机骨架手性传感探针(L-AAO&PF@1.4 Immobilizing fluorescent molecules (PF) to obtain hierarchical porous metal-organic framework chiral sensing probes (L-AAO&PF@ HPUiO-66)HPUiO-66)
将质量为5mg的荧光分子PF溶解于5mL去离子水中,然后将质量为2.5mg的L-AAO@HPUiO-66纳米颗粒分散于上述溶液中。并在25℃下避光搅拌30min。通过离心收集固定有酶和荧光分子的HPUiO-66材料(L-AAO&PF@HPUiO-66),并用去离子水洗涤数次,达到除去吸附在表面的PF的目的。The fluorescent molecule PF with a mass of 5 mg was dissolved in 5 mL of deionized water, and then 2.5 mg of L-AAO@HPUiO-66 nanoparticles were dispersed in the above solution. And stirred at 25°C for 30 min in the dark. The HPUiO-66 materials immobilized with enzymes and fluorescent molecules (L-AAO&PF@HPUiO-66) were collected by centrifugation and washed several times with deionized water to remove the PF adsorbed on the surface.
图3是L-氨基酸氧化酶L-AAO和荧光分子PF的吸附动力学图谱。图4是HPUiO-66和L-AAO&PF@HPUiO-66的XRD图谱,可以看出无论是分级多孔金属有机骨架材料HPUiO-66,还是分级多孔金属有机骨架手性探针材料L-AAO&PF@HPUiO-66,都保持着UiO-66晶体的特征峰以及高结晶度;图5为HPUiO-66(A)和L-AAO&PF@HPUiO-66(B)的扫描电镜图像,表明HPUiO-66和L-AAO&PF@HPUiO-66都具有规整的孔道结构,粒径在700nm~800nm。图6是HPUiO-66和L-AAO&PF@HPUiO-66的氮吸附-脱附曲线以及孔径分布。可以看出L-AAO&PF@HPUiO-66与HPUiO-66相比比表面积、孔隙率、孔径都大幅度下降。证明L-AAO和PF装载到HPUiO-66的孔道中,而不是吸附在表面。下表1中给出了HPUiO-66和L-AAO&PF@HPUiO-66的孔结构参数。Fig. 3 is the adsorption kinetics diagram of L-amino acid oxidase L-AAO and fluorescent molecule PF. Figure 4 is the XRD pattern of HPUiO-66 and L-AAO&PF@HPUiO-66. It can be seen that whether it is the hierarchical porous metal organic framework material HPUiO-66 or the hierarchical porous metal organic framework chiral probe material L-AAO&PF@HPUiO- 66, both maintain the characteristic peaks and high crystallinity of UiO-66 crystal; Figure 5 is the SEM image of HPUiO-66(A) and L-AAO&PF@HPUiO-66(B), which shows that HPUiO-66 and L-AAO&PF @HPUiO-66 has a regular pore structure with a particle size between 700nm and 800nm. Figure 6 shows the nitrogen adsorption-desorption curves and pore size distribution of HPUiO-66 and L-AAO&PF@HPUiO-66. It can be seen that the specific surface area, porosity, and pore diameter of L-AAO&PF@HPUiO-66 are greatly reduced compared with HPUiO-66. It was proved that L-AAO and PF were loaded into the pores of HPUiO-66 instead of being adsorbed on the surface. The pore structure parameters of HPUiO-66 and L-AAO&PF@HPUiO-66 are given in Table 1 below.
表1Table 1
1.5分级多孔金属有机骨架手性传感探针(L-AAO&PF@HPUiO-66)对氨基酸的手性1.5 Hierarchical porous metal-organic framework chiral sensing probe (L-AAO&PF@HPUiO-66) for chirality of amino acids 识别identify
将质量为5mg L-AAO&PF@HPUiO-66探针材料分散在50mL HEPES缓冲液(20mM,pH7.4)中形成100mg L-1的探针溶液,将100μL的L/D-氨基酸溶液(2mM L-1)加入到1.9mL上述探针溶液中,在避光条件下于37℃孵育反应。然后,在固定的时间间隔下检测混合物在λ=520nm处的荧光强度。图7-图14的图像可以看出L-AAO&PF@HPUiO-66探针对8种氨基酸(苯丙氨酸、亮氨酸、蛋氨酸、色氨酸、组氨酸、异亮氨酸、酪氨酸、半胱氨酸)具有手性传感响应。对L-对映体显示荧光增强,而对相应的D-对映体无响应。Disperse 5 mg of L-AAO&PF@HPUiO-66 probe material in 50 mL of HEPES buffer (20 mM, pH 7.4) to form a 100 mg L -1 probe solution, and 100 μL of L/D-amino acid solution (2 mM L -1 ) Add to 1.9 mL of the above probe solution, and incubate the reaction at 37° C. under dark conditions. Then, the fluorescence intensity of the mixture at λ=520 nm was detected at fixed time intervals. From the images in Figure 7-Figure 14, it can be seen that the L-AAO&PF@HPUiO-66 probe is sensitive to 8 kinds of amino acids (phenylalanine, leucine, methionine, tryptophan, histidine, isoleucine, tyrosine acid, cysteine) have chiral sensing responses. An increase in fluorescence was shown for the L-enantiomer, whereas there was no response for the corresponding D-enantiomer.
1.6分级多孔金属有机骨架手性传感探针(L-AAO&PF@HPUiO-66)对氨基酸的含量1.6 Hierarchical porous metal-organic framework chiral sensing probe (L-AAO&PF@HPUiO-66) for amino acid content 分析analyze
将质量为5mg L-AAO&PF@HPUiO-66探针材料分散在50mL HEPES缓冲液(20mM,pH7.4)中形成100mg L-1的探针溶液,将100μL不同浓度的L-氨基酸溶液加入到1.9mL上述探针溶液中,将反应在37℃下避光孵育至平衡,利用荧光光谱仪测得上述反应混合物在λ=520nm处的荧光强度。图15-图22的图像可以看出,当上述8种氨基酸的L-对映体加入后,探针溶液的荧光强度随着L-氨基酸浓度的增加而有规律地增强,在0~100μM的浓度范围内,探针可以对L-氨基酸进行线性分析,相关系数高达0.99,且具有较低的检测限LOD(0.38μM~0.44μM)。下表2给出了探针对以上8种L-氨基酸的荧光检测特性的总结。Disperse 5 mg of L-AAO&PF@HPUiO-66 probe material in 50 mL of HEPES buffer (20 mM, pH 7.4) to form a 100 mg L -1 probe solution, and add 100 μL of L-amino acid solutions of different concentrations to 1.9 In mL of the above probe solution, the reaction was incubated at 37° C. in the dark until equilibrium, and the fluorescence intensity of the above reaction mixture at λ=520 nm was measured by a fluorescence spectrometer. From the images in Figure 15-Figure 22, it can be seen that when the L-enantiomers of the above 8 kinds of amino acids are added, the fluorescence intensity of the probe solution increases regularly with the increase of the concentration of L-amino acids. Within the concentration range, the probe can perform linear analysis on L-amino acids, the correlation coefficient is as high as 0.99, and it has a lower detection limit LOD (0.38μM-0.44μM). Table 2 below provides a summary of the fluorescence detection characteristics of the probes for the above 8 L-amino acids.
表2Table 2
1.7分级多孔金属有机骨架手性传感探针(L-AAO&PF@HPUiO-66)在干扰离子和化1.7 Hierarchical porous metal-organic framework chiral sensing probe (L-AAO&PF@HPUiO-66) in interfering ions and chemical 合物共存的情况下对氨基酸的荧光传感检测Fluorescent sensing and detection of amino acids in the presence of complexes
将干扰物质(Na+,K+,Mg2+,Al3+,Br-,Cl-,HCO3 -,NO2 -,葡萄糖(GLU),谷胱甘肽(GSH),胆固醇(CHOL))溶解于探针溶液中,浓度为100μM,并在加入100μL L-苯丙氨酸(100μM)前后对探针溶液进行荧光测定。得到λ=520nm处的荧光强度。图23中的A显示上述干扰物质对探针本身荧光特性的影响可以忽略不计,B显示干扰物质存在于待检测混合溶液中时,对L-氨基酸的检测结果没有影响。Interfering substances (Na + , K + , Mg 2+ , Al 3+ , Br - , Cl - , HCO 3 - , NO 2 - , glucose (GLU), glutathione (GSH), cholesterol (CHOL)) Dissolved in the probe solution at a concentration of 100 μM, and the probe solution was subjected to fluorescence measurement before and after adding 100 μL of L-phenylalanine (100 μM). The fluorescence intensity at λ=520nm was obtained. A in Figure 23 shows that the influence of the above-mentioned interfering substances on the fluorescence characteristics of the probe itself is negligible, and B shows that when the interfering substances exist in the mixed solution to be detected, they have no effect on the detection results of L-amino acids.
1.8分级多孔金属有机骨架手性传感探针(L-AAO&PF@HPUiO-66)在模拟的生理环1.8 Hierarchical porous metal-organic framework chiral sensing probe (L-AAO&PF@HPUiO-66) in a simulated physiological environment 境中对氨基酸的荧光传感检测Fluorescent sensing and detection of amino acids in the environment
在模拟的生理条件下,即将L-苯丙氨酸和D-苯丙氨酸以及L-AAO&PF@HPUiO-66探针材料溶解于模拟体液(SBF),其中,SBF溶液配置方法为:将NaCl,NaHCO3,KCl,K2HPO4,MgCl2,CaCl2,Na2SO4溶解于去离子水中,无机离子浓度(mM:Na+ 142,K+ 5,Mg2+ 1.5,Ca2+2.5,Cl- 149,18,)与人体血浆浓度相一致,在37℃下用三-(羟甲基)氨基甲烷[(CH2OH)3CNH2]和盐酸(HCl)将液体的缓冲pH值调节为7.4。并按照1.6分 级多孔金属有机骨架手性传感探针(L-AAO&PF@HPUiO-66)对氨基酸的含量分析的测试过程,在不同浓度的L-苯丙氨酸和D-苯丙氨酸混合溶液中进行L-苯丙氨酸的选择性传感,并同时进行四组平行实验,得到检测平均浓度。下表3的结果验证了L-AAO&PF@HPUiO-66探针在模拟生理条件下对L-苯丙氨酸的传感能力。Under simulated physiological conditions, L-phenylalanine, D-phenylalanine and L-AAO&PF@HPUiO-66 probe materials are dissolved in simulated body fluid (SBF), wherein the SBF solution configuration method is: NaCl , NaHCO 3 , KCl, K 2 HPO 4 , MgCl 2 , CaCl 2 , Na 2 SO 4 dissolved in deionized water, inorganic ion concentration (mM: Na + 142,
表3table 3
实施例2Example 2
参照实施例1的1.2-1.4,改变固定的氨基酸氧化酶,将L-谷氨酸氧化酶(L-GOX)固定到分级介孔金属有机骨架微球中,得到L-GOX&PF@HPUiO-66探针材料。Referring to 1.2-1.4 of Example 1, the immobilized amino acid oxidase was changed, and L-glutamate oxidase (L-GOX) was immobilized in hierarchical mesoporous metal-organic framework microspheres to obtain L-GOX&PF@HPUiO-66 probe needle material.
参见实施例1的1.5,改变L/D-氨基酸为L/D-谷氨酸。图24A可以看出L-GOX&PF@HPUiO-66探针对L-谷氨酸具有手性传感能力。Referring to 1.5 of Example 1, change the L/D-amino acid to L/D-glutamic acid. It can be seen from Figure 24A that the L-GOX&PF@HPUiO-66 probe has chiral sensing ability for L-glutamic acid.
参见实施例1的1.6,改变L-AAO&PF@HPUiO-66探针材料为L-GOX&PF@HPUiO-66探针材料;改变L-氨基酸为L-谷氨酸。图24B和图24C可以看出L-GOX&PF@HPUiO-66探针可以在0~100μM内对L-谷氨酸进行线性分析。Referring to 1.6 of Example 1, change the L-AAO&PF@HPUiO-66 probe material to L-GOX&PF@HPUiO-66 probe material; change the L-amino acid to L-glutamic acid. It can be seen from Figure 24B and Figure 24C that the L-GOX&PF@HPUiO-66 probe can linearly analyze L-glutamic acid within 0-100 μM.
将19种具有手性对映体的氨基酸溶液(100μM)100μL加入到1.9mL的L-GOX&PF@HPUiO-66探针溶液(100mg L-1)中。在37℃下避光孵育至反应平衡,利用荧光光谱仪测得上述反应混合物在λ=520nm处的荧光强度。图24D可以得出探针对L-谷氨酸具高选择性,对其他L-氨基酸和D-氨基酸没有响应。Add 100 μL of 19 amino acid solutions (100 μM) with chiral enantiomers to 1.9 mL of L-GOX&PF@HPUiO-66 probe solution (100 mg L -1 ). Incubate at 37° C. in the dark until the reaction is balanced, and measure the fluorescence intensity of the above reaction mixture at λ=520 nm by using a fluorescence spectrometer. Figure 24D shows that the probe has high selectivity to L-glutamic acid, and has no response to other L-amino acids and D-amino acids.
见实施例1的1.8,改变L-苯丙氨酸和D-苯丙氨酸为L-苯丙氨酸、L-亮氨酸、L-蛋氨酸、L-色氨酸、L-组氨酸、L-异亮氨酸、L-酪氨酸、L-半胱氨酸和D-谷氨酸。下表4结果证明了L-GOX&PF@HPUiO-66探针在模拟生理条件下对L-谷氨酸的传感能力。See 1.8 of Example 1, change L-phenylalanine and D-phenylalanine to L-phenylalanine, L-leucine, L-methionine, L-tryptophan, L-histidine , L-isoleucine, L-tyrosine, L-cysteine and D-glutamic acid. The results in Table 4 below demonstrate the sensing ability of the L-GOX&PF@HPUiO-66 probe to L-glutamic acid under simulated physiological conditions.
表4Table 4
本发明通过嵌段共聚物F127模板和的Hofmeister盐化阴离子作用,合成出分级多孔金属有机骨架材料。并通过后吸附的方式,将不同类型的氨基酸氧化酶以及荧光分子装载进入分级多孔金属有机骨架材料的孔道中,从而实现氨基酸的手性识别和含量分析。此方法具有普遍适用性,为生物分子荧光传感提供了新的方法和思路。The present invention adopts block copolymer F127 template and The Hofmeister salinization anion, synthesized hierarchical porous metal-organic framework materials. And through the post-adsorption method, different types of amino acid oxidases and fluorescent molecules are loaded into the pores of the hierarchical porous metal organic framework material, so as to realize the chiral recognition and content analysis of amino acids. This method has universal applicability and provides a new method and idea for biomolecular fluorescence sensing.
以上所述的,仅为本发明的较佳实施例,并非用以限定本发明的范围,本发明的上述实施例还可以做出各种变化。即凡是依据本发明申请的权利要求书及说明书内容所作的简单、等效变化与修饰,皆落入本发明专利的权利要求保护范围。本发明未详尽描述的均为常规技术内容。What is described above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Various changes can also be made to the above embodiments of the present invention. That is to say, all simple and equivalent changes and modifications made according to the claims and description of the application for the present invention fall within the protection scope of the claims of the patent of the present invention. What is not described in detail in the present invention is conventional technical content.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110547833.XA CN113310958B (en) | 2021-05-19 | 2021-05-19 | Preparation method of a hierarchical porous metal-organic framework chiral sensing probe and the resulting probe and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110547833.XA CN113310958B (en) | 2021-05-19 | 2021-05-19 | Preparation method of a hierarchical porous metal-organic framework chiral sensing probe and the resulting probe and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113310958A CN113310958A (en) | 2021-08-27 |
CN113310958B true CN113310958B (en) | 2022-12-23 |
Family
ID=77373766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110547833.XA Active CN113310958B (en) | 2021-05-19 | 2021-05-19 | Preparation method of a hierarchical porous metal-organic framework chiral sensing probe and the resulting probe and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113310958B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116589726B (en) * | 2023-07-11 | 2023-09-22 | 中北大学 | Preparation method of composite membrane sensor for detecting tyrosine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015164543A1 (en) * | 2014-04-22 | 2015-10-29 | The Regents Of The University Of California | Cooperative chemical adsorption of acid gases in functionalized metal-organic frameworks |
CN109283163A (en) * | 2018-09-28 | 2019-01-29 | 天津师范大学 | A method for the detection of L-cysteine based on calcium-metal organic frameworks as fluorescent probes |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100739537B1 (en) * | 2004-01-07 | 2007-07-13 | 주식회사 카이로라이트 | Chiral inorganic-organic hybrid porous material and preparation method thereof |
CN102692409B (en) * | 2012-06-25 | 2015-01-21 | 华东理工大学 | Method and kit for detecting concentration of chiral amino acid |
CN104667876B (en) * | 2013-11-29 | 2018-02-13 | 北京思达安新材料科技有限公司 | Serial MOF types multilevel hole material IPD mesoMOF 1~8 and preparation method thereof, and the adjusting method of mesoporous size |
EP3160971B8 (en) * | 2014-06-25 | 2019-07-17 | Council of Scientific and Industrial Research | Method for selective detection and estimation of histidine and cysteine |
US10563008B2 (en) * | 2015-03-30 | 2020-02-18 | Council Of Scientific And Industrial Research | Chiral polymer for enantioselective separation and process for preparation thereof |
WO2017083467A1 (en) * | 2015-11-10 | 2017-05-18 | Northwestern University | Composite materials containing organic polymer-encapsulated metal organic frameworks |
CN105884642B (en) * | 2016-05-03 | 2018-03-27 | 蚌埠学院 | Nanocrystalline fluorescent material of metal-organic backbone of amino functional and its preparation method and application |
CN106018360B (en) * | 2016-05-13 | 2018-07-17 | 深圳职业技术学院 | A method of urea is detected based on metal-organic framework materials fluorescent optical sensor |
CN108114699B (en) * | 2017-12-22 | 2020-12-08 | 华东理工大学 | A preparation method of a hierarchical porous metal-organic framework nanomaterial with adjustable pore size, nanomaterial obtained therefrom, and application thereof |
CN111398235B (en) * | 2020-04-27 | 2022-11-29 | 湖北民族大学 | Method for synchronous fluorescence detection of chloramphenicol based on Cu/UiO-66 metal organic framework quenching |
CN112816414B (en) * | 2021-01-07 | 2022-07-05 | 武汉大学 | Alkaline phosphatase detection kit based on dual-emission lanthanide MOF and detection method |
-
2021
- 2021-05-19 CN CN202110547833.XA patent/CN113310958B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015164543A1 (en) * | 2014-04-22 | 2015-10-29 | The Regents Of The University Of California | Cooperative chemical adsorption of acid gases in functionalized metal-organic frameworks |
CN109283163A (en) * | 2018-09-28 | 2019-01-29 | 天津师范大学 | A method for the detection of L-cysteine based on calcium-metal organic frameworks as fluorescent probes |
Also Published As
Publication number | Publication date |
---|---|
CN113310958A (en) | 2021-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110982521B (en) | Graphite phase carbon nitride quantum dot composite and its synthesis method and biological application | |
Xie et al. | Label-free and highly selective MOFs-based dopamine detection in urine of Parkinson’s patients | |
Wang et al. | UiO-66-NH 2 based fluorescent sensing for detection of tetracyclines in milk | |
CN104560027B (en) | A kind of fluorescent probe distinguishing detection biological thiol and preparation method thereof | |
Huo et al. | Photo-luminescent chiral carbon-dot@ Eu (D-cam) nanocomposites for selectively luminescence sensing of L-phenylalanine | |
CN103013493A (en) | Fluorescence chemical sensor capable of selectively detecting biological sulfhydryl compound, preparation method and application | |
Wang et al. | A one-pot synthesis of fluorescent N, P-codoped carbon dots for vitamin B 12 determination and bioimaging application | |
Chen et al. | A novel pillar [5] arene-based chemosensor for dual-channel detecting L-Arg by multiple supramolecular interactions | |
CN108276990A (en) | A kind of differentiation GSH, Cys, NAC fluorescence probe and its preparation method and application | |
CN113310958B (en) | Preparation method of a hierarchical porous metal-organic framework chiral sensing probe and the resulting probe and its application | |
Xiao et al. | Fabrication of a “turn-on”-type enantioselective fluorescence sensor via a modified achiral MOF: Applications for synchronous detection of phenylalaninol enantiomers | |
Ma et al. | A multiemissive lanthanide metal-organic framework for selective detection of L-tryptophan | |
Wang et al. | Electrochemiluminescence for high-performance Chiral recognition of enantiomers: Recent advances and future perspectives | |
Guo et al. | Enantioselective fluorescent detection of lysine enantiomers by functionalized achiral metal organic frameworks | |
CN114199845B (en) | Serotonin fluorescence sensor, intelligent detection method and application thereof | |
CN109825284B (en) | Ethylenediamine-beta-cyclodextrin modified Mn doped ZnS quantum dot and preparation method and application thereof | |
Yang et al. | Specific chiral recognition of amino acid enantiomers promoted by an enzymatic bioreactor in MOFs | |
He et al. | Turn-on fluorescent sensors based on post-modified Zr-MOF for enantioselective recognition of phenylalanine | |
CN108794369B (en) | Aldehyde group-containing chiral amine recognition probe and preparation method and application thereof | |
CN104151248B (en) | Bisimidazole dansyl derivative cationic fluorescent probe and its synthesis method and application | |
CN111087362A (en) | Fluorescent probe for detecting formaldehyde with high selectivity, and synthetic method and application thereof | |
CN109929106B (en) | A kind of fluorescent probe for detecting thiocyanate and its preparation method and application | |
CN114349717A (en) | Benzothiazole derivative cysteine-based fluorescent probe and preparation method thereof | |
CN114621210A (en) | Preparation method and application of novel fluorescent molecular probe for detecting L-cysteine | |
Jia et al. | Fluorescence enantioselective sensing of lactic acid enantiomers by Zn-MOC@ CQDs with double chiral building blocks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |