CN113298422A - Pollution source enterprise illegal production monitoring method based on electricity consumption data - Google Patents

Pollution source enterprise illegal production monitoring method based on electricity consumption data Download PDF

Info

Publication number
CN113298422A
CN113298422A CN202110668541.1A CN202110668541A CN113298422A CN 113298422 A CN113298422 A CN 113298422A CN 202110668541 A CN202110668541 A CN 202110668541A CN 113298422 A CN113298422 A CN 113298422A
Authority
CN
China
Prior art keywords
enterprise
production
electricity consumption
equipment
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110668541.1A
Other languages
Chinese (zh)
Other versions
CN113298422B (en
Inventor
张逸
姚文旭
刘雄飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Yili Youneng Power Technology Co ltd
Original Assignee
Fujian Yili Youneng Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Yili Youneng Power Technology Co ltd filed Critical Fujian Yili Youneng Power Technology Co ltd
Priority to CN202110668541.1A priority Critical patent/CN113298422B/en
Publication of CN113298422A publication Critical patent/CN113298422A/en
Application granted granted Critical
Publication of CN113298422B publication Critical patent/CN113298422B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • G06Q10/063114Status monitoring or status determination for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/24323Tree-organised classifiers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Abstract

The invention relates to a pollution source enterprise illegal production monitoring method based on electricity consumption data, which belongs to the technical field of energy monitoring and early warning, and comprises the steps of installing electricity consumption information acquisition equipment at an electricity consumption bus of a pollution source enterprise, and acquiring electricity consumption data of the total load of the enterprise; analyzing the importance degree of different load characteristics on classification based on a decision tree algorithm, and then selecting the load characteristics with higher importance degree in the process for subsequent training of a simplified model; training a decision tree classifier by using the load characteristics with higher importance degree screened in the last step and taking the combination of the on-off states of the enterprise production equipment and the enterprise environment-friendly equipment in the historical period as a label; and inputting the new multidimensional monitoring data into the trained classifier, and identifying the production behavior state of the polluted enterprise. According to the invention, the production behavior of the pollution source enterprise can be monitored only by arranging the power utilization information acquisition device at the power utilization bus of the enterprise, so that the number and the installation cost of the power utilization monitoring equipment are greatly reduced.

Description

Pollution source enterprise illegal production monitoring method based on electricity consumption data
Technical Field
The invention relates to a pollution source enterprise illegal production monitoring method based on electricity consumption data, and belongs to the technical field of energy monitoring and early warning.
Background
With the development of society, people pay more and more attention to the improvement of environmental quality, and the control on pollutant emission in relevant regulations is very strict, but only a few large-scale enterprises with organized emission incorporate automatic monitoring, and most small and medium-sized enterprises lack a supervision means.
Due to the fact that the number of enterprises is large, the types of industries are large, the process is complicated, a large amount of manpower, material resources and financial resources are consumed in the traditional mode of judging different types of pollution sources, and the production behaviors of the pollution source enterprises can be intuitively reflected by the electricity consumption data of the pollution source enterprises. At present, the electricity utilization information acquisition technology can acquire and store information such as voltage, current, voltage unbalance degree, total harmonic distortion rate and the like, a data basis is provided for monitoring production behaviors of pollution source enterprises, and powerful support is provided for environmental protection supervision work of related departments. To enterprise's environmental protection supervision, the environmental protection supervision platform based on power consumption data can carry out incessant power consumption control to blowdown and pollution treatment equipment, judges the start-stop time point, can carry out the blowdown and treat pollution linkage control, realizes no dead angle control, has compensatied the painful point that manual detection pollutant discharged.
However, the existing environmental monitoring scheme based on electricity consumption data analysis needs to install monitoring equipment on pollution treatment equipment, start and stop of the pollution treatment equipment are directly monitored, and whether illegal production behaviors exist in pollution source enterprises is further judged by combining the start and stop conditions of production equipment.
The invention discloses a regional industrial gaseous pollutant monitoring method and a system thereof in Chinese patent with publication number CN110849421A, which comprises a monitoring center, at least one electric parameter detection module, a communication module and a pollutant detection module; the monitoring center is communicated with the communication module and the pollutant detection module, and the electric parameter detection module is electrically connected with the communication module. The method comprises the steps of monitoring the operation electrical parameters of the production equipment and the pollutant discharge amount, uploading the detection data to a monitoring center, and processing the received data by the monitoring center to obtain the distribution condition of the regional industrial gaseous pollutants.
Above-mentioned reference example needs to carry out the monitoring of power consumption to all production line equipment in workshop and environmental protection equipment, if production equipment or environmental protection equipment are in a large number, not only with high costs, arrange the trouble moreover, and can only learn regional industry gaseous pollutant's distribution situation, can't report to the police to the enterprise of violating the regulations, consequently need improve urgently.
Disclosure of Invention
In order to overcome the defects that the existing environment-friendly detection scheme based on power consumption data analysis needs more monitoring equipment to be installed and the installation cost is high, the invention designs a pollution source enterprise illegal production monitoring method based on power consumption data.
In order to achieve the purpose, the invention adopts the following technical scheme:
a pollution source enterprise illegal production monitoring method based on electricity consumption data is characterized by comprising the following steps: the method comprises the following steps:
a1: installing an intelligent monitoring terminal for acquiring enterprise electricity utilization information at an enterprise electricity utilization bus;
a2: the method comprises the steps that an intelligent monitoring terminal obtains enterprise electricity utilization data in a period of time as load characteristics and obtains start-stop state data of the environment-friendly equipment in corresponding time;
a3: setting a three-phase apparent power threshold, acquiring total load three-phase apparent power of an enterprise in corresponding time through load characteristics, and judging the start-stop state of production equipment according to whether the total load three-phase apparent power of the enterprise exceeds the threshold or not;
a4: whether an enterprise breaks the production behavior in the corresponding time is obtained according to the start-stop state data of the environment-friendly equipment and the start-stop state of the production equipment; the load characteristics are used as a sample, whether an enterprise has illegal production behavior within corresponding time is used as an attribute label of the sample, a plurality of samples are collected as an initial sample set, a decision tree algorithm and the initial sample set are used for carrying out primary training to obtain a simplified classifier model, and a plurality of load characteristics close to a root node are screened from a decision tree of the simplified classifier model to be used as secondary training samples;
a5: training the simplified classifier model again by using the secondary training sample and the corresponding attribute label to obtain a trained separator;
a6: and inputting the real-time enterprise electricity utilization data acquired by the intelligent monitoring terminal into the trained classifier, and judging whether the enterprise has an illegal production behavior in the corresponding time period.
Further, the enterprise electricity utilization information collected by the intelligent monitoring terminal in the step a1 includes: each phase voltage, each phase current, each phase power, each harmonic voltage, each harmonic current, a total harmonic voltage distortion rate, a total harmonic current distortion rate, voltage deviation, voltage unbalance and power factors, wherein each phase power comprises each phase active power, each phase reactive power and each phase apparent power.
Further, in the step a3, the determining, according to whether the total load three-phase apparent power of the enterprise exceeds the threshold, the start-stop state of the production equipment specifically includes determining that the production equipment is in the start state when the total load three-phase apparent power of the enterprise exceeds the set threshold, and otherwise determining that the production equipment is in the stop state.
Further, step a4 specifically includes setting a data set as S, where S includes a load feature X and a sample attribute tag of each sample, where the load feature X is the enterprise electricity consumption data acquired by the intelligent monitoring terminal in step a2, and the sample attribute tag is set to three different values Fi (i is 1,2,3), and F1, F2, and F3 respectively represent that no environmental protection equipment is started in the production process, and three different production scenarios are started and stopped in the production process;
if the number of the categories Fi is Fi |, and the number of the samples in S is S |, the entropy of S is defined as:
Figure BDA0003118233920000031
wherein Pi is the probability that any sample belongs to Fi, and is recorded as:
Figure BDA0003118233920000032
the data in the S is divided according to the load characteristics X, if the load characteristics X have m different classes, the S is divided into m subsets { S1, S2, …, Sm }, the load characteristics X is used for dividing the sample set S, and then the entropy of the subset Si of the S is weighted and calculated, wherein the formula is as follows:
Figure BDA0003118233920000033
the information gain obtained under the load characteristic X is:
Gain(S,X)=Entropy(S)-EntropyX(S)
and finally, screening the characteristics X' of a plurality of nodes from top to bottom from the decision tree according to the requirement for the next step of simplifying the model.
Further, the step a5 specifically includes using the load characteristics X' screened in the step a4 as input quantities of the decision tree algorithm, and using a combination of start-stop states of the production equipment of the enterprise and the environmental protection equipment of the enterprise in the historical period as attribute tags of the algorithm, and retraining the simplified decision tree classifier.
Further, the step a6 specifically includes inputting the real-time enterprise power consumption information acquired by the intelligent monitoring terminal into the decision tree classifier trained in the step a5, and if the determination result is that the production behavior state of the environmental protection equipment is not started in the production process, performing environmental protection abnormity alarm, and performing field verification and management by a manager.
Compared with the prior art, the invention has the following characteristics and beneficial effects:
1. according to the invention, the intelligent detection terminal is arranged at the enterprise power utilization bus to acquire the enterprise power utilization information of the enterprise and the start-stop state data of the environmental protection equipment, the decision tree is constructed by using a decision tree algorithm to train the classifier model, and then the enterprise power utilization information subsequently monitored by the intelligent detection terminal is input into the trained classifier, so that whether the enterprise violates the rules or not can be judged.
2. The invention trains the classifier by a decision tree method, calculates the information gain of all possible characteristics from the root node to the node, selects the characteristic with the maximum information gain as the characteristic of the node, establishes different values of the characteristic on the child nodes, namely trains the multi-classification classifier, can directly select the production behavior state of 'no environmental protection equipment started in the production process' which is focused on, and is efficient and rapid.
3. The invention simplifies the index quantity used in the process of training the model by adopting the decision tree algorithm, and screens from top to bottom from the decision tree when selecting the node characteristics in the training process.
Drawings
FIG. 1 is a flow chart of the method of the present invention.
Detailed Description
The present invention will be described in more detail with reference to examples.
As shown in fig. 1, the method for monitoring illegal production of pollution source enterprises based on electricity consumption data of the embodiment includes the following steps:
a1: installing an intelligent monitoring terminal for acquiring enterprise electricity utilization information at an enterprise electricity utilization bus;
a2: the intelligent monitoring terminal acquires enterprise electricity utilization data in a period of time as load characteristics and acquires start-stop state data of the environment-friendly equipment in corresponding time, the time scale of data acquired by the intelligent electricity utilization monitoring terminal is in the minute level, 1min, 3min and 5min are commonly used, and the frequency of acquiring the data is higher than the acquisition frequency of acquiring electricity utilization information in the existing monitoring scheme by 15 min;
a3: setting a three-phase apparent power threshold, acquiring total load three-phase apparent power of an enterprise in corresponding time through load characteristics, and judging the start-stop state of production equipment according to whether the total load three-phase apparent power of the enterprise exceeds the threshold or not;
a4: whether an enterprise breaks the production behavior in the corresponding time is obtained according to the start-stop state data of the environment-friendly equipment and the start-stop state of the production equipment; the load characteristics are used as a sample, whether an enterprise has illegal production behavior within corresponding time is used as an attribute label of the sample, a plurality of samples are collected as an initial sample set, a decision tree algorithm and the initial sample set are used for carrying out primary training to obtain a simplified classifier model, and a plurality of load characteristics close to a root node are screened from a decision tree of the simplified classifier model to be used as secondary training samples;
the decision tree is a basic algorithm in machine learning, the core of the decision tree algorithm is to apply information gain criterion selection characteristics on each node of the decision tree and recursively construct the decision tree, and the specific method is as follows: calculating the information gains of all possible characteristics from the root node to the node, selecting the characteristic with the maximum information gain as the characteristic of the node, and establishing the characteristic in the child nodes according to different values of the characteristic; then recursively calling the above method for the nodes to construct a decision tree; stopping until the information gains of all the characteristics are very small or no characteristics can be selected, and obtaining a final decision tree;
a5: training the simplified classifier model again by using the secondary training sample and the corresponding attribute label to obtain a trained separator;
a6: and inputting the real-time enterprise electricity utilization data acquired by the intelligent monitoring terminal into the trained classifier, and judging whether the enterprise has an illegal production behavior in the corresponding time period.
Specifically, the start-stop state data of the environmental protection equipment in the step a2 and the start-stop state of the production equipment in the step A3 are combined to divide the production behavior state of the enterprise into: environmental protection equipment is not started in the production process, and the environmental protection equipment is started and the production is stopped in the production process.
Further, the enterprise electricity utilization information collected by the intelligent monitoring terminal in the step a1 includes: each phase voltage, each phase current, each phase power, each harmonic voltage, each harmonic current, total harmonic voltage distortion rate, total harmonic current distortion rate, voltage deviation, voltage unbalance and power factors, wherein each phase power comprises each phase active power, each phase reactive power and each phase apparent power, and each phase apparent power is monitoring data for judging the start-stop state of the production equipment in the step A3.
Further, in the step a3, the determining, according to whether the total load three-phase apparent power of the enterprise exceeds the threshold, the start-stop state of the production equipment specifically includes determining that the production equipment is in the start state when the total load three-phase apparent power of the enterprise exceeds the set threshold, and otherwise determining that the production equipment is in the stop state.
Further, step a4 specifically includes setting a data set as S, where S includes a load characteristic X and a sample attribute tag of each sample, where the load characteristic X is the enterprise electricity consumption data collected by the intelligent monitoring terminal in step a2, and the sample attribute tag is set to three different values Fi(i=1,2,3),F1、F2And F3Respectively representing three different production scenes of not starting environmental protection equipment in the production process, starting the environmental protection equipment in the production process and stopping the production;
setting class FiIs | FiIf the number of samples in S is | S |, the entropy of S is defined as:
Figure BDA0003118233920000061
wherein, PiIs that any sample belongs to FiThe probability of (d) is noted as:
Figure BDA0003118233920000071
the data in S is divided according to load characteristics X, the load characteristics X have m different classes, and then S is divided into m subsets { S1,S2,…,SmDividing the sample set S by the load characteristic X, and then dividing the subset S of SiThe entropy of (a) is weighted, and the formula is as follows:
Figure BDA0003118233920000072
in information theory, Entropy (Entropy) is a measure of uncertainty of a random variable, i.e., the larger the Entropy, the larger the uncertainty of the random variable;
the information gain obtained under the load characteristic X is:
Gain(S,X)=Entropy(S)-EntropyX(S)
the information gain refers to the change of the information entropy before and after the sample set S is divided, and is the split measurement standard of the sample set S, and the obtained information gain is larger, and the classification capability of the sample set S is stronger; the ID3 algorithm of the decision tree is equivalent to the selection of a probability model by a maximum likelihood method;
finally, screening the characteristics X' of a plurality of nodes from top to bottom from the decision tree for the next simplified model to use according to the requirement;
in the decision tree obtained in the step a4, the more the features of the nodes closer to the root node are, the higher the importance degree is, and the features X' of a certain number of nodes are selected from the decision tree from top to bottom as required for the next step of training the simplified model.
Further, the step a5 specifically includes using the load characteristics X' screened in the step a4 as input quantities of the decision tree algorithm, and using a combination of start-stop states of the production equipment of the enterprise and the environmental protection equipment of the enterprise in a historical period (i.e., no environmental protection equipment is started in the production process/production is stopped) as an attribute label of the algorithm, and retraining the simplified decision tree classifier.
Particularly, the production behavior state predicted and judged by the logistic regression classifier may have some errors with the actual state, the effect evaluation mainly adopts Accuracy (Accuracy) as an evaluation index, and samples with the predicted classification of the classifier being consistent with the real classification are recorded as True, and samples with the predicted classification of the classifier being inconsistent with the real classification are recorded as False;
the accuracy represents the ratio of the correct classification number of the model to the total number of samples, and is calculated as follows:
Figure BDA0003118233920000081
further, the step a6 specifically includes inputting the real-time enterprise power consumption information acquired by the intelligent monitoring terminal into the decision tree classifier trained in the step a5, and if the determination result is that the production behavior state of the environmental protection equipment is not started in the production process, performing environmental protection abnormity alarm, and performing field verification and management by a manager.
It is to be understood that the described embodiments are merely exemplary of the invention, and not restrictive of the full scope of the invention. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

Claims (6)

1. A pollution source enterprise illegal production monitoring method based on electricity consumption data is characterized by comprising the following steps: the method comprises the following steps:
a1: installing an intelligent monitoring terminal for acquiring enterprise electricity utilization information at an enterprise electricity utilization bus;
a2: the method comprises the steps that an intelligent monitoring terminal obtains enterprise electricity utilization data in a period of time as load characteristics and obtains start-stop state data of the environment-friendly equipment in corresponding time;
a3: setting a three-phase apparent power threshold, acquiring total load three-phase apparent power of an enterprise in corresponding time through load characteristics, and judging the start-stop state of production equipment according to whether the total load three-phase apparent power of the enterprise exceeds the threshold or not;
a4: whether an enterprise breaks the production behavior in the corresponding time is obtained according to the start-stop state data of the environment-friendly equipment and the start-stop state of the production equipment; the load characteristics are used as a sample, whether an enterprise has illegal production behavior within corresponding time is used as an attribute label of the sample, a plurality of samples are collected as an initial sample set, a decision tree algorithm and the initial sample set are used for carrying out primary training to obtain a simplified classifier model, and a plurality of load characteristics close to a root node are screened from a decision tree of the simplified classifier model to be used as secondary training samples;
a5: training the simplified classifier model again by using the secondary training sample and the corresponding attribute label to obtain a trained separator;
a6: and inputting the real-time enterprise electricity utilization data acquired by the intelligent monitoring terminal into the trained classifier, and judging whether the enterprise has an illegal production behavior in the corresponding time period.
2. The monitoring method for illegal production of pollution source enterprises based on electricity consumption data according to claim 1, characterized in that: the enterprise electricity consumption information collected by the intelligent monitoring terminal in the step A1 includes: each phase voltage, each phase current, each phase power, each harmonic voltage, each harmonic current, a total harmonic voltage distortion rate, a total harmonic current distortion rate, voltage deviation, voltage unbalance and power factors, wherein each phase power comprises each phase active power, each phase reactive power and each phase apparent power.
3. The monitoring method for illegal production of pollution source enterprises based on electricity consumption data according to claim 1, characterized in that: in step a3, the determining the start-stop state of the production equipment according to whether the total load three-phase apparent power of the enterprise exceeds the threshold specifically includes determining that the production equipment is in the start state when the total load three-phase apparent power of the enterprise exceeds the set threshold, and otherwise determining that the production equipment is in the stop state.
4. The monitoring method for illegal production of pollution source enterprises based on electricity consumption data according to claim 1, characterized in that: step A4 specifically includes setting a data set as S, where S includes each data setThe method comprises the steps of A, sampling load characteristics X and sample attribute labels, wherein the load characteristics X are enterprise electricity utilization data collected by the intelligent monitoring terminal in the step A2, and the sample attribute labels are set to three different values Fi(i=1,2,3),F1、F2And F3Respectively representing three different production scenes of not starting environmental protection equipment in the production process, starting the environmental protection equipment in the production process and stopping the production;
setting class FiIs | FiIf the number of samples in S is | S |, the entropy of S is defined as:
Figure FDA0003118233910000021
wherein Pi is any sample belonging to FiThe probability of (d) is noted as:
Figure FDA0003118233910000022
the data in S is divided according to load characteristics X, the load characteristics X have m different classes, and then S is divided into m subsets { S1,S2,…,SmDividing the sample set S by the load characteristic X, and then dividing the subset S of SiThe entropy of (a) is weighted, and the formula is as follows:
Figure FDA0003118233910000023
the information gain obtained under the load characteristic X is:
Gain(S,X)=Entropy(S)-EntropyX(S)
and finally, screening the characteristics X' of a plurality of nodes from top to bottom from the decision tree according to the requirement for the next step of simplifying the model.
5. The monitoring method for illegal production of pollution source enterprises based on electricity consumption data according to claim 1, characterized in that: step a5 specifically includes using the load characteristics X' screened in step a4 as input quantities of the decision tree algorithm, and using a combination of start-stop states of production equipment of the enterprise and environmental protection equipment of the enterprise in a historical period as an attribute label of the algorithm, and retraining the simplified decision tree classifier.
6. The monitoring method for illegal production of pollution source enterprises based on electricity consumption data according to claim 1, characterized in that: step a6 specifically includes inputting the real-time enterprise electricity consumption information acquired by the intelligent monitoring terminal into the decision tree classifier trained in step a5, and if the judgment result is that the production behavior state of the environmental protection equipment is not started in the production process, performing environmental protection abnormity alarm, and performing field verification and management by a manager.
CN202110668541.1A 2021-06-16 2021-06-16 Pollution source enterprise illegal production monitoring method based on electricity consumption data Active CN113298422B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110668541.1A CN113298422B (en) 2021-06-16 2021-06-16 Pollution source enterprise illegal production monitoring method based on electricity consumption data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110668541.1A CN113298422B (en) 2021-06-16 2021-06-16 Pollution source enterprise illegal production monitoring method based on electricity consumption data

Publications (2)

Publication Number Publication Date
CN113298422A true CN113298422A (en) 2021-08-24
CN113298422B CN113298422B (en) 2023-01-31

Family

ID=77328487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110668541.1A Active CN113298422B (en) 2021-06-16 2021-06-16 Pollution source enterprise illegal production monitoring method based on electricity consumption data

Country Status (1)

Country Link
CN (1) CN113298422B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113762619A (en) * 2021-09-08 2021-12-07 国家电网有限公司 Power distribution internet of things user load identification method, system, equipment and storage medium
CN113988711A (en) * 2021-11-22 2022-01-28 国网江苏省电力有限公司连云港供电分公司 Power consumption data-based monitoring method for stopping or limiting production of sewage disposal enterprises in control state
CN114118580A (en) * 2021-11-29 2022-03-01 国网山东省电力公司东营供电公司 Yellow river basin pollution source monitoring and early warning method based on electric power-environmental protection data fusion analysis
CN115908082A (en) * 2023-01-06 2023-04-04 佰聆数据股份有限公司 Enterprise pollution discharge monitoring method and device based on electricity utilization characteristic indexes
CN117455124A (en) * 2023-12-25 2024-01-26 杭州烛微智能科技有限责任公司 Environment-friendly equipment monitoring method, system, medium and electronic equipment for enterprises
CN117649061A (en) * 2024-01-30 2024-03-05 山东达斯特信息技术有限公司 Multi-node networking electricity analysis method and system for environmental protection monitoring
CN117649061B (en) * 2024-01-30 2024-04-26 山东达斯特信息技术有限公司 Multi-node networking electricity analysis method and system for environmental protection monitoring

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050144147A1 (en) * 2003-12-26 2005-06-30 Lee Shih-Jong J. Feature regulation for hierarchical decision learning
CN104766158A (en) * 2015-03-18 2015-07-08 福建望诚电子有限公司 Environment protection full-process monitoring system
US20160335425A1 (en) * 2014-06-03 2016-11-17 Tencent Technology (Shenzhen) Company Limited Classifier training method and apparatus, identity authentication method and system
US20170083920A1 (en) * 2015-09-21 2017-03-23 Fair Isaac Corporation Hybrid method of decision tree and clustering technology
CN108011367A (en) * 2017-12-04 2018-05-08 贵州电网有限责任公司电力科学研究院 A kind of Characteristics of Electric Load method for digging based on depth decision Tree algorithms
CN108960586A (en) * 2018-06-14 2018-12-07 华中科技大学 A kind of non-invasive load recognition methods adapting to scene changes
CN109492667A (en) * 2018-10-08 2019-03-19 国网天津市电力公司电力科学研究院 A kind of feature selecting discrimination method for non-intrusive electrical load monitoring
WO2019062418A1 (en) * 2017-09-30 2019-04-04 Oppo广东移动通信有限公司 Application cleaning method and apparatus, storage medium and electronic device
CN109684295A (en) * 2018-12-04 2019-04-26 河北申科电力股份有限公司 Environmental protection equipment running state analysis methods, devices and systems
CN209150722U (en) * 2018-11-28 2019-07-23 李�瑞 A kind of control system of environmental protection equipment power supply ability production equipment power supply
CN111077865A (en) * 2019-12-25 2020-04-28 江苏三希科技股份有限公司 Pollution source enterprise environment-friendly production load monitoring system and method
CN111428821A (en) * 2020-05-18 2020-07-17 江苏电力信息技术有限公司 Asset classification method based on decision tree
CN111523794A (en) * 2020-04-21 2020-08-11 国网四川省电力公司电力科学研究院 Environment-friendly management and control measure response studying and judging method based on power utilization characteristics of pollution emission enterprises
CN111783827A (en) * 2020-05-27 2020-10-16 中能瑞通(北京)科技有限公司 Enterprise user classification method and device based on load data
CN112184090A (en) * 2020-11-30 2021-01-05 广东浩迪创新科技有限公司 Standard electricity utilization feature library establishing method, environment-friendly monitoring method, system and monitor
CN112686473A (en) * 2021-01-22 2021-04-20 国网江苏省电力有限公司营销服务中心 Classification algorithm-based power consumption prediction method and prediction system
CN112787401A (en) * 2021-01-15 2021-05-11 浙江容大电力工程有限公司 Environment-friendly monitoring system and monitoring method based on electric power big data
CN112907929A (en) * 2021-01-29 2021-06-04 汇智道晟(舟山)科技有限公司 Environment-friendly monitoring system and method based on electricity utilization information

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050144147A1 (en) * 2003-12-26 2005-06-30 Lee Shih-Jong J. Feature regulation for hierarchical decision learning
US20160335425A1 (en) * 2014-06-03 2016-11-17 Tencent Technology (Shenzhen) Company Limited Classifier training method and apparatus, identity authentication method and system
CN104766158A (en) * 2015-03-18 2015-07-08 福建望诚电子有限公司 Environment protection full-process monitoring system
US20170083920A1 (en) * 2015-09-21 2017-03-23 Fair Isaac Corporation Hybrid method of decision tree and clustering technology
WO2019062418A1 (en) * 2017-09-30 2019-04-04 Oppo广东移动通信有限公司 Application cleaning method and apparatus, storage medium and electronic device
CN108011367A (en) * 2017-12-04 2018-05-08 贵州电网有限责任公司电力科学研究院 A kind of Characteristics of Electric Load method for digging based on depth decision Tree algorithms
CN108960586A (en) * 2018-06-14 2018-12-07 华中科技大学 A kind of non-invasive load recognition methods adapting to scene changes
CN109492667A (en) * 2018-10-08 2019-03-19 国网天津市电力公司电力科学研究院 A kind of feature selecting discrimination method for non-intrusive electrical load monitoring
CN209150722U (en) * 2018-11-28 2019-07-23 李�瑞 A kind of control system of environmental protection equipment power supply ability production equipment power supply
CN109684295A (en) * 2018-12-04 2019-04-26 河北申科电力股份有限公司 Environmental protection equipment running state analysis methods, devices and systems
CN111077865A (en) * 2019-12-25 2020-04-28 江苏三希科技股份有限公司 Pollution source enterprise environment-friendly production load monitoring system and method
CN111523794A (en) * 2020-04-21 2020-08-11 国网四川省电力公司电力科学研究院 Environment-friendly management and control measure response studying and judging method based on power utilization characteristics of pollution emission enterprises
CN111428821A (en) * 2020-05-18 2020-07-17 江苏电力信息技术有限公司 Asset classification method based on decision tree
CN111783827A (en) * 2020-05-27 2020-10-16 中能瑞通(北京)科技有限公司 Enterprise user classification method and device based on load data
CN112184090A (en) * 2020-11-30 2021-01-05 广东浩迪创新科技有限公司 Standard electricity utilization feature library establishing method, environment-friendly monitoring method, system and monitor
CN112787401A (en) * 2021-01-15 2021-05-11 浙江容大电力工程有限公司 Environment-friendly monitoring system and monitoring method based on electric power big data
CN112686473A (en) * 2021-01-22 2021-04-20 国网江苏省电力有限公司营销服务中心 Classification algorithm-based power consumption prediction method and prediction system
CN112907929A (en) * 2021-01-29 2021-06-04 汇智道晟(舟山)科技有限公司 Environment-friendly monitoring system and method based on electricity utilization information

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113762619A (en) * 2021-09-08 2021-12-07 国家电网有限公司 Power distribution internet of things user load identification method, system, equipment and storage medium
CN113762619B (en) * 2021-09-08 2023-07-28 国家电网有限公司 Distribution Internet of things user load identification method, system, equipment and storage medium
CN113988711A (en) * 2021-11-22 2022-01-28 国网江苏省电力有限公司连云港供电分公司 Power consumption data-based monitoring method for stopping or limiting production of sewage disposal enterprises in control state
CN114118580A (en) * 2021-11-29 2022-03-01 国网山东省电力公司东营供电公司 Yellow river basin pollution source monitoring and early warning method based on electric power-environmental protection data fusion analysis
CN115908082A (en) * 2023-01-06 2023-04-04 佰聆数据股份有限公司 Enterprise pollution discharge monitoring method and device based on electricity utilization characteristic indexes
CN117455124A (en) * 2023-12-25 2024-01-26 杭州烛微智能科技有限责任公司 Environment-friendly equipment monitoring method, system, medium and electronic equipment for enterprises
CN117455124B (en) * 2023-12-25 2024-03-08 杭州烛微智能科技有限责任公司 Environment-friendly equipment monitoring method, system, medium and electronic equipment for enterprises
CN117649061A (en) * 2024-01-30 2024-03-05 山东达斯特信息技术有限公司 Multi-node networking electricity analysis method and system for environmental protection monitoring
CN117649061B (en) * 2024-01-30 2024-04-26 山东达斯特信息技术有限公司 Multi-node networking electricity analysis method and system for environmental protection monitoring

Also Published As

Publication number Publication date
CN113298422B (en) 2023-01-31

Similar Documents

Publication Publication Date Title
CN113298422B (en) Pollution source enterprise illegal production monitoring method based on electricity consumption data
CN110097297B (en) Multi-dimensional electricity stealing situation intelligent sensing method, system, equipment and medium
CN111241154B (en) Storage battery fault early warning method and system based on big data
US20230384355A1 (en) Non-intrusive load monitoring method
CN108776276B (en) Power consumption abnormity detection method and system
CN105424395A (en) Method and device for determining equipment fault
CN110929918A (en) 10kV feeder line fault prediction method based on CNN and LightGBM
CN108304567B (en) Method and system for identifying working condition mode and classifying data of high-voltage transformer
CN110687473B (en) Fault positioning method and system for relay protection test of intelligent substation
CN112464995A (en) Power grid distribution transformer fault diagnosis method and system based on decision tree algorithm
CN110580492A (en) Track circuit fault precursor discovery method based on small fluctuation detection
CN101833324A (en) Intelligent fault diagnosis system in tread extrusion process and diagnosis method thereof
CN115222303B (en) Industry risk data analysis method and system based on big data and storage medium
CN111506635A (en) System and method for analyzing residential electricity consumption behavior based on autoregressive naive Bayes algorithm
CN114021610B (en) Fan fault recognition model training method and system based on transfer learning
CN113379005B (en) Intelligent energy management system and method for power grid power equipment
CN114138601A (en) Service alarm method, device, equipment and storage medium
CN110807174B (en) Effluent analysis and abnormity identification method for sewage plant group based on statistical distribution
CN117041312A (en) Enterprise-level information technology monitoring system based on Internet of things
CN117113135A (en) Carbon emission anomaly monitoring and analyzing system capable of sorting and classifying anomaly data
CN116205528A (en) Illegal construction identification method and system based on construction site power data
CN115879915A (en) Cross-platform standardized overhauling method for power plant
CN113191170B (en) Public facility two-dimensional code damage inspection effectiveness prediction method and system
CN115908082A (en) Enterprise pollution discharge monitoring method and device based on electricity utilization characteristic indexes
CN115712834A (en) Alarm false alarm detection method, device, equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant