CN113301693A - 多模式调光电路和方法 - Google Patents

多模式调光电路和方法 Download PDF

Info

Publication number
CN113301693A
CN113301693A CN202110570083.8A CN202110570083A CN113301693A CN 113301693 A CN113301693 A CN 113301693A CN 202110570083 A CN202110570083 A CN 202110570083A CN 113301693 A CN113301693 A CN 113301693A
Authority
CN
China
Prior art keywords
signal
dimming
reference voltage
circuit
duty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110570083.8A
Other languages
English (en)
Other versions
CN113301693B (zh
Inventor
李可
李卓研
朱力强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
On Bright Electronics Shanghai Co Ltd
Original Assignee
On Bright Electronics Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by On Bright Electronics Shanghai Co Ltd filed Critical On Bright Electronics Shanghai Co Ltd
Priority to CN202110570083.8A priority Critical patent/CN113301693B/zh
Priority claimed from CN202110570083.8A external-priority patent/CN113301693B/zh
Publication of CN113301693A publication Critical patent/CN113301693A/zh
Priority to TW110136344A priority patent/TWI774572B/zh
Priority to US17/742,284 priority patent/US20220394828A1/en
Application granted granted Critical
Publication of CN113301693B publication Critical patent/CN113301693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/34Voltage stabilisation; Maintaining constant voltage

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本发明实施例公开了一种多模式调光电路和方法。根据本发明实施例,该多模式调光电路可以包括信号转换模块,可操作用于将调光信号转换为相应占空比的中间信号,其中,调光信号为模拟电压信号或脉宽调制信号;以及恒流控制模块,可操作用于基于中间信号的占空比来控制输出到光源的输出电流的大小,从而控制光源的亮度。通过上述技术方案,能够自适应模拟调光与脉宽调制调光,对输入的调光信号进行信息采集,并基于采集到的信息的处理结果来调节输出电流的大小,可以以较低的成本来实现优异的调光性能。

Description

多模式调光电路和方法
技术领域
本发明属于集成电路领域,尤其涉及一种多模式调光电路和方法。
背景技术
通常,在光源应用系统中,往往需要对光源的亮度进行控制与调节。目前,对光源的调光方式主要是通过采样模拟电压信号或者脉冲宽度调制(Pulse Width Modulation,PWM)信号来对光源的亮度进行调制。
然而,模拟调光与脉冲宽度调制(PWM)调光所需要的接口不同,相互不兼容,外围电路也不相同。因此,现有系统无法兼容多种模式的调光。
发明内容
本发明实施例提供了一种多模式调光电路和方法,能够自适应模拟调光与脉宽调制调光,对输入的调光信号进行信息采集,并基于采集到的信息的处理结果来调节输出电流的大小,可以以较低的成本来实现优异的调光性能。
第一方面,本发明实施例提供了一种多模式调光电路,该电路包括:信号转换模块,可操作用于将调光信号转换为相应占空比的中间信号,其中,所述调光信号为模拟电压信号或脉宽调制信号;以及恒流控制模块,可操作用于基于所述中间信号的占空比来控制输出到光源的输出电流的大小,从而控制所述光源的亮度。
第二方面,本发明实施例提供了一种多模式调光方法,应用于如第一方面所述的多模式调光电路,该方法包括:对调光信号进行采集;将所述调光信号转换为相应占空比的中间信号,其中,所述调光信号为模拟电压信号或脉宽调制信号;以及基于所述中间信号的占空比来控制输出到所述光源的输出电流的大小,从而控制所述光源的亮度。
本发明实施例的提供的多模式调光电路和方法,能够自适应模拟调光与脉宽调制调光,对输入的调光信号进行信息采集,并基于采集到的信息的处理结果来调节输出电流的大小,可以以较低的成本来实现优异的调光性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明一个实施例提供的多模式调光电路的结构示意图;
图2示出了本发明实施例提供的图1所示的信号转换模块110的结构示意图;
图3示出了在模拟调光场景下图2所示的信号转换模块110中各个信号的波形示意图;
图4a示出了在模拟调光场景下当V1=0V且V2=VH时Duty信号的占空比Dduty与模拟电压信号的电压值VDIM之间的关系示意图;
图4b示出了在模拟调光场景下当V1>0V且V2>VH时Duty信号的占空比Dduty与模拟电压信号的电压值VDIM之间的关系示意图;
图5示出了在PWM调光场景下图2所示的信号转换模块110中各个信号的波形示意图;
图6示出了在PWM调光场景下Duty信号的占空比Dduty与PWM信号的占空比之间的关系示意图;
图7示出了本发明实施例提供的图1中恒流控制模块120的结构示意图;
图8示出了图7所示的电平转换电路1201的输入信号Duty和输出信号Duty’的波形示意图;
图9a示出了在模拟调光场景下当V1>0V时基准电压Vref与模拟电压信号的电压值VDIM之间的关系示意图;
图9b示出了在模拟调光场景下当V1=0V时基准电压Vref与模拟电压信号的电压值VDIM之间的关系示意图;
图9c示出了在PWM调光场景下基准电压Vref与PWM信号的占空比DDIM之间的关系示意图;
图10示出了本发明另一实施例提供的恒流控制模块的结构示意图;以及
图11示出了本发明实施例提供的多模式调光方法的流程示意图。
具体实施方式
下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在现有技术的基础上,出于降低系统开发成本的需求,需要在不改变外围电路的基础上,使得系统能够兼容地工作在模拟调光或者脉冲宽度调制(PWM)调光应用中。因此,本发明实施例提供了一种多模式调光电路,其使得芯片能够兼容多种模式的调光,降低了调光系统设计的复杂度,以下对其进行详细的描述。
其中,模拟调光是指对输入端处的输入电压信号进行调光控制,通过调节该电压信号的电压值来对光源亮度进行控制;PWM调光是指对输入端处的输入PWM控制信号进行调光控制,通过调节该PWM信号的占空比来对光源亮度进行控制。
为了解决现有技术问题,本发明实施例提供了一种多模式调光电路和方法。下面首先对本发明实施例所提供的多模式调光电路进行介绍。
作为一个示例,图1示出了本发明一个实施例提供的多模式调光电路的结构示意图。如图1所示,该多模式调光电路100可以包括信号转换模块110和恒流控制模块120。
其中,该信号转换模块110的第一端可以连接至调光脚(标记为DIM),第二端可以连接至恒流控制模块120的第一端,该恒流控制模块120的第二端可以用于连接至光源,第三端可以接地。
作为一个示例,该信号转换模块110可以用于将DIM引脚上的调光信号转换为相应占空比的Duty信号(即,占空比信号),具体地,该信号转换模块110可以通过采样DIM引脚上的调光信号的信息来调制Duty信号的占空比,其中该调光信号可以为模拟电压信号或脉宽调制信号。因此,本发明实施例提供的上述多模式调光电路可以兼容模拟调光和脉冲宽度调制(PWM)调光,能够在调光信号的信息与Duty信号的占空比之间实现一一对应关系。
作为一个示例,该恒流控制模块120可以用于基于Duty信号的占空比来控制输出到光源的输出电流Iout的大小,从而控制光源的亮度。具体地,该恒流控制模块120可以通过采样Duty信号的占空比信息,以基于采样得到的信息来控制输出电流Iout的大小,从而控制光源的亮度。因此,本发明实施例提供的上述恒流控制模块120能够在Duty信号的占空比与输出电流Iout之间实现一一对应关系。
作为一个示例,该恒流控制模块120的控制方式可以是例如脉冲宽度调制、脉冲频率调制和线性控制等方式。
通过上述技术方案,能够通过对调光信号进行转换,例如转换为相应占空比的Duty信号,以基于该Duty信号的占空比来实现对光源亮度的控制,并且这种信号转换模块能够实现在不改变外围元件的基础上,兼容模拟调光和PWM调光,降低了调光系统设计的复杂度。
作为一个示例,该恒流控制模块120可以包括栅极控制模块1201、功率管M1以及电阻R等。其中,栅极控制模块1201的第一输入端可以连接至信号转换模块110的输出端,第二输入端可以连接至功率管M1的源极与电阻R的公共端(即,FB节点),输出端可以连接至功率管M1的栅极,功率管M1的源极可以经由电阻R接地,漏极可以用于连接至光源。
其中,电阻R可以用于采样输出电流Iout的大小,该栅极控制模块1201可以用于基于Duty信号和电阻R上的电压来产生栅极驱动信号,该栅极驱动信号可以用于控制流经功率管M1的输出电流Iout的大小。
作为一个示例,图2示出了本发明实施例提供的图1所示的信号转换模块110的结构示意图。该信号转换模块110可以用于产生一定频率的交流信号(标记为Ramp),以基于调光信号和交流信号来产生Duty信号。
具体地,如图2所示,该信号转换模块110可以包括振荡器1101和比较器1102等。其中,比较器1102的一个输入端(例如,正相输入端)可以连接至DIM引脚,另一输入端(例如,负相输入端)可以连接至振荡器1101的输出端,用于基于DIM引脚处的调光信号和来自振荡器1101的输出信号(即,Ramp)来产生Duty信号。
其中,振荡器1101可以用于输出固定周期T1的三角波信号或者锯齿波信号(此处以三角波作为示例进行说明,这仅作为示例而不意图是限制性的)(即,Ramp),该Ramp信号的低电平为V1,高电平为V2,比较器1102可以通过将DIM引脚处的调光信号和该Ramp信号的电压值进行比较,来产生Duty信号,该Duty信号的高电平为电源电压AVDD,低电平为gnd,即0V。
作为一个示例,当进行模拟调光时,DIM引脚处的调光信号为模拟电压信号,通过信号转换模块110可以将外部输入的模拟电压信号转换为内部的Duty信号。当进行PWM调光时,DIM引脚处的调光信号为PWM信号,通过信号转换模块110可以将外部输入的PWM信号转换为内部的Duty信号。
以下首先结合图3对模拟调光的关键信号的波形进行介绍。图3示出了在模拟调光场景下图2所示的信号转换模块110中各个信号的波形示意图。
如图3所示,在模拟调光场景下,DIM引脚处的调光信号为模拟电压信号,通过信号转换模块110(参见图1),将外部输入的模拟电压信号转换为内部的Duty信号。其中,该模拟电压信号的电压值范围为0V~VH,该VH大于或等于Ramp信号的高电平V2(其中,电路设计者可以根据VH的值与实际应用来调整Ramp信号的低电平V1和高电平V2的值)。参考图2和图3,当模拟电压信号的电压值大于Ramp电压值时,比较器1102可以输出高电平,即Duty信号处于高电平(例如,AVDD);当调光信号的电压值小于Ramp电压值时,比较器1102可以输出低电平,即Duty信号处于低电平(例如,gnd)。因此,在这样的工作原理下,Duty信号的占空比Dduty与模拟电压信号的电压值VDIM之间的函数关系式可以表示为如下:
当VDIM<V1时,DDuty=0; (公式1)
当V1<VDIM<V2时,DDuty=(VDIM-V1)/(V2-V1); (公式2)
当VDIM>V2时,DDuty=100% (公式3)
可见,在模拟调光场景下,通过本发明实施例提供的信号转换模块,可以在Duty信号的占空比Dduty与模拟电压信号的电压值VDIM之间形成一一对应关系。换句话说,Duty信号的占空比取决于模拟电压信号的电压值。
具体地,如图4a和图4b所示,其中,图4a示出了在模拟调光场景下当V1=0V且V2=VH时Duty信号的占空比Dduty与模拟电压信号的电压值VDIM之间的关系示意图;图4b示出了在模拟调光场景下当V1>0V且V2>VH时Duty信号的占空比Dduty与模拟电压信号的电压值VDIM之间的关系示意图。
以下结合图5对PWM调光的关键信号的波形进行介绍。图5示出了在PWM调光场景下图2所示的信号转换模块110中各个信号的波形示意图。
如图5所示,在PWM调光场景下,DIM引脚处的调光信号为PWM信号,通过信号转换模块110(参见图1),将外部输入的PWM信号转换为内部的Duty信号。其中,该PWM信号的电压值范围为0V~VDIM,并且PWM信号的高电平VDIM大于Ramp信号的高电平V2,PWM信号的低电平0V低于Ramp信号的低电平V1。参考图2和图5,当PWM信号的电压值处于高电平VDIM时,该PWM信号的高电平VDIM大于Ramp信号的高电平V2,比较器1102可以输出高电平,即Duty信号处于高电平;当PWM信号的电压值处于低电平时,该PWM信号的低电平0V小于Ramp信号的低电平V1,比较器1102可以输出低电平,即Duty信号处于低电平。因此,在这样的工作原理下,Duty信号与PWM信号同向,即Duty信号的占空比Dduty与PWM信号的占空比DDIM之间的函数关系式可以表示为如下:
DDuty=DDIM (公式4)
可见,在PWM调光场景下,通过本发明实施例提供的信号转换模块,可以在Duty信号的占空比Dduty与PWM信号的占空比之间形成一一对应关系。换句话说,Duty信号的占空比等于PWM信号的占空比。
具体地,如图6所示,图6示出了在PWM调光场景下Duty信号的占空比Dduty与PWM信号的占空比之间的关系示意图。
以下通过示例的方式对本发明实施例提供的图1所示的恒流控制模块120的具体实现方式进行详细介绍。参考图7,图7示出了本发明实施例提供的图1中恒流控制模块120的结构示意图。
作为一个示例,该恒流控制模块120可以用于将Duty信号的高电平从AVDD转换为基准电压Vref1,产生信号Duty’,然后对该信号Duty’进行滤波,产生基准电压Vref,从而基于该基准电压Vref来控制输出电流Iout的大小,其中,信号Duty’的相位和频率分别与Duty信号的相位和频率相同,即对Duty信号的相角信息进行传递。
进一步地,该恒流控制模块120可以用于对输出电流Iout进行采样,得到采样电压,基于基准电压Vref和采样电压来产生栅极驱动信号Gate,可以利用栅极驱动信号Gate来控制流经功率管的输出电流的大小。
具体地,如图7所示,该恒流控制模块120可以包括电平转换电路1201、滤波电路1202以及运放电路1203等,该示例是基于线性恒流控制方式进行介绍的,这旨在进行说明而不意图是限制性的。
作为一个示例,该电平转换电路1201可以用于在Duty信号处于低电平(例如,0V)时,将Duty信号作为输出信号(即,输出低电平),并且在Duty信号处于高电平(例如,AVDD)时,将基准电压Vref1作为输出信号,以将Duty信号转换为Duty’信号(其中,该Duty’信号的低电平为0V,高电平为Vref1),并且该Duty’信号的相位和频率分别与Duty信号的相位和频率相同,高电平不同。该滤波电路可以用于对Duty’信号进行滤波,以将Duty’信号转换为基准电压Vref,运放电路1203可以用于接收基准电压Vref和电阻Rc上的电压,以基于基准电压Vref和电阻Rc上的电压来产生栅极驱动信号Gate,其中电阻Rc可以用于采样输出电流Iout。
作为一个示例,该滤波电路1202可以为RC滤波电路,例如包括电阻R和电容C,其中,该电阻R可以连接在电平转换电路1201的输出端与运放电路1203的第一输入端(例如,正相输入端)之间,该电容C可以连接在运放电路1203的第一输入端与参考地之间。
作为一个示例,该电平转换电路可以用于对Duty信号与基准电压Vref1进行比较,并且在Duty信号小于基准电压Vref1时,输出低电平(例如,0V);在Duty信号大于基准电压Vref1时,输出高电平(例如,基准电压Vref1)。
作为一个示例,该电平转换电路1201可以包括比较器Q1、缓冲器Q2以及开关S等,其中,比较器Q1的一个输入端(例如,正相输入端)可以用于接收基准电压Vref1,另一输入端(例如,负相输入端)可以用于接收Duty信号,输出端可以连接至开关S,以使开关S在比较器Q1的控制下而连接至a端或b端,a端为信号转换模块110的输出端,b端为缓冲器Q2的输出端。
具体地,比较器Q1可以用于对Duty信号与基准电压Vref1进行比较,当Duty信号为0V时,该电压小于基准电压Vref1,比较器Q1控制开关S使其连接至a端,此时Duty’信号的电压值为0V;当Duty信号为AVDD时,该电压大于基准电压Vref1,比较器Q1控制开关S使其连接至b端,此时Duty’信号的电压值为缓冲器Q2的输出电压Vref1。可见,该电平转换电路1201可以用于传递Duty信号的相角信息,并且将Duty信号的高电平AVDD转换为Duty’信号的高电平Vref1。即,Duty’信号的相位和频率与Duty信号的相角和频率相同,二者的高电平不同。具体波形如图8所示,图8示出了图7所示的电平转换电路1201的输入信号Duty和输出信号Duty’的波形示意图。
作为一个示例,滤波电路1202可以用于对信号Duty’进行滤波,以将其转换为基准电压Vref,其中,基准电压Vref是基于基准电压Vref1和Duty信号的占空比的,具体地,基准电压Vref、基准电压Vref1和信号Duty的占空比之间的函数关系可以表示为如下:Vref=Vref1*DDuty。应注意,在绝大多数应用中,Vref=Vref1,即当基准电压Vref1的值为输出电流Iout最大时,对应恒流控制模块120输入的基准电压。
作为一个示例,调光引脚上的输入信号可以为模拟电压信号或者PWM信号,当输入信号为模拟电压信号时,基准电压Vref的大小取决于模拟电压信号的电压值,当输入信号为PWM信号时,基准电压Vref的大小取决于PWM信号的占空比。
具体地,当调光引脚上的输入信号为模拟电压信号时,基准电压Vref与模拟电压信号的电压值之间的函数关系可以表示为如下:
当VDIM<V1时,Vref=0 (公式5)
当V1<VDIM<V2时,Vref=Vref1*(VDIM-V1)/(V2-V1) (公式6)
当VDIM>V2时,Vref=Vref1 (公式7)
如图9a和图9b所示,图9a示出了在模拟调光场景下当V1>0V时基准电压Vref与模拟电压信号的电压值VDIM之间的关系示意图;图9b示出了在模拟调光场景下当V1=0V时基准电压Vref与模拟电压信号的电压值VDIM之间的关系示意图。
当调光引脚上的输入信号为PWM信号时,基准电压Vref与PWM信号的占空比DDIM之间的函数关系可以表示为如下:
Vref=Vref1*DDIM (公式8)
如图9c所示,图9c示出了在PWM调光场景下基准电压Vref与PWM信号的占空比DDIM之间的关系示意图。
作为一个示例,除了图1所示的恒流控制模块120之外,本发明实施例的恒流控制模块还可以采取其他实现方式,如图10所示,图10示出了本发明另一实施例提供的恒流控制模块的结构示意图。
如图10所示,该恒流控制模块130可以用于在Duty信号处于高电平时,输出恒定的输出电流Iout(即,满电流),并且在Duty信号处于低电平时,使得输出电流Iout为零,因此,可以基于Duty信号的占空比来控制平均输出电流Iout的大小,例如,平均输出电流Iout的大小可以等于上述满电流与Duty信号的占空比的乘积。
作为一个示例,该恒流控制模块130可以包括运放电路1301、功率管M1、开关管M2以及电阻Rc。其中,运放电路1301的第一输入端(例如,正相输入端)可以用于接收预设参考电压Vref(其为一固定值),第二输入端(例如,负相输入端)可以连接至功率管M1的源极,功率管M1的漏极可以用于连接至光源,并且功率管M1的源极还可以连接至开关管M2的漏极,开关管M2的栅极可以用于接收Duty信号,开关管M2的源极可以经由电阻Rc接地,该电阻Rc可以用于采样输出电流Iout。
具体地,在图1所示的实施例中,功率管M1一直处于导通状态,在图10所示的实施例中,功率管M1也一直处于导通状态,而开关管M2的导通与关断取决于Duty信号。例如,当Duty信号处于高电平时,开关管M2导通,运放电路1301可以用于基于参考电压Vref和电阻Rc上的电压来产生栅极驱动信号,以输出恒定的输出电流Iout(例如,满电流),当Duty信号处于低电平时,开关管M2关断,此时没有输出电流Iout,可见,通过上述方案,可以通过基于中间信号的占空比来控制平均输出电流的大小,例如,平均输出电流的大小可以等于满电流与Duty信号的占空比的乘积。
在图10所示的实施例中,通过利用Duty信号来对输出电流进行控制,从而对光源的亮度进行控制。其中平均输出电流Iout与Duty信号的占空比成一一对应关系。
此外,本发明实施例还提供了一种多模式调光方法,其应用于本发明实施例提供的多模式调光电路,例如,参考图11,图11示出了本发明实施例提供的多模式调光方法的流程示意图。
作为一个示例,该多模式调光方法可以包括以下步骤:S140,对多模式调光电路进行上电;S150,对调光脚上的调光信号进行采集;S160,将采集到的调光信号转换为相应占空比的Duty信号(例如,可以根据调光信号的类型来自动输出相应占空比的Duty信号),其中,该调光信号可以为模拟电压信号或脉宽调制信号;S170,基于Duty信号的占空比信息来控制并调整输出到光源的输出电流的大小,从而控制光源的亮度,最终实现通过调光引脚来调整光源的亮度。
作为一个示例,基于Duty信号的占空比来控制输出到光源的输出电流的大小可以包括当Duty信号处于高电平时,使得输出恒定的输出电流(例如,满电流),当Duty信号处于低电平时,使得输出电流为零,因此可以基于Duty信号的占空比来控制输出到光源的平均输出电流的大小。作为另一示例,基于Duty信号的占空比来控制输出到光源的输出电流的大小可以包括对Duty信号的相角信息进行传递,并且对Duty信号的高电平进行转换,例如从AVDD转换为基准电压Vref1,以将Duty信号(其高电平为AVDD)转换为Duty’信号(其高电平为Vref1)(参考图7),其中该Duty’信号的相位和频率分别与Duty信号的相位和频率相同,接下来,对Duty’信号进行滤波,以产生基准电压Vref,进而可以基于基准电压Vref对输出电流Iout进行调制,该相角信息可以包括相位和频率。
作为一个示例,该方法还可以包括利用电阻Rc(参考图7)对输出电流进行采样,得到采样电压,因此基于基准电压Vref对输出电流Iout进行调制进一步包括:基于基准电压Vref和采样电压来产生栅极驱动信号,利用该栅极驱动信号来控制输出电流Iout的大小。
作为一个示例,该方法可以进一步包括:在Duty信号处于低电平时,输出低电平,并且在Duty信号处于高电平时,输出基准电压Vref1,以产生Duty’信号,对Duty’信号进行滤波,以产生基准电压Vref,从而基于基准电压Vref和采样电压来产生栅极驱动信号。
作为一个示例,该方法可以进一步包括:对Duty信号与基准电压Vref1进行比较,以在Duty信号小于基准电压Vref1时,输出低电平,并且在Duty信号大于基准电压Vref1时,输出基准电压Vref1。
作为一个示例,基准电压Vref是基于基准电压Vref1和Duty信号的占空比的。具体地,在模拟调光场景下,Duty信号的占空比取决于模拟电压信号的电压值,在PWM调光场景下,Duty信号的占空比等于PWM信号的占空比。
应注意的是,以上仅介绍了多模式调光方法所包括的若干步骤,其他步骤在上面对多模式调光电路进行介绍时,进行了详细的描述,为了简化描述,此处不再赘述。
综上,通过本发明实施例提供的多模式调光电路和方法,通过将调光信号转换为中间信号,以基于中间信号的占空比来控制输出电流的大小,从而控制光源的亮度,能够自适应模拟调光与PWM调光,对输入的调光信号进行信息采集,并基于采集到的信息的处理结果来调节输出电流的大小,与现有技术相比,这种调光控制方式更加简单,由于其无需如现有技术那样对调光方式进行判断,从而有效地避免了传统方式中由于调光模式判断的错误而导致的芯片工作于错误的工作模式的情况,通过上述技术方案,可以利用芯片内部少量的资源,以较低的成本来实现优异的调光性能。
需要明确的是,本发明并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本发明的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本发明的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本发明的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本发明中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本发明不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本发明的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (17)

1.一种多模式调光电路,其特征在于,包括:
信号转换模块,可操作用于将调光信号转换为相应占空比的中间信号,其中,所述调光信号为模拟电压信号或脉宽调制信号;以及
恒流控制模块,可操作用于基于所述中间信号的占空比来控制输出到光源的输出电流的大小,从而控制所述光源的亮度。
2.根据权利要求1所述的电路,其特征在于,所述恒流控制模块进一步用于在所述中间信号处于高电平时,输出恒定的输出电流,并且在所述中间信号处于低电平时,使得所述输出电流为零,以基于所述中间信号的占空比来控制输出到所述光源的平均输出电流的大小。
3.根据权利要求1所述的电路,其特征在于,所述恒流控制模块进一步用于将所述中间信号的高电平转换为第一基准电压,产生经转换信号,对所述经转换信号进行滤波,产生第二基准电压,基于所述第二基准电压来控制所述输出电流的大小,其中,所述经转换信号的相位和频率分别与所述中间信号的相位和频率相同,所述第一基准电压为所述经转换信号的高电平。
4.根据权利要求3所述的电路,其特征在于,所述恒流控制模块包括功率管,所述恒流控制模块进一步用于对所述输出电流进行采样,得到采样电压,基于所述第二基准电压和所述采样电压来产生栅极驱动信号,利用所述栅极驱动信号来控制流经所述功率管的所述输出电流的大小。
5.根据权利要求4所述的电路,其特征在于,所述恒流控制模块包括:
电平转换电路,用于在所述中间信号处于低电平时将所述中间信号作为输出信号,并且在所述中间信号处于高电平时将所述第一基准电压作为输出信号,产生所述经转换信号;
滤波电路,用于对所述经转换信号进行滤波,以产生所述第二基准电压;以及
运放电路,用于基于所述第二基准电压和所述采样电压来产生所述栅极驱动信号。
6.根据权利要求5所述的电路,其特征在于,所述滤波电路包括电阻和电容器,其中:
所述电阻连接在所述电平转换电路和所述运放电路之间,并且所述电阻的远离所述电平转换电路的一端经由所述电容器接地。
7.根据权利要求5所述的电路,其特征在于,所述电平转换电路进一步用于对所述中间信号与所述第一基准电压进行比较,并且在所述中间信号小于所述第一基准电压时将所述中间信号作为输出信号,在所述中间信号大于所述第一基准电压时将所述第一基准电压作为输出信号。
8.根据权利要求7所述的电路,其特征在于,所述电平转换电路包括:
比较器,用于对所述中间信号与所述第一基准电压进行比较,并输出比较结果;
缓冲器,用于输出所述第一基准电压;以及
开关,用于基于所述比较结果而将所述中间信号作为输出信号或将所述第一基准电压作为输出信号。
9.根据权利要求3所述的电路,其特征在于,
所述第二基准电压是基于所述第一基准电压和所述中间信号的占空比的。
10.根据权利要求9所述的电路,其特征在于,
当所述调光信号为所述模拟电压信号时,所述中间信号的占空比取决于所述模拟电压信号的电压值;
当所述调光信号为所述脉宽调制信号时,所述中间信号的占空比等于所述脉宽调制信号的占空比。
11.根据权利要求1所述的电路,其特征在于,所述信号转换模块进一步用于产生一定频率的交流信号,基于所述调光信号和所述交流信号来产生所述中间信号。
12.一种多模式调光方法,应用于如权利要求1至11中任一项所述的多模式调光电路,其特征在于,所述方法包括:
对调光信号进行采集;
将所述调光信号转换为相应占空比的中间信号,其中,所述调光信号为模拟电压信号或脉宽调制信号;以及
基于所述中间信号的占空比来控制输出到所述光源的输出电流的大小,从而控制所述光源的亮度。
13.根据权利要求12所述的方法,其特征在于,所述基于所述中间信号的占空比来控制输出到所述光源的输出电流的大小,包括:
在所述中间信号处于高电平时,输出恒定的输出电流,并且在所述中间信号处于低电平时,使得所述输出电流为零,以基于所述中间信号的占空比来控制输出到所述光源的平均输出电流的大小。
14.根据权利要求12所述的方法,其特征在于,所述基于所述中间信号的占空比来控制输出到所述光源的输出电流的大小,包括:
将所述中间信号的高电平转换为第一基准电压,产生经转换信号,对所述经转换信号进行滤波,产生第二基准电压,基于所述第二基准电压来控制所述输出电流的大小,其中,所述经转换信号的相位和频率分别与所述中间信号的相位和频率相同,所述第一基准电压为所述经转换信号的高电平。
15.根据权利要求14所述的方法,其特征在于,所述恒流控制模块包括功率管,所述方法还包括:对所述输出电流进行采样,得到采样电压,基于所述第二基准电压和所述采样电压来产生栅极驱动信号,利用所述栅极驱动信号来控制流经所述功率管的所述输出电流的大小。
16.根据权利要求14所述的方法,其特征在于,
所述第二基准电压是基于所述第一基准电压和所述中间信号的占空比的。
17.根据权利要求16所述的方法,其特征在于,
当所述调光信号为所述模拟电压信号时,所述中间信号的占空比取决于所述模拟电压信号的电压值;
当所述调光信号为所述脉宽调制信号时,所述中间信号的占空比等于所述脉宽调制信号的占空比。
CN202110570083.8A 2021-05-25 2021-05-25 多模式调光电路和方法 Active CN113301693B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110570083.8A CN113301693B (zh) 2021-05-25 多模式调光电路和方法
TW110136344A TWI774572B (zh) 2021-05-25 2021-09-29 多模式調光電路和方法
US17/742,284 US20220394828A1 (en) 2021-05-25 2022-05-11 Dimming control systems and methods compatible with both analog voltage signals and pulse-width-modulation signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110570083.8A CN113301693B (zh) 2021-05-25 多模式调光电路和方法

Publications (2)

Publication Number Publication Date
CN113301693A true CN113301693A (zh) 2021-08-24
CN113301693B CN113301693B (zh) 2024-07-12

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993244A (zh) * 2021-11-25 2022-01-28 深圳市火乐科技发展有限公司 调光电路和发光装置
CN115226264A (zh) * 2022-07-06 2022-10-21 珠海市圣昌电子有限公司 一种通用型调光接口电路

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167676A (zh) * 2011-12-15 2013-06-19 海洋王照明科技股份有限公司 Led调光控制电路及具有该调光控制电路的led灯具
US20140042933A1 (en) * 2012-03-05 2014-02-13 Luxera, Inc. Apparatus and Method for Dimming Signal Generation for a Distributed Solid State Lighting System
CN103957648A (zh) * 2014-05-19 2014-07-30 成都启臣微电子有限公司 可控硅、模拟、pwm调光通用电路及led驱动芯片
US20160255693A1 (en) * 2015-02-27 2016-09-01 Diodes Incorporated Analog and digital dimming control for led driver
US20170339763A1 (en) * 2016-05-18 2017-11-23 Lextar Electronics Corporation Dimming module, dimming method and lighting device
CN107426874A (zh) * 2017-08-25 2017-12-01 赛尔富电子有限公司 一种用于led灯的调光控制电源
CN110225616A (zh) * 2019-06-06 2019-09-10 成都芯源系统有限公司 调光电路及其控制方法
CN211237683U (zh) * 2019-12-19 2020-08-11 昆山龙腾光电股份有限公司 背光调节电路及显示装置
TWM601945U (zh) * 2020-05-22 2020-09-21 大陸商昂寶電子(上海)有限公司 Led背光驅動電路及用於該電路的控制晶片
CN112333894A (zh) * 2020-10-29 2021-02-05 昂宝电子(上海)有限公司 调光控制电路和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167676A (zh) * 2011-12-15 2013-06-19 海洋王照明科技股份有限公司 Led调光控制电路及具有该调光控制电路的led灯具
US20140042933A1 (en) * 2012-03-05 2014-02-13 Luxera, Inc. Apparatus and Method for Dimming Signal Generation for a Distributed Solid State Lighting System
CN103957648A (zh) * 2014-05-19 2014-07-30 成都启臣微电子有限公司 可控硅、模拟、pwm调光通用电路及led驱动芯片
US20160255693A1 (en) * 2015-02-27 2016-09-01 Diodes Incorporated Analog and digital dimming control for led driver
US20170339763A1 (en) * 2016-05-18 2017-11-23 Lextar Electronics Corporation Dimming module, dimming method and lighting device
CN107426874A (zh) * 2017-08-25 2017-12-01 赛尔富电子有限公司 一种用于led灯的调光控制电源
CN110225616A (zh) * 2019-06-06 2019-09-10 成都芯源系统有限公司 调光电路及其控制方法
CN211237683U (zh) * 2019-12-19 2020-08-11 昆山龙腾光电股份有限公司 背光调节电路及显示装置
TWM601945U (zh) * 2020-05-22 2020-09-21 大陸商昂寶電子(上海)有限公司 Led背光驅動電路及用於該電路的控制晶片
CN112333894A (zh) * 2020-10-29 2021-02-05 昂宝电子(上海)有限公司 调光控制电路和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113993244A (zh) * 2021-11-25 2022-01-28 深圳市火乐科技发展有限公司 调光电路和发光装置
CN115226264A (zh) * 2022-07-06 2022-10-21 珠海市圣昌电子有限公司 一种通用型调光接口电路

Also Published As

Publication number Publication date
TW202247704A (zh) 2022-12-01
TWI774572B (zh) 2022-08-11
US20220394828A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
CN112654115B (zh) 电流源电路和led驱动电路
EP2393251B1 (en) System and method for transmitting a baseband real signal with a non-constant envelope using a polar transmitter
CN102237043B (zh) 驱动用于背光的发光二极管的电路和方法及背光驱动设备
US8294494B2 (en) Triangular-wave generating circuit synchronized with an external circuit
CN110536509B (zh) 调光控制方法和调光控制电路及应用其的功率变换器
CN101331809B (zh) 脉冲宽度调制装置和具有该装置的用于驱动光源的装置
CN102387630B (zh) 多模式调光电路及调光方法
CN104981075A (zh) 多功能led调光接口电路
CN101929632A (zh) Led发光装置及其驱动方法
CN110213856A (zh) 调光电路和方法
CN101009963B (zh) 用于冷阴极荧光灯的宽量程模拟电压处理的系统与方法
CN113301693B (zh) 多模式调光电路和方法
CN113301693A (zh) 多模式调光电路和方法
US8299720B2 (en) Operating resonant load circuit, dimming circuit and dimming method
CN113517810B (zh) 开关变换器控制系统和方法
Aller et al. Design of a Two Input Buck converter (TIBuck) for a Visible Light Communication LED driver based on splitting the power
CN107027224A (zh) 一种led调光电路和led驱动电路
CN216311303U (zh) Led背光驱动系统
US9949326B2 (en) Predictive LED forward voltage for a PWM current loop
CN112333894B (zh) 调光控制电路和方法
CN114038395B (zh) 电源驱动电路及驱动方法、显示装置
CN115767825A (zh) Led调光电路
CN114257223A (zh) 脉冲宽度调制信号产生装置
CN1567721A (zh) 调整pwm信号的频率与工作循环的pwm缓冲电路
JP2019054582A (ja) 制御回路、半導体光源駆動装置、及び電子機器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant