CN113308471B - 一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用 - Google Patents

一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用 Download PDF

Info

Publication number
CN113308471B
CN113308471B CN202110575414.7A CN202110575414A CN113308471B CN 113308471 B CN113308471 B CN 113308471B CN 202110575414 A CN202110575414 A CN 202110575414A CN 113308471 B CN113308471 B CN 113308471B
Authority
CN
China
Prior art keywords
cytochrome
enzyme system
bradysia odoriphaga
seq
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110575414.7A
Other languages
English (en)
Other versions
CN113308471A (zh
Inventor
陈澄宇
赵云霞
刘莹
曹凯歌
张凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU XUHUAI DISTRICT HUAIYIN AGRICULTURAL SCIENCE RESEARCH INSTITUTE
Institute of Agricultural Environment and Resources of Yunnan Academy of Agricultural Sciences
Original Assignee
JIANGSU XUHUAI DISTRICT HUAIYIN AGRICULTURAL SCIENCE RESEARCH INSTITUTE
Institute of Agricultural Environment and Resources of Yunnan Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU XUHUAI DISTRICT HUAIYIN AGRICULTURAL SCIENCE RESEARCH INSTITUTE, Institute of Agricultural Environment and Resources of Yunnan Academy of Agricultural Sciences filed Critical JIANGSU XUHUAI DISTRICT HUAIYIN AGRICULTURAL SCIENCE RESEARCH INSTITUTE
Priority to CN202110575414.7A priority Critical patent/CN113308471B/zh
Publication of CN113308471A publication Critical patent/CN113308471A/zh
Application granted granted Critical
Publication of CN113308471B publication Critical patent/CN113308471B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0333Genetically modified invertebrates, e.g. transgenic, polyploid
    • A01K67/0337Genetically modified Arthropods
    • A01K67/0339Genetically modified insects, e.g. Drosophila melanogaster, medfly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0081Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15006Cholesterol monooxygenase (side-chain-cleaving) (1.14.15.6), i.e. cytochrome P450scc

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法及应用,属于分子生物学技术领域。本发明运用RNA干扰技术实现了对韭菜迟眼蕈蚊P450酶系基因CYP9J35‑like和/或CYP6FV2‑like和/或CYP3A56‑like的沉默,该方法准确可靠、操作简单、沉默效率高,为韭菜迟眼蕈蚊抗药性机制研究和抗性治理提供了研究基础。

Description

一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法及应用
技术领域
本发明属于分子生物学技术领域,具体涉及一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法及应用。
背景技术
韭菜迟眼蕈蚊,其幼虫俗称韭蛆,是葱蒜等百合科蔬菜的重要害虫,尤其喜食韭菜。韭菜迟眼蕈蚊防治措施不当极易造成韭菜减产或农药残留超标。随着全球气候变暖和设施农业的迅速发展,韭蛆的为害愈加严重,已严重制约了韭菜种植业的发展。
目前,韭菜迟眼蕈蚊的防治措施主要为化学防治,随水灌施毒死蜱、辛硫磷、高效氯氟氰菊酯、噻虫嗪等化学药剂。随着化学药剂的长期使用,韭菜迟眼蕈蚊的抗药性不断提高。
细胞色素P450酶系,又称多功能氧化酶,广泛存在于细菌、真菌、植物和动物等生命体中,参与内源物质(如甾类化合物)和外源物质(如药物)的代谢,是药物代谢过程中的关键酶。昆虫细胞色素P450酶系与昆虫抗药性直接相关。抗性昆虫体内的P450酶系在质量或数量上增强,加快了杀虫剂的代谢和降解效率,使杀虫剂不能作用于其分子靶标,表现为抗药性增强。P450酶系的这种代谢解毒作用是P450介导抗性的化学本质。将细胞色素P450酶系基因进行沉默处理,是研究P450酶系与昆虫抗药性关系的重要手段。目前,缺少一种快速高效的针对韭菜迟眼蕈蚊的细胞色素P450酶系基因沉默的方法。
发明内容
为了解决上述问题,本发明提供了一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法及应用。本发明提供的方法沉默效率高,可快速高效地在整个韭菜迟眼蕈蚊虫体中沉默目的基因。
为了实现上述目的,本发明提供如下技术方案:
本发明提供了一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法,将细胞色素P450酶系基因的dsRNA与人工饲料混合后喂养韭菜迟眼蕈蚊。
优选的,所述韭菜迟眼蕈蚊为幼虫,所述幼虫的龄期为1~4龄。
优选的,所述细胞色素P450酶系基因的dsRNA由细胞色素P450酶系基因的cDNA体外转录得到。
优选的,所述dsRNA与人工饲料的混合比例为(10~100)μg:1g。
优选的,所述喂养的时间为6~72h。
优选的,所述细胞色素P450酶系基因包括CYP9J35-like、CYP6FV2-like和CYP3A56-like中的一种或多种;所述CYP9J35-like的核苷酸序列如SEQ ID NO.1所示;所述CYP6FV2-like的核苷酸序列如SEQ ID NO.2所示;所述CYP3A56-like的核苷酸序列如SEQID NO.3所示。
优选的,合成所述细胞色素P450酶系基因的cDNA的引物为:
当所述细胞色素P450酶系基因为CYP9J35-like时,所述CYP9J35-like的正向引物的核苷酸序列如SEQ ID NO.4所示;所述CYP9J35-like的反向引物的核苷酸序列如SEQ IDNO.5所示;
当所述细胞色素P450酶系基因为CYP6FV2-like时,所述CYP6FV2-like的正向引物的核苷酸序列如SEQ ID NO.6所示;所述CYP6FV2-like的反向引物的核苷酸序列如SEQ IDNO.7所示;
当所述细胞色素P450酶系基因为CYP3A56-like时,所述CYP3A56-like的正向引物的核苷酸序列如SEQ ID NO.8所示;所述CYP3A56-like的反向引物的核苷酸序列如SEQ IDNO.9所示。
本发明提供了上述技术方案中所述的方法在韭菜迟眼蕈蚊防治中的应用。
本发明提供了上述技术方案中所述的方法在降低韭菜迟眼蕈蚊对杀虫剂的抗药性中的应用。
优选的,所述杀虫剂包括吡虫啉、噻虫嗪、毒死蜱和氯氰菊酯中的一种或几种。
有益效果:
本发明提供了一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法,将细胞色素P450酶系基因的dsRNA与人工饲料混合后喂养韭菜迟眼蕈蚊。本发明运用RNA干扰技术实现了对韭菜迟眼蕈蚊P450酶系基因CYP9J35-like和/或CYP6FV2-like和/或CYP3A56-like的沉默,大大提高了韭菜迟眼蕈蚊对杀虫剂的敏感性,降低了韭菜迟眼蕈蚊对杀虫剂的抗药性;同时,该方法准确可靠、操作简单、沉默效率高,为韭菜迟眼蕈蚊抗药性机制研究和抗性治理提供了研究基础。
附图说明
图1为dsRNA饲喂后韭菜迟眼蕈蚊幼虫体内P450酶系基因的qRT-PC R检测结果;
图2为dsRNA饲喂后韭菜迟眼蕈蚊幼虫对杀虫剂噻虫嗪的敏感度变化。
具体实施方式
本发明提供了一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法,将细胞色素P450酶系基因的dsRNA与人工饲料混合后喂养韭菜迟眼蕈蚊。
本发明所述细胞色素P450酶系基因的dsRNA优选由细胞色素P450酶系基因的cDNA体外转录得到。本发明所述细胞色素P450酶系基因优选包括CYP9J35-like、CYP6FV2-like和CYP3A56-like中的一种或多种。在本发明中,所述CYP9J35-like的核苷酸序列如SEQ IDNO.1所示;所述CYP6FV2-like的核苷酸序列如SEQ ID NO.2所示;所述CYP3A56-like的核苷酸序列如SEQ ID NO.3所示。
本发明合成所述细胞色素P450酶系基因的cDNA的引物优选为:
当所述细胞色素P450酶系基因为CYP9J35-like时,所述CYP9J35-like的正向引物的核苷酸序列如SEQ ID NO.4所示,具体为:taatacgactcactatagggCCAACAAAAAGCCAAATCGT;所述CYP9J35-like的反向引物的核苷酸序列如SEQ ID NO.5所示,具体为:taatacgactcactatagggAACATTGTGCGACAAGTTCG。
当所述细胞色素P450酶系基因为CYP6FV2-like时,所述CYP6FV2-like的正向引物的核苷酸序列如SEQ ID NO.6所示,具体为:taatacgactcactatagggATTTTTCATTGCCGGTTTTG;所述CYP6FV2-like的反向引物的核苷酸序列如SEQ ID NO.7所示,具体为:taatacgactcactatagggCAAGGCCAATTTTCGTTTGT。
当所述细胞色素P450酶系基因为CYP3A56-like时,所述CYP3A56-like的正向引物的核苷酸序列如SEQ ID NO.8所示,具体为:taatacgactcactatagggCTATGACGTCGCGAAAAACA;所述CYP3A56-like的反向引物的核苷酸序列如SEQ ID NO.9所示,具体为:taatacgactcactatagggTTCGGTATAACAACGCCCTC。
本发明以韭菜迟眼蕈蚊的cDNA为模板,以合成所述细胞色素P450酶系基因的cDNA的引物进行PCR扩增,得到细胞色素P450酶系基因的cDNA。当所述细胞色素P450酶系基因为CYP9J35-like时,所述PCR的扩增体系优选每50μL包括:10×LAPCRbuffer 5μL,dNTPs(2.5mM)8μL,CYP9J35-like的正向引物1μL,CYP9J35-like的反向引物1μL,cDNA模板2μL,LATaq(5U/μL)0.5μL和余量dd H2OL。当所述细胞色素P450酶系基因为CYP6FV2-like时,所述PCR的扩增体系优选每50μL包括:10×LA PCRbuffer 5μL,dNTPs(2.5mM)8μL,CYP6FV2-like的正向引物1μL,CYP6FV2-like的反向引物1μL,cDNA模板2μL,LATaq(5U/μL)0.5μL和余量dd H2OL。当所述细胞色素P450酶系基因为CYP3A56-like时,所述PCR的扩增体系优选每50μL包括:10×LAPCRbuffer5μL,dNTPs(2.5mM)8μL,CYP3A56-like的正向引物1μL,CYP3A56-like的反向引物1μL,cDNA模板2μL,LATaq(5U/μL)0.5μL和余量dd H2OL。在本发明中,所述PCR扩增的反应条件优选为:预变性95℃3min;变性95℃30s,退火56℃30s,72℃延伸45s,共35个循环;72℃延伸10min。
得到细胞色素P450酶系基因的cDNA后,本发明以细胞色素P450酶系基因的cDNA为模板进行体外转录,得到细胞色素P450酶系基因的dsRNA。本发明所述体外转录的体系优选为:5×TranscriptAid reaction buffer 2μL,cDNA模板1μL,ATP/CTP/UTP/GTP各2μL,T7Enzyme Mix 2μL,无核酸酶水补足至20μL。当所述细胞色素P450酶系基因为CYP9J35-like时,得到的dsRNA的核苷酸序列如SEQ ID NO.16所示;当所述细胞色素P450酶系基因为CYP6FV2-like时,得到的dsRNA的核苷酸序列如SEQ ID NO.17所示;当所述细胞色素P450酶系基因为CYP3A56-like时,得到的dsRNA的核苷酸序列如SEQ ID NO.18所示。得到细胞色素P450酶系基因的dsRNA后,本发明优选将得到的细胞色素P450酶系基因的dsRNA进行纯化。本发明对纯化的方法没有特殊要求,采用本领域技术人员常规的纯化方法即可。
得到细胞色素P450酶系基因的dsRNA后,本发明将细胞色素P450酶系基因的dsRNA与人工饲料混合喂养韭菜迟眼蕈蚊。在本发明中,所述dsRNA与人工饲料的混合比例优选为(10~100)μg:1g;进一步优选为(20~40)μg:1g;更进一步优选为30μg:1g。在本发明中,所述喂养的时间优选为6~72h;进一步优选为24~48h;更进一步优选为48h。本发明特定的混合比例和饲喂时间,既具有良好的基因沉默效率,又能最大限度地减少饲喂量,经济效益最高。在本发明中,所述喂养的韭菜迟眼蕈蚊优选为1~4龄,进一步优选为3~4龄,更进一步优选为4龄。
喂养后,本发明优选使用qRT-PCR方法检测被沉默的韭菜迟眼蕈蚊的细胞色素P450酶系基因的沉默效率。
当细胞色素P450酶系基因为CYP9J35-like时,所述qRT-PCR检测的正向引物的核苷酸序列如SEQ ID NO.10所示,具体为:TCCATTGGGTATCTCGTT;反向引物的核苷酸序列如SEQ ID NO.11所示,具体为:GGATGATCGGTATAGTCTCA。
当细胞色素P450酶系基因为CYP6FV2-like时,所述qRT-PCR检测的正向引物的核苷酸序列如SEQ ID NO.12所示,具体为:TCACCCACATTTACATCC;反向引物的核苷酸序列如SEQ ID NO.13所示,具体为:ATCGTGCAAACAAGTCCC。
当细胞色素P450酶系基因为CYP3A56-like时,所述qRT-PCR检测的正向引物的核苷酸序列如SEQ ID NO.14所示,具体为:GTTGGTGCTGTGCCTGTT;反向引物的核苷酸序列如SEQ ID NO.15所示,具体为:AGAATCCCACGATTGGTC。
喂养后,本发明优选检测韭菜迟眼蕈蚊的细胞色素P450酶系基因沉默后对杀虫剂敏感度的变化,进一步验证被沉默的细胞色素P450酶系基因的沉默效果。
本发明运用RNA干扰技术实现了对韭菜迟眼蕈蚊P450酶系基因CYP9J35-like和/或CYP6FV2-like和/或CYP3A56-like的沉默,大大提高了韭菜迟眼蕈蚊对杀虫剂的敏感性,降低了韭菜迟眼蕈蚊对杀虫剂的抗药性;同时,该方法准确可靠、操作简单、沉默效率高,为韭菜迟眼蕈蚊抗药性机制研究和抗性治理提供了研究基础。
本发明提供了上述技术方案中所述的方法在韭菜迟眼蕈蚊防治中的应用。
本发明提供了上述技术方案中所述的方法在降低韭菜迟眼蕈蚊对杀虫剂的抗药性中的应用。在本发明中,所述杀虫剂包括吡虫啉、噻虫嗪、毒死蜱和氯氰菊酯中的一种或几种;进一步优选为噻虫嗪。
为了进一步说明本发明,下面结合实施例对本发明提供的一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法及应用进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
利用RNA干扰技术沉默韭菜迟眼蕈蚊P450酶系基因CYP9J35-like
一、试验材料及来源
韭菜迟眼蕈蚊室内敏感品系,采自山东省寿光市韭菜田,未接触杀虫剂连续饲养超过80代;
Trizol Reagent总RNA提取试剂盒,购自美国Ambion公司;
rTaq聚合酶、LATaq聚合酶、DNase I、PrimeScript RT-reagent Kit反转录试剂盒、pMD18-T vector和荧光定量PCR试剂盒,均购自宝生物工程有限公司,dsRNA合成试剂盒购于Thermo Fisher Scientific,引物由华大基因合成。
冷冻离心机,购自德国Eppendorf公司;
Nanodrop,购自美国Termo Scientific公司;
Agilent 2100生物分析仪器,购自美国Agilent Technologies Inc;
Illumina Hiseq 2500测序仪,购自美国Illumina公司;
Biosystems 7500Real-time PCRSystem,购自美国Applied Biosystems Inc;
98%噻虫嗪原药(Thiamethoxam),购于江苏绿叶农化有限公司。
二、试验步骤
1.提取韭菜迟眼蕈蚊总RNA,纯化后反转录合成cDNA。
取10头韭菜迟眼蕈蚊4龄幼虫,按照Trizol Reagent总RNA提取试剂盒的说明书提取总RNA,使用Agilent 2100检测RNA的完整性,同时制备1.0%的琼脂糖凝胶,于100V电压20min后,电泳观察RNA完整性,符合标准的完整RNA样品用于后续操作。取1μg总RNA,按照PrimeScript RT-reagentKit反转录试剂盒的说明书合成cDNA。
2.设计引物,合成韭菜迟眼蕈蚊细胞色素P450酶系基因CYP9J35-like的cDNA。
根据韭菜迟眼蕈蚊细胞色素P450酶系基因CYP9J35-like的基因序列,按照3/5-RACE kit说明书设计并合成引物。其中CYP9J35-like的核苷酸序列如SEQ ID NO.1所示;CYP9J35-like的正向引物的核苷酸序列如SEQ ID NO.4所示,具体为:taatacgactcactatagggCCAACAAAAAGCCAAATCGT;CYP9J35-like的反向引物的核苷酸序列如SEQ ID NO.5所示,具体为:taatacgactcactatagggAACATTGTGCGACAAGTTCG。以cDNA为模板,对CYP9J35-like基因进行PCR扩增。PCR反应体系为:10×LAPCRbuffer 5μL,dNTPs(2.5mM)8μL,CYP9J35-like的正向引物1μL,CYP9J35-like的反向引物1μL,cDNA模板2μL,LATaq(5U/μL)0.5μL,dd H2O补足50μL。PCR扩增反应条件为:预变性95℃3min,变性95℃30s,退火56℃30s,72℃延伸45s;共循环35次,72℃延伸10min。
根据QIAEX公司胶回收试剂盒(QIAEX II Gel Extraction Kit)进行PCR产物的胶回收,试验步骤如下:
(1)于紫外灯下切胶,将切下的胶块转入1.5mL离心管中,并秤量所切胶的重量;
(2)向称量完成的离心管中加入3倍体积的Buffer QX I,并同时加入10μLBufferQX II;
(3)将混合完成的离心管转入50℃水浴锅中,每隔2分钟摇晃离心管,待胶完全溶解后,于10,000×g离心30s,用移液枪移除上清液;
(4)将500μL Buffer QX I加入离心管中,充分混合后,离心30s去除上清液;
(5)加入500μL BufferPE,充分混匀后,离心30s去除上清液,重复一次;
(6)于超净工作台干燥10~15min,待离心管底部Buffer QX II中的硅胶颗粒变白以后加入适量DEPC水,重新震荡混匀;
(7)10,000×g离心30s,将上清转移到新的离心管中,完成回收试验;
(8)利用2%琼脂糖电泳检测回收效果。并将DNA贮存于-20℃冰箱中。回收获得的DNA作为接下来合成dsRNA的模板。
3.以步骤2制得的细胞色素P450酶系基因CYP9J35-like的cDNA为体外转录模板,制备CYP9J35-like基因的dsRNA。
将步骤2扩增的目的片段回收,测定浓度,作为体外转录dsRNA的模板。dsRNA的体外转录体系为5×TranscriptAid reactionbuffer 2μL,cDNA模板1μL,ATP/CTP/UTP/GTP各2μL,T7 Enzyme Mix 2μL,无核酸酶水补足至20μL,37℃过夜孵育。向得到的反应液中加入2μL Dnase I,去除DNA模板,并于37℃混合温育30min;随后加入2μL 0.5M EDTA,于65℃温育10min,终止反应。
反应结束后,使用苯酚氯仿抽提法纯化dsRNA。在20μL体系中加入115μL DEPC水,15μL(3M,PH=5.2)醋酸钠,再加入等体积的酚/氯仿(1:1)混合液,混合均匀。将混合液置于离心机中在4℃,12,000rpm条件下离心5min;离心结束取上清,转移到在新的离心管中,随后加入等体积的氯仿混匀。并置于离心机中在4℃,12,000rpm条件下离心10min,取上清。之后加入十分之一体积的醋酸钠(3M)和2.5倍体积的冷乙醇,于-80℃存放至少60min。放置结束以后,4℃,12,000rpm离心15min,弃上清,回收沉淀。向沉淀中加入70%冷乙醇,4℃,12,000rpm离心5min,弃上清。将得到的沉淀于超净台充分干燥后,用适量的DEPC水溶解。并通过电泳确认是否除去基因组cDNA,并测定dsRNA的浓度。
4.将韭菜迟眼蕈蚊细胞色素P450酶系基因CYP9J35-like的dsRNA与人工饲料按照一定比例混合后饲喂韭菜迟眼蕈蚊幼虫。
将韭菜迟眼蕈蚊4龄幼虫饥饿2h后,将P450酶系基因CYP9J35-like的dsRNA混入人工饲料,最终饲喂的人工饲料浓度为30μg/g,饲喂韭菜迟眼蕈蚊幼虫。每个处理至少20头,共设三组独立的生物学重复,设混入相同体积的DEPC水的人工饲料为空白对照组。试虫置于正常条件下饲养。
5.饲喂一段时间后,提取韭菜迟眼蕈蚊体内RNA,使用qRT-PCR方法检测被沉默的韭菜迟眼蕈蚊P450酶系基因CYP9J35-like的沉默效率。
48h后收集韭菜迟眼蕈蚊幼虫,运用Biosystems 7500Real-time PCR System,使用
Figure BDA0003084176180000091
Premix Ex TaqTM II kit的qRT-PCR技术检测基因沉默效率,CYP9J35-like检测用的正向引物的核苷酸序列如SEQ ID NO.10所示,具体为:TCCATTGGGTATCTCGTT;CYP9J35-like检测用的反向引物的核苷酸序列如SEQ ID NO.11所示,具体为:GGATGATCGGTATAGTCTCA。反应体系为:SYBR Green 10μL,CYP9J35-like检测用的正向引物0.4μL,CYP9J35-like检测用的反向引物0.4μL,ROX 0.4μL,cDNA模板1μL,ddH2O补足至20μL。PCR循环程序为:初始95℃30s,之后进行95℃5s,60℃34s的40个循环。每个qRT-PCR检测试验设三个独立的生物学重复,每个生物学重复再设3个技术性重复。最终结果的计算采用
Figure BDA0003084176180000092
法(Ct表示循环数)进行计算,即△△Ct=(Ct(P450)-Ct(actin))试验组-(Ct(P450)-Ct(actin))对照组。根据经过本方法的CYP9J35-like基因沉默处理后,目标基因CYP9J35-like的表达量的降低程度检验其沉默效率。
6.检测韭菜迟眼蕈蚊P450酶系基因CYP9J35-like沉默后对杀虫剂敏感度的变化,进一步验证被沉默的CYP9J35-like基因的沉默效果。
为了验证基因沉默的效果,本发明检测CYP9J35-like基因沉默处理后,韭菜迟眼蕈蚊幼虫对杀虫剂噻虫嗪的敏感度的变化。按照步骤4的饲喂方法,用含有基因CYP9J35-like的dsRNA的人工饲料饲喂韭菜迟眼蕈蚊幼虫48h后,将噻虫嗪原药溶于丙酮中配成母液,再把母液使用0.1%(v/v)Triton X-100水溶液稀释成LC50浓度(10.91mg/L),分别将0.5cm的韭菜段和菜迟眼蕈蚊幼虫在LC50浓度的噻虫嗪中轻轻搅拌15s后,取出晾干后置于含有2%琼脂的9孔细胞培培养板内。每个处理20头,设3个重复,杀虫剂处理48h后检查死亡数。设饲喂混合相同体积DEPC水人工饲料的韭菜迟眼蕈蚊幼虫为空白对照组,空白对照组饲喂48h后,用LC50浓度(10.91mg/L)的噻虫嗪处理。
实施例2
利用RNA干扰技术沉默韭菜迟眼蕈蚊P450酶系基因CYP6FV2-like
试验材料及来源同实施例1。
试验步骤同实施例1,不同之处在于:饲喂的dsRNA为CYP6FV2-like基因的dsRNA。
其中,CYP6FV2-like的核苷酸序列如SEQ ID NO.2所示;CYP6FV2-like的正向引物的核苷酸序列如SEQ ID NO.6所示,具体为:taatacgactcactatagggATTTTTCATTGCCGGTTTTG;CYP6FV2-like的反向引物的核苷酸序列如SEQ ID NO.7所示,具体为:taatacgactcactatagggCAAGGCCAATTTTCGTTTGT。
qRT-PCR方法检测被沉默的韭菜迟眼蕈蚊P450酶系基因CYP6FV2-like的沉默效率,使用的CYP6FV2-like的正向引物的核苷酸序列如SEQ ID NO.12所示,具体为:TCACCCACATTTACATCC;CYP6FV2-like的反向引物的核苷酸序列如SEQ ID NO.13所示,具体为:ATCGTGCAAACAAGTCCC。
检测韭菜迟眼蕈蚊P450酶系基因CYP6FV2-like沉默后对杀虫剂敏感度的变化的方案与实施例1相同。
实施例3
利用RNA干扰技术沉默韭菜迟眼蕈蚊P450酶系基因CYP3A56-like
试验材料及来源同实施例1。
试验步骤同实施例1,不同之处在于:饲喂的dsRNA为CYP3A56-like基因的dsRNA。
其中,CYP3A56-like的核苷酸序列如SEQ ID NO.3所示;CYP3A56-like的正向引物的核苷酸序列如SEQ ID NO.8所示,具体为:taatacgactcactatagggCTATGACGTCGCGAAAAACA;CYP3A56-like的反向引物的核苷酸序列如SEQ ID NO.9所示,具体为:taatacgactcactatagggTTCGGTATAACAACGCCCTC。
qRT-PCR方法检测被沉默的韭菜迟眼蕈蚊P450酶系基因CYP3A56-like的沉默效率,使用的CYP3A56-like的正向引物的核苷酸序列如SEQ ID NO.14所示,具体为:GTTGGTGCTGTGCCTGTT;CYP3A56-like的反向引物的核苷酸序列如SEQ ID NO.15所示,具体为:AGAATCCCACGATTGGTC。
检测韭菜迟眼蕈蚊P450酶系基因CYP3A56-like沉默后对杀虫剂敏感度的变化的方案与实施例1相同。
试验结果与分析
1.qRT-PCR检测dsRNA饲喂后韭菜迟眼蕈蚊幼虫体内P450酶系基因的表达量
实施例1~3通过qRT-PCR检测dsRNA饲喂后韭菜迟眼蕈蚊幼虫体内P450酶系基因的表达量,检测结果见图1。由图1的结果可知,韭蛆取食含有dsRNA的人工饲料48h后,处理组韭蛆体内的P450酶系基因CYP9J35-like、CYP6FV2-like和CYP3A56-like的表达量显著低于对照组,表明本发明的方法,使用相应基因的dsRNA饲喂后韭菜迟眼蕈蚊幼虫后,成功实现了P450酶系相应基因的沉默,沉默效率高。
2.dsRNA饲喂后韭菜迟眼蕈蚊幼虫对杀虫剂噻虫嗪的敏感度变化
实施例1~3通过检测韭菜迟眼蕈蚊幼虫对杀虫剂噻虫嗪的敏感度变化来考察P450酶系基因的沉默效率,检测结果见图2。由图2的结果可知,韭蛆取食含有dsRNA的人工饲料48h后,用LC50剂量的噻虫嗪处理后,处理组韭蛆的死亡率显著高于对照组,这说明dsRNA饲喂后韭菜迟眼蕈蚊幼虫对杀虫剂噻虫嗪的敏感度明显提高,验证了本发明的方法的基因沉默效果良好。
上述实施例的结果表明,本发明提供的韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法准确可靠、操作简单、沉默效率高,大大提高了韭菜迟眼蕈蚊对杀虫剂的敏感性,降低了韭菜迟眼蕈蚊对杀虫剂的抗药性,为韭菜迟眼蕈蚊抗药性机制研究和抗性治理提供了研究基础。
尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其它实施例,这些实施例都属于本发明保护范围。
序列表
<110> 江苏徐淮地区淮阴农业科学研究所
云南省农业科学院农业环境资源研究所
<120> 一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法及应用
<160> 18
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2340
<212> DNA
<213> 韭菜迟眼蕈蚊(Bradysia odoriphaga)
<400> 1
gatcttttag cattgacttt gacttgtatc aagtgcgacg ttcgaatttt ggtattgagg 60
tataatacta cgccagattt tatttgttca atttgtttaa taagtgttaa acattccata 120
acagttcaaa agatacagcc aaccataatg ctcgatactc tactgcttcc attgggtatc 180
tcgttgatcc tgtatggaat ctacaaatgg attacactca acgatgacta tttcgaaaag 240
cgtggaattc aacatatgaa accgacattt gctttaggaa ataccggtgc ttttttcatg 300
agactatacc gatcatccga ctatttgcag actttgtaca aacaatttcc ggataaaaaa 360
atctttggaa tgttcgactt tcgcaaacct ttctacttca ttcgagatcc cgagatcatc 420
aaaaggttgg cggttaaaga ctttgatcat ttcgaaaacc atcgatcgtt catcgatgaa 480
gatgtcgatt tacttttcgt aaggatgtcc caattttcac ctaaattgga cagtcatatc 540
tcatcctgtc tatttccagg gcaacagttt gtttatgtta aaaggagaaa aatggagaga 600
catgcgagct actttatcac cggcctttac tggaagtaaa atgcgtcaaa tgtttgaact 660
ggttgtagat aattccagtg atatggttca gcatttccaa caaaaagcca aatcgtcagg 720
aatcggcggc gttgacgttg aaatgaagga tttgttctct agatatacca acgatgttat 780
cgcttccgcc gcgttcggtt gtaaggtcaa ttcattcgaa aatgaatcga acgactttta 840
catgaacggc aagaaaattt tgaatttcga ttcaccgaaa gcggctttga aattgattgc 900
aatgaggact ttacctggcc taatgaaaat gatggacatc aatctaacag actcagcatt 960
gacgaaattt ttccgaaaaa tggttatgga caacataacc acaagagaaa aggagggcat 1020
attcaggccg gatatgatca acattttaat gaatgtgagg aaaggaaagt ctttagacaa 1080
tgtggacaag gatgaaaaac aatctggtga aggattcgct acagtggaag agtcacacat 1140
tggaactaaa caagttaaac gtcaatggac tgacgacgaa cttgtcgcac aatgtttcct 1200
attttttgca gcaggattcg acacttcatc cacattgttg tcgtttgtcg ctcatgaact 1260
tgctgtgaat ccagatgtcc agcaaaaatt gtacgaagaa gtgtgcgaag ttgaaaaaac 1320
gttgaatggt aaaccacttc cttatgatgt tctgcaaaaa atgaaataca tcgactgcgt 1380
catatccgaa acacttcgtt attggcctcc ggccccaatg accgatcgag tgtgcgtaaa 1440
ggattacgaa tacgatgacg gtgtaacgaa attcaaattt gagaaaggaa ttgccttctg 1500
gattcccatt tattcgttgc atcatgatga aaaatacttc ccgaatccgg agaaattcga 1560
tccggaacgg tttaacgatg aaaataagga caacatacaa ccaggaactt ttttgccgtt 1620
cggaacgggt ccccgcaatt gcattggcag ccgtttcgct ttaatggaag tcaaatccgt 1680
catttaccat ttgttgttga attttaaatt tgaacccaac gaaaacagtc aaattccaat 1740
caatctttcg aagcagccat tcggaatgac gtccgagaag ggagttaact taagactggc 1800
attaagaaaa tgaatagccc acattgattt ttggccaatg gtcagtgaca ttaatacaat 1860
ggaatgttta tctttcagaa aataaattta gttttcactt tttcttgtgg tgtgaggcct 1920
tcacaaggcc aataacaagt tcagtctgga cgaccaactt aacgtaaatt ccgaaccacg 1980
cctcgaagta tgcaaatact ctttgaggaa agttacgtgc ttctaaatcg atcagtgcaa 2040
ttaactggtt tttccctctg tttttacact ctaaaagtgt aaaaacagtg gaaaaactaa 2100
tttatttatc tcatcccgaa gggtgatatg tccacatgtg tacactcttt taacactgta 2160
taccagggcc tattatttgt gaaatttgtg aaattggtgg attagcagtt catcattgtt 2220
gaatatagtg cgggcaccta ctcacacaac atcgtcagga cgccagttta aattacatga 2280
tgaagatttt gcgaaatcgt gtgaattatt ttcgttgaaa ggctcataat tataataaag 2340
<210> 2
<211> 1649
<212> DNA
<213> 韭菜迟眼蕈蚊(Bradysia odoriphaga)
<400> 2
aagatgcgcc aacattctta ttcggcgaca tagctgatgt atttttcgga ggtaaaaaat 60
ccatgggaga aacgtttctc gaattctata atcgattcaa gcacaacaaa gtccatggac 120
tgtacttttc gtatcgacca tcgttgatag taaatgatcc tgaagtcatc caagaaatta 180
tcattaaaga cttctcgagt ttccatgacc gaggaatgtt ctttgacgct gaagttgatc 240
cactcagtgc acacctcttt gcattgagtg gacagaaatg gagggatctg cgagttaaat 300
tgtcacccac atttacatcc ggcaagttga aggtcatgta tcccaccgtt cgggattgtg 360
ctaaaacatt gctggaccat ttggtgaaaa acacacagaa cgtgaaatgc tgtgaattcg 420
attcgaggga cttgtttgca cgattcacaa cgacggtaat ttcgtcggtt gctttcggaa 480
ttgaaaatga ttgcatcaac gaccggcata acattttccg taaaatggga gaaaggatct 540
tcgagagaaa ttggaaggag aaattagtgc aggtcttttc acttttcacg ccgaaaattt 600
tagaaaaatt gaagatcaaa cggatcagtc aagaagttga ggatttcttt ttctcagttg 660
ttaaagagag tatcgatctt cgcgaaaagg gtggaagttc agcacaacgt aaagatttta 720
tgcagttgat ggttcagttg aaaaatcaag gctatgtgtc agtggacaag aacgaagagc 780
atgaagttca gaatcagaaa tcaagcgaaa caaagaagtt aacaatcgac gaaatcgccg 840
cccaagcttt tgtatttttc attgccggtt ttgaaacgtc aagctcaacg atgaattttt 900
gcatgtacga acttagcaaa aatccagaca ttcagaagaa ggtccatgaa gaactcgaca 960
atatctggaa atcgggtgat ctaaatgatc ttacttatga cgttctgggc tcaatgaaat 1020
acctcgactg gtgtatcgac gaaactctgc gaaaatatcc aattgtaccg ttcctaaatc 1080
gagaaagtac cagagatcac caattctccg gaacgaatat gaaaatcgag aagggaattc 1140
tcatcacaat tccagtattg ggtattcatc gcgatcccga aatttatgat aatccgatgg 1200
aattccgacc agaacggttc gagaactcac caaccggtaa tccgaatgta cggggtattt 1260
gttacatgcc gttcggcagt ggtcctagaa attgtgtcgg ggaacgaatg ggaaaactac 1320
aaacgaaaat tggccttgca gcccttttgc agaaatttga atttgaattt gttgatcaga 1380
gtttgttgca caaagaaata acggaatttt atccagctca aatcatactc acaccaaaaa 1440
ctaactttat gctacgagct gctgccagac actagatttg ttaaccaaga gaaaaagtgg 1500
aaagtgttag aggccggatt gtagcgagtg ctgcaataac ccaagaaaac acaactttcc 1560
acttttatcg cagaggtaaa aatactattt tataagagaa agaagcttat gtctgaaaaa 1620
atgtttttga taattaaaaa aagtcagac 1649
<210> 3
<211> 1774
<212> DNA
<213> 韭菜迟眼蕈蚊(Bradysia odoriphaga)
<400> 3
agtatagagt ctacagtacg agttcgttgt ttaaaaaaaa cattttcgcg ttagtgaagc 60
tattcggttg tcgctgtttg aaggtttaac atcaaaaagt gatctcatac caataagaaa 120
atgttgattt taacgttggt gctgtgcctg ttgttttacg ttgtatacaa acgacagcaa 180
cagatgacaa tatttgaaag gtcacgcatt cccggcccga aaccgaattt cattcttggt 240
aatttactcg atattggccg taacggtctg accagcttat ttccgaagtg gacagagaaa 300
tatggaccaa tcgtgggatt ctatcttgga ggacgtcccc agttattgat taccgacttt 360
gaactgatgc gtcgtgttat ggtcaaagat tttacaaaat tcagcaataa aagtcaaacc 420
ataccgggcg gtgttcaccc tactccagaa ctgcaaactt cgttactgtg ggctcgtgat 480
aatgcgtgga gacgcttgcg tgcttcgatg tcaccgtcat tttcatctta taagttgaac 540
gccatggagc cattgatgat gacttcattt aatacattgg ctgtggaact tgatgacaag 600
gccaagagtg gcaaggaatt caatttaaag atgccgatat ccgagttgac attttccagt 660
ggtgctaaat gcatattcgg gcttgatttt tcactacgga aattgaccac cgaagctaaa 720
aattttttag aagtcaccct attccgattg gacaattcaa tattagcaat gtcgatgctg 780
ttgtttccat cgctgacttt catagcttgg ccattacggt tactttggga acgaattcga 840
ttttatatgc tatggtcacc agaaggtgtc tgctatgacg tcgcgaaaaa catagtcaaa 900
attcgacggg aattaggaac gaaatcagtg gatttcttgc aattgttgat gaatacgaag 960
agaattgatt caacaactga tgtggatttg gagatgtcgt ctgacgacgt taagcaaagt 1020
aatcttatat cgagcaaagc tggaaatggt gaacacattt cagagcacga gatcatatca 1080
aattcgatga ccttcctaat tgcgtcttat gaaacaacat cggtcaccct tcagttttgt 1140
ctacataatt tgatcaatca tcaaaatgtc caagatgagc tgagaaatca acttcgaaaa 1200
gccatccccg agggcagcga ttccatttct tcctccactt tggctgaaat tccattgatc 1260
aatcacatcg ttaaagaaac gctaaggatg ttccccccag cgtcaccgtt cgtaactaga 1320
gtggccaatg aggattacga atatgagggc gttgttatac cgaaaggatc agccatattt 1380
atcggagtca attcaatcca caatgatccg aaattgtggc ccgaacccga aaagtttctg 1440
ccgcagagat ttgaaagtga ctttgataaa ttgtcgtttt tgccatttgg cgctggccct 1500
aggaactgca tcgggatgag gttcgcgtat atggagattc aattggttct tgccaatctc 1560
atcttgaaat accgctttga gcctggacca tcgacagaaa agaagattga aactttggaa 1620
tcggtcttaa cactggtacc gaagaatgga gtcttttgta aagtaaccaa actctaagaa 1680
taaataaatc aggtgagggt gaagctgacc tggtccttgt gtgatcacag gtgacactta 1740
aatacaaaac atttaacaaa gaaatattct gaaa 1774
<210> 4
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
taatacgact cactataggg ccaacaaaaa gccaaatcgt 40
<210> 5
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
taatacgact cactataggg aacattgtgc gacaagttcg 40
<210> 6
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
taatacgact cactataggg atttttcatt gccggtttt 39
<210> 7
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
taatacgact cactataggg caaggccaat tttcgtttgt 40
<210> 8
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
taatacgact cactataggg ctatgacgtc gcgaaaaaca 40
<210> 9
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
taatacgact cactataggg ttcggtataa caacgccctc 40
<210> 10
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tccattgggt atctcgtt 18
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggatgatcgg tatagtctca 20
<210> 12
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
tcacccacat ttacatcc 18
<210> 13
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
atcgtgcaaa caagtccc 18
<210> 14
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
gttggtgctg tgcctgtt 18
<210> 15
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
agaatcccac gattggtc 18
<210> 16
<211> 500
<212> RNA
<213> 韭菜迟眼蕈蚊(Bradysia odoriphaga)
<400> 16
ccaacaaaaa gccaaaucgu caggaaucgg cggcguugac guugaaauga aggauuuguu 60
cucuagauau accaacgaug uuaucgcuuc cgccgcguuc gguuguaagg ucaauucauu 120
cgaaaaugaa ucgaacgacu uuuacaugaa cggcaagaaa auuuugaauu ucgauucacc 180
gaaagcggcu uugaaauuga uugcaaugag gacuuuaccu ggccuaauga aaaugaugga 240
caucaaucua acagacucag cauugacgaa auuuuuccga aaaaugguua uggacaacau 300
aaccacaaga gaaaaggagg gcauauucag gccggauaug aucaacauuu uaaugaaugu 360
gaggaaagga aagucuuuag acaaugugga caaggaugaa aaacaaucug gugaaggauu 420
cgcuacagug gaagagucac acauuggaac uaaacaaguu aaacgucaau ggacugacga 480
cgaacuuguc gcacaauguu 500
<210> 17
<211> 485
<212> RNA
<213> 韭菜迟眼蕈蚊(Bradysia odoriphaga)
<400> 17
auuuuucauu gccgguuuug aaacgucaag cucaacgaug aauuuuugca uguacgaacu 60
uagcaaaaau ccagacauuc agaagaaggu ccaugaagaa cucgacaaua ucuggaaauc 120
gggugaucua aaugaucuua cuuaugacgu ucugggcuca augaaauacc ucgacuggug 180
uaucgacgaa acucugcgaa aauauccaau uguaccguuc cuaaaucgag aaaguaccag 240
agaucaccaa uucuccggaa cgaauaugaa aaucgagaag ggaauucuca ucacaauucc 300
aguauugggu auucaucgcg aucccgaaau uuaugauaau ccgauggaau uccgaccaga 360
acgguucgag aacucaccaa ccgguaaucc gaauguacgg gguauuuguu acaugccguu 420
cggcaguggu ccuagaaauu gugucgggga acgaauggga aaacuacaaa cgaaaauugg 480
ccuug 485
<210> 18
<211> 492
<212> RNA
<213> 韭菜迟眼蕈蚊(Bradysia odoriphaga)
<400> 18
cuaugacguc gcgaaaaaca uagucaaaau ucgacgggaa uuaggaacga aaucagugga 60
uuucuugcaa uuguugauga auacgaagag aauugauuca acaacugaug uggauuugga 120
gaugucgucu gacgacguua agcaaaguaa ucuuauaucg agcaaagcug gaaaugguga 180
acacauuuca gagcacgaga ucauaucaaa uucgaugacc uuccuaauug cgucuuauga 240
aacaacaucg gucacccuuc aguuuugucu acauaauuug aucaaucauc aaaaugucca 300
agaugagcug agaaaucaac uucgaaaagc cauccccgag ggcagcgauu ccauuucuuc 360
cuccacuuug gcugaaauuc cauugaucaa ucacaucguu aaagaaacgc uaaggauguu 420
ccccccagcg ucaccguucg uaacuagagu ggccaaugag gauuacgaau augagggcgu 480
uguuauaccg aa 492

Claims (9)

1.一种韭菜迟眼蕈蚊细胞色素P450酶系基因沉默的方法,其特征在于,将细胞色素P450酶系基因的dsRNA与人工饲料混合后喂养韭菜迟眼蕈蚊;
所述细胞色素P450酶系基因包括CYP9J35-like、CYP6FV2-like和CYP3A56-like中的一种或多种;所述CYP9J35-like的核苷酸序列如SEQ ID NO.1所示;所述CYP6FV2-like的核苷酸序列如SEQ IDNO.2所示;所述CYP3A56-like的核苷酸序列如SEQ ID NO.3所示。
2.根据权利要求1所述的方法,其特征在于,所述韭菜迟眼蕈蚊为幼虫,所述幼虫的龄期为1~4龄。
3.根据权利要求1所述的方法,其特征在于,所述细胞色素P450酶系基因的dsRNA由细胞色素P450酶系基因的cDNA体外转录得到。
4.根据权利要求1所述的方法,其特征在于,所述dsRNA与人工饲料的混合比例为(10~100)μg:1g。
5.根据权利要求1所述的方法,其特征在于,所述喂养的时间为6~72h。
6.根据权利要求1所述的方法,其特征在于,合成所述细胞色素P450酶系基因的cDNA的引物为:
当所述细胞色素P450酶系基因为CYP9J35-like时,所述CYP9J35-like的正向引物的核苷酸序列如SEQ ID NO.4所示;所述CYP9J35-like的反向引物的核苷酸序列如SEQ ID NO.5所示;
当所述细胞色素P450酶系基因为CYP6FV2-like时,所述CYP6FV2-like的正向引物的核苷酸序列如SEQ ID NO.6所示;所述CYP6FV2-like的反向引物的核苷酸序列如SEQ ID NO.7所示;
当所述细胞色素P450酶系基因为CYP3A56-like时,所述CYP3A56-like的正向引物的核苷酸序列如SEQ ID NO.8所示;所述CYP3A56-like的反向引物的核苷酸序列如SEQ ID NO.9所示。
7.权利要求1~6任一项所述的方法在韭菜迟眼蕈蚊防治中的应用。
8.权利要求1~6任一项所述的方法在降低韭菜迟眼蕈蚊对杀虫剂的抗药性中的应用。
9.根据权利要求8所述的应用,其特征在于,所述杀虫剂包括吡虫啉、噻虫嗪、毒死蜱和氯氰菊酯中的一种或几种。
CN202110575414.7A 2021-05-26 2021-05-26 一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用 Active CN113308471B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110575414.7A CN113308471B (zh) 2021-05-26 2021-05-26 一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110575414.7A CN113308471B (zh) 2021-05-26 2021-05-26 一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用

Publications (2)

Publication Number Publication Date
CN113308471A CN113308471A (zh) 2021-08-27
CN113308471B true CN113308471B (zh) 2023-02-24

Family

ID=77374929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110575414.7A Active CN113308471B (zh) 2021-05-26 2021-05-26 一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用

Country Status (1)

Country Link
CN (1) CN113308471B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776189A (zh) * 2012-06-18 2012-11-14 中国农业科学院作物科学研究所 一种细胞色素P450基因dsRNA及其在抑制蚜虫生长中的应用
CN112831506A (zh) * 2019-11-22 2021-05-25 深圳大学 一种黄曲条跳甲细胞色素p450基因及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776189A (zh) * 2012-06-18 2012-11-14 中国农业科学院作物科学研究所 一种细胞色素P450基因dsRNA及其在抑制蚜虫生长中的应用
CN112831506A (zh) * 2019-11-22 2021-05-25 深圳大学 一种黄曲条跳甲细胞色素p450基因及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Identification and functional analysis of a cytochrome P450 gene involved in imidacloprid resistance in Bradysia odoriphaga Yang et Zhang;Chengyu Chen等;《Pesticide Biochemistry and Physiology》;20181231;第1-34页 *
Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga;Chengyu Chen等;《Pest Management Science》;20181231;第1-44页 *
Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga;Chengyu Chen等;《Scientific Reports》;20180207;第8卷;第1-9页 *
韭菜迟眼蕈蚊对新烟碱类杀虫剂的抗药性及抗性机制初探;陈澄宇等;《应用昆虫学报》;20161115(第06期);第1250-1254页 *

Also Published As

Publication number Publication date
CN113308471A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
Gautrat et al. Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector
Ermini et al. Complete mitochondrial genome sequence of the Tyrolean Iceman
CN107916264B (zh) 翅发育相关基因vestigial的dsRNA及其在防治橘小实蝇中的应用
Xia et al. MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium)
Bao et al. Silencing of Mythimna separata chitinase genes via oral delivery of in planta-expressed RNAi effectors from a recombinant plant virus
Öz et al. Microarray analysis of late response to boron toxicity in barley (Hordeum vulgare L.) leaves
Jacques et al. An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes
Chan et al. Early nodulin 93 protein gene: essential for induction of somatic embryogenesis in oil palm
CN110699471B (zh) 一种快速检测支原体的引物对和试剂盒及其应用
CN113308471B (zh) 一种韭菜迟眼蕈蚊细胞色素p450酶系基因沉默的方法及应用
CN108588072B (zh) 一种棉铃虫CYP4L11基因的dsRNA及其应用
WO2016090965A1 (zh) Hmg1基因及其在微孢子虫分子检测中的应用
CN113249397B (zh) 一种蛴螬海藻糖酶基因dsRNA及其应用
CN113234819B (zh) 长链非编码rna loc107987064的应用方法及检测、治疗制剂
CN113337617B (zh) 大黄鱼dna甲基化的分子标记及其在育种中的应用
CN108949770B (zh) 棉铃虫e75基因及其在rna介导的害虫防治应用
Koch-Paiz et al. Estimation of relative mRNA content by filter hybridization to a polyuridylic probe
CN108707674B (zh) 通过单核苷酸多态性预测褐飞虱群体对抗虫水稻品种ir36致害力水平的方法
CN111690643A (zh) Dna提取试剂、检测玉米籽粒转基因的试剂盒及方法
CN117025618B (zh) 一种对番茄红螨高效致死的靶标基因及其应用
CN109022598B (zh) 检测莲草直胸跳甲cp基因表达特性的引物及其方法
CN117050998B (zh) 一种miRNA在防治溴氰虫酰胺抗性烟粉虱中的应用
CN108624593B (zh) 一种苎麻的Bn-miR52及其应用
Ren et al. Identification and expression analysis of genes induced by phosphate starvation in leaves and roots of Brassica napus
Wen et al. Synchronous elicitation of development in root caps induces transient gene expression changes common to legume and gymnosperm species

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant