CN113290052B - Rolling method of wide metal strip foil - Google Patents
Rolling method of wide metal strip foil Download PDFInfo
- Publication number
- CN113290052B CN113290052B CN202110411543.2A CN202110411543A CN113290052B CN 113290052 B CN113290052 B CN 113290052B CN 202110411543 A CN202110411543 A CN 202110411543A CN 113290052 B CN113290052 B CN 113290052B
- Authority
- CN
- China
- Prior art keywords
- foil
- roll
- rolling
- strip
- tension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011888 foil Substances 0.000 title claims abstract description 253
- 238000005096 rolling process Methods 0.000 title claims abstract description 159
- 239000002184 metal Substances 0.000 title claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000005253 cladding Methods 0.000 abstract description 46
- 230000009286 beneficial effect Effects 0.000 abstract description 16
- 238000011161 development Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 17
- 230000007935 neutral effect Effects 0.000 description 16
- 230000007547 defect Effects 0.000 description 13
- 238000009826 distribution Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000037303 wrinkles Effects 0.000 description 7
- 229910000881 Cu alloy Inorganic materials 0.000 description 5
- 238000003490 calendering Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000001050 lubricating effect Effects 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- 230000019771 cognition Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/40—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B13/00—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
- B21B13/02—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
- B21B13/023—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally the axis of the rolls being other than perpendicular to the direction of movement of the product, e.g. cross-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/021—Rolls for sheets or strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/46—Roll speed or drive motor control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/48—Tension control; Compression control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/68—Camber or steering control for strip, sheets or plates, e.g. preventing meandering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B39/00—Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B39/14—Guiding, positioning or aligning work
- B21B39/16—Guiding, positioning or aligning work immediately before entering or after leaving the pass
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Metal Rolling (AREA)
Abstract
一种宽幅金属带箔的轧制方法,使用具有不等径工作辊的轧机,所述轧机的某一工作辊的辊径大于另一工作辊的辊径;在轧制时,使两工作辊的辊面线速度相同,且在两工作辊形成的辊缝的入口侧或出口侧,使金属带箔包覆在某一工作辊的辊面上,形成包覆弧,通过该工作辊对金属带箔的背撑,使张力在包覆弧的横截面上均匀分布。本发明采用具有不等径工作辊的轧机对带箔进行轧制,既有利于带箔的减薄,又有利于获得较佳的板形。此外,本发明使带箔在工作辊上形成包覆弧,通过工作辊对带箔的背撑,使前张力在入口侧包覆弧的横截面上均匀分布,实现了对带箔的均张轧制,突破了制约带箔向更宽、更薄、更理想板形方向上发展的瓶颈,解决了行业内的技术难题。
A rolling method of a wide metal strip and foil, using a rolling mill with unequal diameter work rolls, the roll diameter of a certain work roll of the rolling mill is larger than the roll diameter of another work roll; The roll surfaces of the rolls have the same linear speed, and at the entrance or exit side of the roll gap formed by the two work rolls, the metal strip foil is wrapped on the roll surface of a certain work roll to form a cladding arc. Metal tape foil backing, so that the tension is evenly distributed in the cross-section of the cladding arc. The invention uses a rolling mill with unequal-diameter work rolls to roll the strip and foil, which is not only beneficial to thinning the strip and foil, but also beneficial to obtaining a better plate shape. In addition, the present invention enables the strip foil to form a cladding arc on the working roll, and through the back support of the strip foil by the working roll, the front tension is evenly distributed on the cross section of the cladding arc at the entrance side, realizing the uniform stretching of the strip foil Rolling breaks through the bottleneck that restricts the development of strip and foil in the direction of wider, thinner and more ideal shape, and solves the technical problems in the industry.
Description
技术领域technical field
本发明涉及轧制技术领域,尤其是涉及一种高精宽幅金属带材、箔材的轧制方法,用于获得良好的板形。The invention relates to the technical field of rolling, in particular to a rolling method of high-precision wide-width metal strips and foils, which is used to obtain good plate shapes.
背景技术Background technique
随着科技产业的进步,市场对高精宽幅薄带材、箔材(以下简称带箔)的需求越来越急迫。在当前的技术背景下,对于宽幅厚带材来说,其轧制技术已基本成熟,但在高精宽幅更薄带箔的轧制技术方面已显现出技术瓶颈,急需突破。对于较厚的带材,轧制后即便存在板形缺陷,仍可以通过拉矫或其他平整手段来精整修正板形,而对于更薄的带箔,尤其是极薄箔材,因缺乏后续的板形修正手段,原始轧制板形即为产品的最终板形。特别是对于铜及铜合金、不锈钢等变形抗力较大的带箔,受现有轧制技术板形控制能力的制约,难以实现稳定的高质量生产。据已知信息,目前纯铜箔量产所能达到的最薄轧制厚度为0.006mm、最大宽度为650mm,不锈钢箔量产所能达到的最小轧制厚度为0.02mm、最大宽度为600mm,而且轧制板形都不是很好,若继续增加幅宽,板形会变得更差。With the advancement of the technology industry, the market demand for high-precision wide-width thin strips and foils (hereinafter referred to as strips and foils) is becoming more and more urgent. Under the current technical background, the rolling technology for wide and thick strips is basically mature, but the technical bottleneck has emerged in the rolling technology of high-precision wide and thinner strips and foils, and a breakthrough is urgently needed. For thicker strips, even if there are shape defects after rolling, the shape can still be corrected by tension leveling or other leveling means, while for thinner strips and foils, especially very thin foils, due to lack of follow-up The shape correction means, the original rolling shape is the final shape of the product. Especially for strips and foils with high deformation resistance such as copper, copper alloys, and stainless steel, it is difficult to achieve stable high-quality production due to the restriction of the shape control ability of the existing rolling technology. According to known information, the thinnest rolling thickness that can be achieved in mass production of pure copper foil is 0.006mm, and the maximum width is 650mm. The minimum rolling thickness that can be achieved in mass production of stainless steel foil is 0.02mm, and the maximum width is 600mm. Moreover, the shape of the rolled plate is not very good. If the width continues to increase, the shape of the plate will become worse.
轧机稳定轧制的三大基础条件分别是辊系精度、润滑条件和张力精度。对于极薄带箔的轧制,压下量的减薄作用减弱,基本依靠工作辊压扁反弹量、轧制速度、以及较大的单位张力来实现带箔厚度的减薄。较厚带材轧制所选用的张力通常不超过带材屈服强度的16%,因此张力对带材的减薄作用并不明显,其主要作用是建立稳定的轧制运行状态。而极薄厚度的带箔轧制则有较大的区别,为了充分利用张力对带箔的减薄作用,采用的单位张力甚至达到材料屈服强度的60%。既然大张力对带箔的减薄作用大,自然对轧制板形的影响也大,则该张力对板形的影响主要表现为张力在带箔横截面上的分布均匀性。The three basic conditions for stable rolling of rolling mills are roll system accuracy, lubrication conditions and tension accuracy. For the rolling of ultra-thin strip and foil, the thinning effect of the reduction is weakened, and the thinning of the strip and foil thickness basically depends on the flattening rebound of the work roll, rolling speed, and larger unit tension. The tension selected for thicker strip rolling usually does not exceed 16% of the yield strength of the strip, so the effect of tension on strip thinning is not obvious, and its main function is to establish a stable rolling operation state. However, there is a big difference in the strip and foil rolling of extremely thin thickness. In order to make full use of the thinning effect of tension on the strip and foil, the unit tension used even reaches 60% of the yield strength of the material. Since the large tension has a great effect on the thinning of the strip and foil, it naturally has a great influence on the shape of the rolled plate. The influence of the tension on the shape of the strip is mainly manifested in the uniformity of the distribution of the tension on the cross-section of the strip and foil.
如图1所示,在理想的情况下,在带箔的横截面上(包括边部),单位宽度上所受的张力均匀、大小一致,但是,在实际生产中并非如此。实际的张力分布如图2所示,图2中张力在带箔横截面上的分布并不均匀,带箔两边缘的张力值最大,而中间部位的张力值偏小,图中的ΔT为张力沿带箔宽度B方向分布的最大值与最小值的差值,可以将比值ΔT/B称为张力的不均匀度。造成带箔在横截面上张力不均匀的因素很多,一类因素来自于材料成份、组织及退火的不均性,这类因素是随机的;另一类因素来自于轧制条件,这类因素是有规律可寻的,如带箔在多次减薄轧制过程中出现的边部厚度骤减现象,这种现象在论文《冷轧板带变形的三维分析》中有所记载,该论文通过有限元法模拟计算出了板材轧后边降和横向流动随板边距变化的情况,详见《轧钢》1999年第三期。根据轧辊压力公式:可知,区域厚度的波动伴随着金属材料的横向流动(在宏观上表现为板形异常),金属材料的横向流动导致区域内轧制力P1的波动,而轧制力P1的波动则导致区域内的张力S1波动。那么反过来,区域内的张力S1波动会导致轧制力P1的波动,而轧制力P1的波动又会对金属材料的横向流动造成影响,互为因果。这说明在轧制过程中,施加在带箔横截面上的张力是不均匀的,而且这个张力的不均匀性是普遍存在的。As shown in Figure 1, in an ideal situation, on the cross-section of the strip foil (including the edge), the tension per unit width is uniform and consistent, but this is not the case in actual production. The actual tension distribution is shown in Figure 2. In Figure 2, the distribution of tension on the cross-section of the foil is not uniform. The tension value at the two edges of the foil is the largest, while the tension value in the middle is relatively small. ΔT in the figure is the tension The difference between the maximum value and the minimum value distributed along the width B direction of the strip foil, the ratio ΔT/B can be called the non-uniformity of tension. There are many factors that cause the uneven tension of the strip foil on the cross section. One type of factor comes from the unevenness of material composition, structure and annealing. This type of factor is random; the other type of factor comes from rolling conditions. There are regularities to be found, such as the sudden decrease in the edge thickness of the strip and foil during the multiple thinning and rolling process. This phenomenon is recorded in the paper "Three-dimensional Analysis of Cold Rolled Strip Deformation". Through the finite element method, the edge drop and lateral flow change with the edge distance of the plate after rolling are simulated and calculated. For details, see the third issue of "Rolling Steel" in 1999. According to the roll pressure formula: It can be seen that the fluctuation of the thickness of the region is accompanied by the lateral flow of the metal material (shown as an abnormal plate shape in the macroscopic view), the lateral flow of the metal material causes the fluctuation of the rolling force P1 in the region, and the fluctuation of the rolling force P1 causes the fluctuation of the rolling force P1 in the region. The tension of S1 fluctuates. Then, conversely, the fluctuation of the tension S1 in the region will lead to the fluctuation of the rolling force P1, and the fluctuation of the rolling force P1 will affect the lateral flow of the metal material, which is mutual cause and effect. This shows that in the rolling process, the tension applied to the cross-section of the strip foil is not uniform, and the non-uniformity of this tension is ubiquitous.
在轧制过程中,前张力和后张力对带材的板形影响很大,该影响在论文《张力对冷轧板带变形的影响》中有所记载,该论文通过三维模拟系统详细论述了增加前后张力限制金属的横向流动,可以加大带材厚向变形,使断面厚度更加均匀,详见《钢铁》第35卷第四期。而对于带箔来说,增加前张力和后张力对带箔的板形影响更大。带箔在单位宽度上出现张力不均匀,局部轧制的变形抗力、辊缝、材料厚度就会不均匀,最终导致轧制板形出现缺陷(包括潜在的缺陷),比如在轧制过程中经常出现的波浪、皱褶。更为严重的是,两边区域张力的剧烈变化会造成带箔在两边部出现裂口,一旦出现裂口,则会迅速横向延伸,进而造成带箔断裂。带箔越宽,张力的不均匀度越大,板形就越难控制,这是目前制约带箔向更宽、更薄、更理想板形方向上发展的技术瓶颈,也是行业内长期以来难以解决的技术难题,而怎样使张力在带箔的横截面上均匀分布是解决问题的关键。In the rolling process, the pre-tension and post-tension have a great influence on the shape of the strip, which is recorded in the paper "The Influence of Tension on the Deformation of Cold-rolled Strip", which discusses in detail through the three-dimensional simulation system Increasing the front and rear tension to limit the lateral flow of metal can increase the thickness deformation of the strip and make the section thickness more uniform. For details, see the fourth issue of volume 35 of "Steel". For the strip foil, increasing the front tension and the back tension has a greater influence on the shape of the strip foil. If the strip foil has uneven tension on the unit width, the deformation resistance, roll gap, and material thickness of the local rolling will be uneven, which will eventually lead to defects (including potential defects) in the rolled plate shape. For example, in the rolling process, often Appearing waves, wrinkles. What's more serious is that the drastic change of the tension in the regions on both sides will cause cracks to appear on both sides of the ribbon foil. Once a crack occurs, it will quickly extend laterally, thereby causing the ribbon foil to break. The wider the strip and foil, the greater the unevenness of the tension, and the more difficult it is to control the shape of the strip. This is currently the technical bottleneck that restricts the development of the strip and foil to a wider, thinner, and more ideal strip shape. It is also a long-term difficulty in the industry. The technical problem to be solved, and how to make the tension evenly distributed on the cross section of the strip foil is the key to solving the problem.
如图3所示,这是目前带箔轧制的典型布置方式,无论国内还是国外,带箔5经过升降辊4、展平辊3前张后,都是沿轧制中心线6水平地进入辊缝中的。由图3可知,带箔5在进入辊缝前,位于下工作辊2与展平辊3之间的这一段带箔是始终处于悬空绷紧状态的,解决此处带箔横截面上张力的不均分布至关重要,直接影响到高精宽幅带箔轧制的成败。根据国家标准,轧制中心线6水平高的误差要求在0.05mm/m以内,之所以规定如此高的要求是因为要保证带材中性面的稳定,以实现带材力学性能的均匀。但是这在实际生产中是很难做到的,升降辊在油缸作用下的抖动、展平辊和工作辊的辊径误差、带材的悬垂等因素都会使带材的中性面偏向某一侧,这种偏离现象对于厚度较薄的带箔来说尤为严重,目前还没有较好的解决方案。As shown in Figure 3, this is the typical layout of strip foil rolling at present. Regardless of domestic or foreign countries, the
此外,如图4所示,无论是国内还是国外,轧机的上工作辊1和下工作辊2都是等直径设计的,从两辊轧机到二十辊轧机都是如此。这样的设计有利于工作辊的维护和互换,对于轧机来讲,其传动结构因此而得到了简化。工作辊直径的大小对带材的轧制是有影响的。周知的,工作辊直径越小,越有利于带箔5的轧薄,但是也带来了问题:在图4中,左侧工作辊的直径小、刚度小,对带箔5的咬入角大,轧制力的侧向分力大,因此,其侧向弯曲倾向大。此外,左侧工作辊对带箔5的咬入弧长短,不利于润滑介质均匀带入辊缝,造成压延弧区油膜厚度的不均匀。这些因素导致压延弧面沿带箔宽度方向的弧长波动性大,最终造成轧制板形产生缺陷。在相同的条件下,右侧工作辊的直径大、刚度大,对带箔5的咬入角小,轧制力的侧向分力小,因此,其侧向弯曲倾向小。此外,右侧工作辊对带箔5的咬入弧长更长,有利于润滑介质均匀带入辊缝,使压延弧区油膜的厚度更均匀。这些因素均有利于减小压延弧面沿带箔宽度方向的弧长波动性,从而获得更好的轧制板形。In addition, as shown in Figure 4, both domestic and foreign, the
综上所述,小直径的工作辊有利于轧薄,却受限于轧制板形难于控制,因此轧宽不宜过大;而大直径的工作辊有利于轧制板形的控制,适合轧宽,但不适合轧薄。对于厚度小于0.3mm的宽幅带箔来说,工作辊的直径必须足够小(通常直径在25-50mm),才能得到较大的轧制减薄量,而此时的板形将非常难以控制,这也是目前制约高精宽幅带箔轧制的瓶颈。To sum up, the small-diameter work rolls are good for thinning, but limited by the difficulty in controlling the rolled strip shape, so the rolling width should not be too large; while the large-diameter work rolls are conducive to the control of the rolled strip shape and are suitable for rolling. Wide, but not suitable for rolling thin. For wide strip foil with a thickness of less than 0.3mm, the diameter of the work roll must be small enough (usually 25-50mm in diameter) to obtain a large amount of rolling reduction, and the shape of the plate at this time will be very difficult to control , which is currently the bottleneck restricting high-precision wide-width strip and foil rolling.
发明内容Contents of the invention
为了克服背景技术中的不足,本发明公开了一种宽幅金属带箔的轧制方法,其目的在于:In order to overcome the deficiencies in the background technology, the invention discloses a rolling method of a wide metal strip and foil, the purpose of which is to:
1、使张力在带箔的横截面上均匀分布,对金属带箔进行均张轧制;1. Make the tension evenly distributed on the cross-section of the foil, and roll the metal strip and foil evenly;
2、克服背景技术中的技术难题,打破技术瓶颈,使带箔得到宽幅高精轧制。2. Overcome the technical difficulties in the background technology, break the technical bottleneck, and enable the strip and foil to be rolled with wide width and high precision.
为实现上述发明目的,本发明采用如下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention adopts following technical scheme:
一种宽幅金属带箔的轧制方法,使用具有不等径工作辊的轧机,所述轧机的某一工作辊的辊径大于另一工作辊的辊径;在轧制时,使两工作辊的辊面线速度相同,且在两工作辊形成的辊缝的入口侧或出口侧,使金属带箔包覆在某一工作辊的辊面上,形成包覆弧,通过该工作辊对金属带箔的背撑,使张力在包覆弧的横截面上均匀分布。A rolling method of wide metal strip and foil, using a rolling mill with unequal diameter work rolls, the roll diameter of a certain work roll of the rolling mill is larger than the roll diameter of another work roll; The roll surfaces of the rolls have the same linear speed, and at the entrance or exit side of the roll gap formed by the two work rolls, the metal strip foil is covered on the roll surface of a certain work roll to form a cladding arc. Metal tape foil backing, so that the tension is evenly distributed over the cross-section of the cladding arc.
进一步地改进技术方案,所述金属带箔包覆在辊径较大的工作辊的辊面上,形成包覆弧。To further improve the technical solution, the metal strip foil is coated on the roll surface of the work roll with a larger roll diameter to form a cladding arc.
进一步地改进技术方案,所述包覆弧是通过改变金属带箔进入辊缝或流出辊缝的角度获得的。To further improve the technical solution, the cladding arc is obtained by changing the angle at which the metal strip foil enters the roll gap or flows out of the roll gap.
进一步地改进技术方案,所述包覆弧的包覆角为α,0°<α≤90°。To further improve the technical solution, the wrapping angle of the wrapping arc is α, 0°<α≤90°.
进一步地改进技术方案,在辊缝的入口侧和出口侧,使金属带箔包覆在同一或不同工作辊的辊面上,形成入口侧包覆弧和出口侧包覆弧。To further improve the technical solution, on the entrance side and the exit side of the roll gap, the metal strip foil is wrapped on the roll surface of the same or different work rolls to form the entrance side cladding arc and the exit side cladding arc.
进一步地改进技术方案,所述金属带箔包覆在辊径较大的工作辊的辊面上。To further improve the technical solution, the metal strip foil is covered on the roll surface of the work roll with a larger roll diameter.
进一步地改进技术方案,入口侧包覆弧是通过改变金属带箔进入辊缝的角度获得的,出口侧包覆弧是通过改变金属带箔从辊缝流出的角度获得的。To further improve the technical solution, the wrapping arc at the entrance side is obtained by changing the angle at which the metal strip foil enters the roll gap, and the wrapping arc at the exit side is obtained by changing the angle at which the metal strip foil flows out of the roll gap.
进一步地改进技术方案,辊径较大的工作辊辊径是辊径较小的工作辊辊径的1.5-5倍。To further improve the technical solution, the roll diameter of the larger work roll is 1.5-5 times the roll diameter of the smaller work roll.
进一步地改进技术方案,在下道次轧制前,将金属带箔翻面,然后再进入轧机进行轧制。To further improve the technical solution, before the next pass of rolling, the metal strip and foil are turned over, and then enter the rolling mill for rolling.
进一步地改进技术方案,金属带箔的总轧制道次为偶数次。To further improve the technical solution, the total number of rolling passes of the metal strip and foil is an even number.
由于采用上述技术方案,相比背景技术,本发明具有如下有益效果:Due to the adoption of the above technical solution, compared with the background technology, the present invention has the following beneficial effects:
由实施例1可知,本发明采用具有不等径工作辊的轧机对带箔进行轧制,既有利于带箔的减薄,又有利于获得较佳的板形,突破了本领域技术人员对轧机工作辊的认知。此外,本发明在不等径工作辊辊缝的入口侧,使带箔在工作辊上形成包覆弧,通过工作辊对带箔的背撑,使前张力在入口侧包覆弧的横截面上均匀分布,实现了对带箔的均张轧制,突破了制约带箔向更宽、更薄、更理想板形方向上发展的瓶颈,解决了行业内长期以来难以解决的技术难题,因此具有重大的应用价值和经济价值。此外,带箔没有沿轧制中心线水平设置,打破了行业内的认知,此举本身就具有创造性。It can be seen from Example 1 that the present invention uses a rolling mill with unequal diameter work rolls to roll the strip and foil, which is not only beneficial to the thinning of the strip and foil, but also conducive to obtaining a better plate shape, which breaks through those skilled in the art. Knowledge of rolling mill work rolls. In addition, in the present invention, on the entrance side of the unequal-diameter work roll gap, the tape foil forms a wrapping arc on the work roll, and through the back support of the work roll to the strip foil, the front tension wraps the cross section of the arc on the entry side. Evenly distributed on the top, realized the uniform rolling of the strip and foil, broke through the bottleneck restricting the development of the strip and foil to a wider, thinner, and more ideal shape, and solved the technical problem that has been difficult to solve in the industry for a long time. Therefore, It has great application value and economic value. In addition, the strip foil is not arranged horizontally along the rolling centerline, which breaks the perception in the industry, which is itself creative.
由实施例2可知,本发明在不等径工作辊辊缝的出口侧,使带箔在工作辊的辊面上形成包覆弧,实现了后张力在出口侧包覆弧上的均匀分布,在带箔轧制关键的成型初期就消除了波浪、皱褶等缺陷的产生,然后再通过工作辊对带箔的背撑,使带箔的板形在轧制成型的后期得以稳定,从而获得较佳的板形。It can be known from Example 2 that the present invention forms a wrapping arc on the roll surface of the work roll with foil on the exit side of the unequal-diameter work roll gap, and realizes the uniform distribution of the back tension on the exit side wrapping arc, Defects such as waves and wrinkles are eliminated in the critical forming stage of strip foil rolling, and then the sheet shape of the strip foil is stabilized in the later stage of rolling forming through the back support of the work rolls, thus obtaining Better shape.
由实施例3及实施例4可知,本发明综合了入口侧包覆弧和出口侧包覆弧的均张作用,在实施例1和实施例2 有益效果的基础上,克服了不等径工作辊轧制所带来的缺点,不仅解决了带箔的卷曲变形问题,还意外地解决了带箔上下板面明亮度不同的问题。From
尤其重要的是,本发明的滑移减薄即有挤压减薄的效果,又有搓轧减薄的效果,而且使中性面稳定在带箔的中层部位,从而保证了带箔力学性能的均匀性。本发明突破了国家标准中对轧制中心线的严苛要求,真正工程化地实现了中性面的稳定性,解决了现有技术所不能够解决的技术难题,因此具有创造性。What is especially important is that the sliding thinning of the present invention has the effect of extrusion thinning and rolling thinning, and stabilizes the neutral plane at the middle part of the strip foil, thus ensuring the mechanical properties of the strip foil uniformity. The invention breaks through the stringent requirements on the rolling center line in the national standard, truly realizes the stability of the neutral plane by engineering, and solves the technical problems that cannot be solved by the prior art, so it is creative.
对于极薄带箔的轧制来说,基本上都是零辊缝或负辊缝轧制,对其减薄同时还要保证其板形的稳定是非常困难的,而这也是本发明需要解决的核心问题。本发明采用不等径工作辊的轧制方案,其利大于弊,总体有利于带箔的减薄,也有利于获得较佳的板形,这是现有等直径工作辊所不能够达到的技术效果。对于已长期陷入技术瓶颈的高精宽幅带箔的轧制来说,本发明无疑是一种技术上的突破。For the rolling of extremely thin strip and foil, it is basically zero roll gap or negative roll gap rolling. It is very difficult to reduce its thickness while ensuring the stability of its plate shape, and this is what the present invention needs to solve. core issue. The present invention adopts the rolling scheme of unequal-diameter work rolls, the advantages outweigh the disadvantages, and it is generally beneficial to the thinning of the strip foil, and is also conducive to obtaining a better plate shape, which cannot be achieved by the existing equal-diameter work rolls technical effect. The invention is undoubtedly a technical breakthrough for the rolling of high-precision wide strip foil which has been trapped in a technical bottleneck for a long time.
公知的,带箔越薄,轧制板形就越难以控制。目前行业内为了突破极限无所不用其极,但是还都没有找到有效的解决方案。本发明使用不等径工作辊的意义在于,虽然牺牲了一部分对带箔的减薄量,少许增加了轧制道次(往复轧制的次数),但重要的是使板形保持了稳定,避免或减少了因幅宽的增大而引起的轧制缺陷的发生,这对于宽幅带箔的高精轧制来说,其意义重大。It is well known that the thinner the strip foil, the more difficult it is to control the shape of the rolled strip. At present, the industry is doing everything possible to break through the limit, but no effective solution has been found yet. The significance of the use of unequal-diameter work rolls in the present invention is that although a part of the thinning of the strip foil is sacrificed and the number of rolling passes (number of reciprocating rolling) is slightly increased, the important thing is to keep the shape of the strip stable. It avoids or reduces the occurrence of rolling defects caused by the increase of the width, which is of great significance for the high-precision rolling of wide-width strip foil.
此外,本发明采用不等径工作辊对带箔进行轧制,突破了本领域技术人员对轧机工作辊的认知和偏见,为轧机的设计及轧制工艺的改进提供了新的思路。本发明的轧制方法还克服了不等径工作辊轧制所带来的缺点,为宽幅高精带箔的轧制提供了新的技术解决方案。In addition, the present invention uses unequal-diameter work rolls to roll strip and foil, which breaks through the cognition and prejudice of those skilled in the art on the work rolls of rolling mills, and provides new ideas for the design of rolling mills and the improvement of rolling processes. The rolling method of the invention also overcomes the shortcomings caused by the rolling of unequal-diameter work rolls, and provides a new technical solution for the rolling of wide-width and high-precision strips and foils.
本发明突破了技术瓶颈,为宽幅高精带箔的轧制提供了新的技术解决方案。The invention breaks through the technical bottleneck and provides a new technical solution for the rolling of wide-width high-precision strip and foil.
附图说明Description of drawings
图1为理想状态下施加在带箔横截面上的张力分布示意图。Figure 1 is a schematic diagram of the tension distribution applied to the cross-section of the strip foil under ideal conditions.
图2为实际施加在带箔横截面上的张力分布示意图。Fig. 2 is a schematic diagram of the tension distribution actually applied on the cross-section of the strip foil.
图3为目前带箔轧制的典型布置方式。Figure 3 is a typical layout of the current strip and foil rolling.
图4为现有轧机工作辊的结构示意图。Fig. 4 is a structural schematic diagram of a work roll of a conventional rolling mill.
图5为本发明在实施例1中的结构示意图。FIG. 5 is a schematic structural diagram of the present invention in
图6为皮带传动的示意图。Figure 6 is a schematic diagram of a belt drive.
图7为包覆弧上某体积单元的受力分析图。Figure 7 is a force analysis diagram of a certain volume unit on the cladding arc.
图8为带箔处于无背撑状态时某一体积单元的受力分析图。Fig. 8 is a force analysis diagram of a certain volume unit when the strip foil is in a state without back support.
图9为带箔处于背撑状态时某一体积单元的受力分析图。Fig. 9 is a force analysis diagram of a certain volume unit when the strip foil is in a back-supported state.
图10为实施例1中,辊缝入口侧包覆弧上某体积单元在厚度方向上的张力分布图。Fig. 10 is a tension distribution diagram in the thickness direction of a volume unit on the cladding arc at the entrance side of the roll gap in Example 1.
图11为带箔上下层在压延区的流速分布图。Fig. 11 is a flow velocity distribution diagram of the upper and lower layers of the foil in the calendering zone.
图12为本发明在实施例2中的结构示意图。FIG. 12 is a schematic structural diagram of the present invention in
图13为实施例2中,辊缝出口侧包覆弧上某体积单元在厚度方向上的张力分布图。Fig. 13 is a tension distribution diagram in the thickness direction of a certain volume unit on the wrapping arc at the exit side of the roll gap in Example 2.
图14为本发明在实施例3中的结构示意图。Fig. 14 is a schematic structural diagram of the present invention in
图15为实施例3中,辊缝出口侧包覆弧上某体积单元在厚度方向上的张力分布图。Fig. 15 is a diagram of the tension distribution in the thickness direction of a volume unit on the cladding arc at the exit side of the roll gap in Example 3.
图16为滑移减薄的原理示意图。Fig. 16 is a schematic diagram of the principle of slip thinning.
图17为本发明在实施例4中的结构示意图。Fig. 17 is a schematic structural diagram of the present invention in
图18为图17的局部放大结构示意图。FIG. 18 is a schematic diagram of a partially enlarged structure of FIG. 17 .
图中:1、上工作辊;2、下工作辊;3、展平辊;4、升降辊;5、带箔;6、轧制中心线;7、主动带轮;8、皮带;9、体积单元。In the figure: 1. Upper working roll; 2. Lower working roll; 3. Flattening roll; 4. Lifting roll; 5. Strip foil; 6. Rolling center line; 7. Driving pulley; 8. Belt; 9. volume unit.
具体实施方式Detailed ways
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。需要说明的是,在本发明的描述中,术语“前”、“后”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。Preferred embodiments of the present invention are described below with reference to the accompanying drawings. Those skilled in the art should understand that these embodiments are only used to explain the technical principles of the present invention, and are not intended to limit the protection scope of the present invention. It should be noted that, in the description of the present invention, the terms "front", "rear", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", Terms such as "outside" and other indicated directions or positional relationships are based on the directions or positional relationships shown in the drawings, which are only for convenience of description, and do not indicate or imply that the device or element must have a specific orientation, use a specific Azimuth configuration and operation, therefore, should not be construed as limiting the invention.
实施例1:Example 1:
一种宽幅金属带箔的轧制方法,用于铜合金带箔的轧制,铜合金带箔的最终轧制厚度为0.01mm,幅宽为800mm。带材与箔材的分界厚度为0.15mm,该铜合金带箔(以下简称带箔)的厚度已属于箔材。由于铜合金的变形抗力较大,要保证其板形的平整还是比较困难的。The invention discloses a rolling method of wide-width metal strip and foil, which is used for rolling copper alloy strip and foil. The final rolling thickness of the copper alloy strip and foil is 0.01mm, and the width is 800mm. The boundary thickness of the strip and the foil is 0.15mm, and the thickness of the copper alloy strip and foil (hereinafter referred to as the strip foil) already belongs to the foil. Due to the high deformation resistance of copper alloy, it is difficult to ensure the flatness of its plate shape.
如图5所示,在辊缝的入口侧设置有展平辊3,展平辊3的辊面低于轧制中心线6,带箔5经过展平辊3前张后,倾斜向上进入由一对工作辊构成的辊缝中,其中,上工作辊1的辊径为30mm,下工作辊2的辊径为60mm,下工作辊2的辊径是上工作辊1辊径的2倍,为了防止带箔5上下板面因轧制的线速度差而造成板形卷曲,上工作辊1与下工作辊2的辊面在轧制时的线速度相同。由于带箔5在进入辊缝前与轧制中心线6呈一定的夹角,因此,使带箔5在下工作辊2的辊面上形成入口侧包覆弧,入口侧包覆弧的包覆角为α,α为30°。由于入口侧包覆弧的存在,使下工作辊2对带箔5产生背撑,并使张力在入口侧包覆弧的横截面上均匀分布,其原理如下:As shown in Figure 5, a flattening
如图6所示,在皮带8传动中,主动带轮7顺时针带动皮带8转动,A点为皮带8进入主动带轮7的切入点,B点为皮带8脱离主动带轮7的切出点。从A点到B点的入口侧包覆弧内,主动带轮7对皮带8产生的摩擦力是累积增加的,因此皮带8在B点处的张力F2要小于其在A点处的张力F1,而且入口侧包覆弧的包覆角越大,F1与F2之间的差值就越大,这就造成了B点一侧的皮带8始终处于松弛的状态,而A点一侧的皮带8始终处于张紧状态。As shown in Figure 6, in the transmission of the
同样的道理,如图7所示,在轧制过程中,带箔5从左侧进入辊缝,中性点P在压延弧内,在中性点P的左侧,工作辊辊面的线速度大于带箔5进入辊缝的线速度,这就产生了速度差和摩擦力F3,即下工作辊2带动带箔5沿入口侧包覆弧转动,就如皮带8传动那样。图中在入口侧包覆弧上任取一个体积单元9,由于摩擦力F3的作用,作用在这个体积单元9上的近端张力F2小于其远端张力F1,这里表述的近端张力和远端张力是相对于距离辊缝的远近而言的。而对于该体积单元9右侧的下一个体积单元9来说,由于摩擦力F3的累积增大,作用在这个体积单元9上的远端张力的大小等于F2,而其近端张力的大小则小于F2,依次类推。由此可以得出,摩擦力F3从A点(入口侧包覆弧的起点)到B点(入口侧包覆弧的终点)是累积增加的,相应的,带箔5在体积单元9上所受的近端张力F2,从A点到B点是逐渐减小的。For the same reason, as shown in Figure 7, during the rolling process, the
如图8所示,图中在带箔5上任取一个体积单元9,由于张力的不均匀性,体积单元9C、D两边部的张力大于中间E部的张力,E部隆起而形成波纹。带箔5在悬空张紧的情况下,近端张力F2等于远端张力F1,此时,体积单元9在宽度方向上是向内收缩的,其内力F4是负值。As shown in Fig. 8, a
如图9所示,当该体积单元9进入入口侧包覆弧后,下工作辊2对其施加了背撑力T,使体积单元9弯曲变形。由于近端张力F2逐渐减小,使作用在该体积单元9宽度方向上的内力F4由负转正,并逐渐增大。内力F4的增大,使得体积单元9沿宽度方向向外延展,就像松弛的皮筋在宽度方向上变宽一样,进而展平带箔5的波纹部分。在展平过程中,作用在体积单元9C、D两边部的近端张力迅速减小,C、D两边部沿宽度方向向外延展,使得位于中间的E部与下工作辊2的辊面接触,E部与下工作辊2接触后,相应地增大了体积单元9中间部位的近端张力,进而实现近端张力F2在体积单元9横截面上的均匀分布。由图6可知,位于辊缝压延区的近端张力F2则为轧制的前张力,此处的前张力最小,分布在此处横截面上的前张力最均匀。还可以得知,入口侧包覆弧的包覆角越大,位于辊缝压延区的前张力越小,前张力分布得越均匀。As shown in FIG. 9 , when the
在轧制中,较大的前张力有利于板形的控制。入口侧包覆弧的存在,虽然使前张力在带箔5的横截面上均匀分布,但损失了部分前张力,因此需要卷取机或展平辊3对带箔5增加适当的前张力以补偿损失。在轧制时可以将入口侧包覆弧前端的张力增加到材料屈服强度的50-60%,充分利用张力对带箔5的减薄作用拉薄带箔5。对于带箔5的轧制来说,基本是无缝轧制,工作辊对带箔5的轧制过程可以看作是对带箔5的反复碾薄碾宽过程,卷取机和展平辊3可以看作是对带箔5的反复拉长拉窄过程,因此适当增加对带箔5的前张力更有利于带箔5的减薄和板形的控制。In rolling, a larger front tension is beneficial to the control of the shape of the plate. The existence of the wrapping arc on the entrance side makes the front tension evenly distributed on the cross-section of the
应当注意的是,近端张力F2在厚度方向上是呈梯度变化的,如图10所示,入口侧包覆弧与下工作辊2接触的一面,其张力小,远离下工作辊2的一面,其张力大,这在一定程度上补偿了前张力的损失,特别是对于较厚的带材来说,补偿效果更加明显。It should be noted that the near-end tension F2 changes in a gradient in the thickness direction. As shown in Figure 10, the side of the inlet side cladding arc in contact with the
如图11所示,图中阴影部分为变形区。当带箔5进入辊缝的变形区时,带箔5受工作辊挤压开始变形,由于入口侧包覆弧的存在,带箔5上层的形变量大于下层的形变量,上层板面质点在中性点P处的线速度与上工作辊1辊面的线速度达到一致,而下层板面滞后,质点在E点处的线速度才与下工作辊2辊面的线速度达到一致,致使带箔5上层的流出速度大于带箔5下层的流出速度,带箔5向下工作辊2的一侧卷曲,这说明压延区存在着层移现象。层移现象使带箔5的中性面偏向下层,而且会使带箔5会产生卷曲变形。卷曲变形在较大板厚的带材上表现得较为明显,但在厚度小于0.15mm的箔材上表现得并不明显,可通过后续的展平矫直等工序得以矫正。As shown in Figure 11, the shaded part in the figure is the deformation zone. When the
中性面的偏移会造成带箔力学性能的不均,由背景技术可知,在实际生产中实现中性面的稳定是很难做到的,既然很难做到,就没有必要非得按国标的要求来规定带箔进入辊缝的方式。对于某些应用领域来说,对于带箔力学性能的要求并不高,如使用铜带箔用来导电、或用于装饰、防腐等,完全没有必要对带箔力学性能的均匀性作过高的要求。因此,在本发明中,带箔5没有沿轧制中心线6水平地进入辊缝,其本身就已经打破了行业内的认知,因此具有创造性。The offset of the neutral plane will cause uneven mechanical properties of the foil. From the background technology, it is difficult to achieve the stability of the neutral plane in actual production. Since it is difficult to achieve, there is no need to follow the national standard The requirements to specify the way the foil enters the roll gap. For some application fields, the requirements for the mechanical properties of the strip foil are not high, such as using copper strip foil for electrical conduction, or for decoration, anti-corrosion, etc., there is no need to overstate the uniformity of the mechanical properties of the strip foil requirements. Therefore, in the present invention, the
由图11可知,上工作辊1的辊径小,对带箔5的压入量大,特别有利于带箔5的轧薄,能够减少轧制的总道次,但是上工作辊1的侧向弯曲倾向大,不利于润滑介质均匀带入辊缝。而下工作辊2的侧向弯曲倾向小,有利于润滑介质均匀带入辊缝,叠加包覆弧对带箔5的均张作用,从而使带箔5能够获得较佳的板形,但是下工作辊2的辊径大,对带箔5的压入量小,不利于带箔5的轧薄。本实施例结合了大直径工作辊和小直径工作辊的优点:相对于与上工作辊1等径的传统工作辊来说,下工作辊2辊径的增大,有利于获得更好的板形;相对于与下工作辊2等径的传统工作辊来说,上工作辊1辊径的减小,对带箔5的压入量大,有利于带箔5的轧薄。相应的,本实施例也集中了大直径工作辊和小直径工作辊的缺点:相对于与上工作辊1等径的传统工作辊来说,下工作辊2辊径的增大,不有利于带箔5的轧薄。相对于与下工作辊2等径的传统工作辊来说,上工作辊1辊径的减小,不利于获得更好的板形。可以说,大辊径工作辊和小辊径工作辊的优缺点是一组不可调和的矛盾。It can be seen from Fig. 11 that the roll diameter of the
轧机稳定轧制的三大基础条件分别是辊系精度、润滑条件和张力精度。在辊系精度、张力精度无法继续提高的情况下,改善润滑条件则对板形的稳定起到了至关重要的作用。由图11可知,润滑条件与咬入角的大小相关。在变形区的入口处,下工作辊2的咬入角小,与带箔5下板面形成的楔形缝隙更有利于润滑油的进入,产生油楔效应,并建立起稳定的承载能力。此外,下压延弧长较长,接触面大,沿带箔宽度方向的弧长波动性小,这些都有利于板形的稳定。相对于下工作辊2,上工作辊1与带箔5上板面形成的楔形缝隙虽然不利于建立稳定的承载能力,但是带箔5下板面板形的稳定对上板面起到了牵制作用,从整体上有利于板形的稳定。综上所述,小辊径工作辊的主要贡献在于对带箔的减薄,而大辊径工作辊的主要贡献在于使带箔的整体板形稳定,减少波浪、褶皱等缺陷的产生。总体来说,虽然牺牲了一小部分减薄量,但是对于整体板形的稳定是有利的。The three basic conditions for stable rolling of rolling mills are roll system accuracy, lubrication conditions and tension accuracy. In the case that the accuracy of the roll system and the tension accuracy cannot be further improved, improving the lubrication conditions plays a vital role in stabilizing the shape of the plate. It can be seen from Figure 11 that the lubrication condition is related to the bite angle. At the entrance of the deformation zone, the bite angle of the
对于0.01mm及以下厚度的极薄带箔来说,基本都是负辊缝轧制,压下量已不再起决定性的作用。加之变形区的反弹,使用较大辊径的现有等径工作辊已经无法有效实现对带箔的减薄,只能采用更小辊径的工作辊。而如果采用现有的更小辊径的等径工作辊,则不能实现带箔的轧宽,轧宽则会造成板面缺陷,这是目前制约高精宽幅带箔轧制的瓶颈。带箔越薄,轧制板形就越难控制是行业内的公知。目前行业内为了突破极限,无所不用其极,但是还都没有找到有效的解决方案。本发明使用不等径工作辊的意义在于,虽然牺牲了一部分对带箔的减薄量,少许增加了轧制道次(往复轧制的次数),但重要的是使板形保持了稳定,避免或减少了因幅宽的增大而引起的轧制缺陷的发生,这对于宽幅带箔的高精轧制来说,其意义重大。For the ultra-thin strip and foil with a thickness of 0.01mm and below, it is basically negative roll gap rolling, and the reduction no longer plays a decisive role. In addition to the rebound in the deformation zone, the use of existing equal-diameter work rolls with larger roll diameters has been unable to effectively reduce the thickness of the strip foil, and only smaller roll diameter work rolls can be used. However, if the existing equal-diameter work rolls with smaller roll diameters are used, the rolling width of the strip and foil cannot be realized, and the rolling width will cause surface defects, which is currently the bottleneck restricting high-precision wide-width strip and foil rolling. It is well known in the industry that the thinner the strip foil, the more difficult it is to control the rolled profile. At present, in order to break through the limit, the industry is doing everything possible, but no effective solution has been found yet. The significance of the use of unequal-diameter work rolls in the present invention is that although a part of the thinning of the strip foil is sacrificed and the number of rolling passes (number of reciprocating rolling) is slightly increased, the important thing is to keep the shape of the strip stable. It avoids or reduces the occurrence of rolling defects caused by the increase of the width, which is of great significance for the high-precision rolling of wide-width strip foil.
由实施例1可知,本发明在辊缝的入口侧,使带箔5在下工作辊2上形成入口侧包覆弧,通过下工作辊2对带箔5的背撑,使张力在入口侧包覆弧的横截面上均匀分布,实现了对带箔5的均张轧制,突破了制约带箔5向更宽、更薄、更理想板形方向上发展的瓶颈,解决了行业内长期以来难以解决的技术难题,因此具有重大的应用价值和经济价值。本发明采用具有不等径工作辊的轧机对带箔进行轧制,既有利于带箔的减薄,又有利于获得较佳的板形。It can be seen from Example 1 that the present invention forms the wrapping arc of the
应当注意的是,使带箔5在下工作辊2上形成入口侧包覆弧的并不局限于展平辊3,还包括所有的机前调整辊,比如S辊、高低辊,或其组合。只要调整距离辊缝最近的一个机前调整辊,使带箔5在进入辊缝前与轧制中心线6呈一定的夹角,就可实现带箔5在下工作辊2上形成入口侧包覆弧。在本实施例中,入口侧包覆弧形成在下工作辊2上,基于同样的道理,入口侧包覆弧也可以形成在上工作辊1上。It should be noted that the wrapping arc of the
实施例2:Example 2:
如图12所示,本实施例与实施例1不同的是,带箔5沿轧制中心线6水平地进入辊缝,在辊缝的出口侧设置有展平辊3,展平辊3的辊面高于轧制中心线6。展平辊3对带箔5进行后张,使带箔5在上工作辊1的辊面上形成出口侧包覆弧,出口侧包覆弧的包覆角为β,β同样为30°。由于出口侧包覆弧的存在,使上工作辊1对带箔5产生背撑,并使张力在出口侧包覆弧的横截面上均匀分布,其原理如下:As shown in Figure 12, the difference between this embodiment and
如图13所示,从辊缝流出的带箔5包覆在上工作辊1上,形成出口侧包覆弧。由于带箔5流出的线速度V大于上工作辊1辊面的线速度,因此上工作辊1对出口侧包覆弧上任一体积单元9产生反向的摩擦力F4,在体积单元9上还作用有近端的张力F5和远端的张力F6。根据实施例1中的阐述可知,摩擦力F4从M点到N点是逐渐增大的,同样的,远端张力F6也相应增大。远端张力F6在N点达到最大,而此处的远端张力F6即为后张力。后张力不仅能防止带箔5跑偏,还有能降低轧制压力,有助于带箔5的高速轧制。由于带箔5在流出辊缝时,其流出线速度是大于工作辊辊面的线速度的,因此可以将带箔5理解为皮带,将上工作辊1理解为从动皮带轮,那么,带箔5带动上工作辊1旋转,就如皮带带动从动皮带轮旋转,出口侧包覆弧越大,传动的力矩就越大,因此降低了上工作辊1的转矩,减少了主电机的能量消耗。As shown in FIG. 13 , the
尤为重要的是,带箔5从辊缝流出后,其所受后张力是逐渐增大的,基于实施例1中的机理,后张力在辊缝的出口处最小,而此处横截面上的后张力分布也最均匀,这对于带箔5板形的控制是很重要的。由背景技术中的论述可知,只有张力在带箔横截面上均匀分布,才能防止板形出现波浪、皱褶等缺陷,而本发明通过带箔5在上工作辊1辊面上的包覆,实现了张力在辊缝出口处的均匀分布,在带箔轧制的成型初期,就消除了波浪、皱褶等缺陷的产生,从而能够获得较佳的板形。随着体积单元9的继续流出,作用在体积单元9横截面上的远端张力F6逐渐增大,张力不均趋势开始明显,但是由于上工作辊1对带箔5的背撑作用,使带箔5不再悬空抖动,在带箔轧制的关键成型期内稳定住了板形,进而防止板形因张力不均而出现波浪、皱褶等缺陷。It is particularly important that after the
由实施例2可知,本发明在辊缝的出口侧,使带箔5在上工作辊1的辊面上形成出口侧包覆弧,实现了后张力在出口侧出口侧包覆弧上的均匀分布,在带箔轧制关键的成型初期就消除了波浪、皱褶等缺陷的产生,然后再通过上工作辊1对带箔5的背撑,使带箔5的板形在轧制成型的后期得以稳定,从而获得较佳的板形。此外,降低了上工作辊1的转矩,减少了轧机的能量消耗。It can be known from Example 2 that the present invention makes the
应当注意的是,使带箔5在上工作辊1上形成出口侧包覆弧的并不局限于展平辊3,还包括所有的机后调整辊,比如S辊、高低辊,或其组合。只要调整距离辊缝最近的一个2机后调整辊,使带箔5从辊缝出来后与轧制中心线6呈一定的夹角,就可实现带箔5在上工作辊1上形成出口侧包覆弧。在本实施例中,出口侧包覆弧形成在上工作辊1上,基于同样的道理,出口侧包覆弧也可以形成在下工作辊2上。It should be noted that what makes the
实施例3:Example 3:
本实施例可以看做是实施例1和实施例2的组合,如图14所示,带箔5在辊缝的入口侧与下工作辊2形成入口侧包覆弧,入口侧包覆弧的包覆角α为30°;带箔5在辊缝的出口侧与上工作辊1形成出口侧包覆弧,出口侧包覆弧的包覆角β也为30°。由于入口侧包覆弧和出口侧包覆弧的存在,使下工作辊2、上工作辊1分别对带箔5产生了背撑。This embodiment can be regarded as a combination of
入口侧包覆弧在轧制中的作用及影响,已在实施例1中说明,出口侧包覆弧在轧制中的作用及影响,已在实施例2中说明,这里不再累述。值得注意的是,如图13所示,在辊缝的出口侧,体积单元9下层的线速度大于体积单元9上层的线速度,摩擦力F4作用在体积单元9的上层板面,由此可以得出包覆弧对带箔5的卷曲变形起到了反向矫直作用,这在一定程度上消除了层移现象对带箔5造成的卷曲影响。The function and influence of the cladding arc on the entrance side in rolling has been explained in Example 1, and the function and influence of the cladding arc on the exit side in rolling has been explained in Example 2, so it will not be repeated here. It is worth noting that, as shown in Figure 13, at the exit side of the roll gap, the linear velocity of the lower layer of the
在带箔5的生产中,需要对带箔5进行多道次的反复轧制,由于存在层移现象,在每道次的轧制后,都会使带箔5会产生的单向卷曲变形,虽然上工作辊1能够对卷曲变形进行反向矫直,但是还不足以完全消除卷曲变形,因此还要在轧制方法上作出改进。In the production of the
结合图11、14、15可知,当带箔5从左向右完成第一道次的轧制后,带箔5上层的流出速度大于带箔5下层的流出速度,带箔5向下工作辊2的一侧卷曲。当带箔5从右向左完成第二道次轧制后,带箔5上层的流出速度小于带箔5下层的流出速度,带箔5向上工作辊1的一侧卷曲,从而对第一道次轧制的卷曲进行了反向矫正,以此类推。由上述可知,将带箔5的总轧制道次设置为偶数次,能最大限度地消除带箔5的卷曲变形。Combining with Figures 11, 14, and 15, it can be seen that after the
尤其重要的是,在第一道次轧制后,带箔5的中性面向某一侧偏离,那么,第二道次的轧制就对偏离的中性面做了反向修正,经过多道次偶数轧制后,使中性面稳定在带箔5的中层部位,从而保证了带箔5力学性能的均匀性。通过该方法,绕开了国家标准中对轧制中心线6的严苛要求,真正工程化地实现了带箔5中性面的稳定,解决了现有技术及实施例1中所不能够解决的技术难题。It is especially important that after the first pass of rolling, the neutral plane of the
如图4所示,在传统的轧制中,带箔5从辊缝中流出的速度是不存在速度差的,其减薄过程可以看作是挤压,就像挤牙膏。而在本发明中带箔5从辊缝中流出的速度是存在速度差的,对带箔5的减薄过程更像是对带箔5上下层的反向擀压,就像用擀面杖擀面饼。如图16所示,在反复的擀压过程中,带箔5的上下层不仅受到了辊缝的挤压,还受到了相对的拉伸力作用,使带箔5的上下层之间发生了滑移,最终减小了厚度。这种滑移减薄即有挤压减薄的效果,又有搓轧减薄的效果,相对于传统的挤压减薄,其板形更好,也更容易实现板形的控制。As shown in Figure 4, in traditional rolling, there is no speed difference in the speed of the
由实施例3可知,本发明较好地解决了带箔5的卷曲变形问题,尤其重要的是,本发明的滑移减薄即有挤压减薄的效果,又有搓轧减薄的效果,而且使中性面稳定在带箔5的中层部位,从而保证了带箔5力学性能的均匀性。本发明突破了国家标准中对轧制中心线的严苛要求,真正工程化地实现了中性面的稳定性,解决了现有技术所不能够解决的技术难题。It can be seen from Example 3 that the present invention better solves the problem of curling and deformation of the
在实施例3中,出口侧包覆弧降低了上工作辊1的转矩,但入口侧包覆弧增加了下工作辊2的转矩,造成上下工作辊驱动转矩的不同,这将增大轧机整体的能量消耗。为此,继续改进技术方案:In Example 3, the wrapping arc at the exit side reduces the torque of the
实施例4:Example 4:
如图17所示,本实施例与实施例3不同的是,入口侧包覆弧和出口侧包覆弧都形成在下工作辊2上。由图17可知,入口侧包覆弧增加了下工作辊2的转矩,而出口侧包覆弧降低了下工作辊2的转矩,因此,施加在下工作辊2上的驱动转矩总体不变。As shown in FIG. 17 , the present embodiment is different from
如图18所示,由于上工作辊1的辊径小于下工作辊2的辊径,入口侧包覆弧和出口侧包覆弧都形成在下工作辊2上,因此上工作辊1对带箔5的减薄作用是最大的。但是这种结构形式的缺点在于,由于叠加作用,带箔5的单向卷曲变形相对于上述实施例都要大。为了克服该缺点,解决的办法是在每道次的轧制前,将带箔5翻面,然后再将带箔5送入辊缝内进行轧制。这样,能够通过翻面轧制消除带箔5在上道次轧制时产生的卷曲变形。翻面轧制与现有轧制不同的是,在相邻两道次的轧制中,上工作辊1和下工作辊2所轧压的带箔5的板面均不相同。为了保证带箔5上下板面性能的一致性,同样的,带箔5的总轧制道次设置为偶数次。As shown in Figure 18, since the roll diameter of the
采用上述方法后,一方面平衡了上下工作辊的转矩,另一方面消除了带箔5在轧制时产生的卷曲变形。尤其值得注意的是,由于是翻面轧制,带箔5上下板面与上下工作辊的接触长度和受力都是相同的,因此意外地解决了带箔5上下板面明亮度不同的问题,这也是上述实施例中所不能够解决的问题。After adopting the above method, on the one hand, the torque of the upper and lower work rolls is balanced, and on the other hand, the curling deformation of the
应当指出的是,上述实施例均以厚度为0.01mm带箔的轧制为例,这并不妨碍本发明能够轧制更厚的带材,其原理和作用均是一样的。It should be noted that the above embodiments all take the rolling of a strip with a thickness of 0.01mm as an example, which does not prevent the present invention from being able to roll a thicker strip, and its principle and function are the same.
未详述部分为现有技术。尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的保护范围由所附权利要求及其等同物限定。The parts not described in detail are prior art. Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110411543.2A CN113290052B (en) | 2021-04-16 | 2021-04-16 | Rolling method of wide metal strip foil |
PCT/CN2021/097720 WO2022217717A1 (en) | 2021-04-16 | 2021-06-01 | Rolling method for wide metal strip foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110411543.2A CN113290052B (en) | 2021-04-16 | 2021-04-16 | Rolling method of wide metal strip foil |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113290052A CN113290052A (en) | 2021-08-24 |
CN113290052B true CN113290052B (en) | 2023-04-11 |
Family
ID=77318766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110411543.2A Active CN113290052B (en) | 2021-04-16 | 2021-04-16 | Rolling method of wide metal strip foil |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113290052B (en) |
WO (1) | WO2022217717A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113118213B (en) * | 2021-04-16 | 2023-03-03 | 上海五星铜业股份有限公司 | Rolling method capable of realizing uniform tension distribution |
CN117655103B (en) * | 2023-11-24 | 2024-09-03 | 中色正锐(山东)铜业有限公司 | Production method of high-deflection rolled copper foil for high-frequency high-speed communication |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55139102A (en) * | 1979-04-17 | 1980-10-30 | Mitsubishi Heavy Ind Ltd | Rolling method for strip |
JPH1177109A (en) * | 1997-07-02 | 1999-03-23 | Hiroyuki Hoshino | Rolling mill |
CN2740311Y (en) * | 2004-03-02 | 2005-11-16 | 刘宝珩 | Thin-belt cold mill with four rollers |
DE102008009902A1 (en) * | 2008-02-19 | 2009-08-27 | Sms Demag Ag | Rolling device, in particular push roll stand |
CN101811136A (en) * | 2010-04-23 | 2010-08-25 | 山西银光华盛镁业股份有限公司 | Magnesium alloy wide plate casting-rolling equipment |
KR101303657B1 (en) * | 2013-04-17 | 2013-09-04 | 그린산업(주) | Wrought iron for anti-rodent and electromagnetic wave shielding tape manufacturing methods |
CN203842921U (en) * | 2014-05-06 | 2014-09-24 | 深圳市信宇人科技有限公司 | Steel belt type rolling mill for battery pole piece |
CN106001110B (en) * | 2016-04-28 | 2017-11-14 | 太原科技大学 | A kind of multiple layer metal Coupling Deformation Rolling compund method and apparatus |
CN109382410B (en) * | 2017-08-14 | 2024-05-03 | 宁德时代新能源科技股份有限公司 | Rolling device |
CN108555024A (en) * | 2018-05-23 | 2018-09-21 | 辽宁博镁兴业科技有限公司 | A kind of five roller different diameter rolling mill device of magnesium alloy foil and its milling method |
CN109351805B (en) * | 2018-10-29 | 2020-09-04 | 中冶南方工程技术有限公司 | Method and device for improving transverse crease marks on surface of cold-rolled or hot-rolled strip steel |
CN113118215B (en) * | 2021-04-16 | 2023-03-24 | 上海五星铜业股份有限公司 | Wide-width strip foil rolling equipment |
-
2021
- 2021-04-16 CN CN202110411543.2A patent/CN113290052B/en active Active
- 2021-06-01 WO PCT/CN2021/097720 patent/WO2022217717A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2022217717A1 (en) | 2022-10-20 |
CN113290052A (en) | 2021-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113290052B (en) | Rolling method of wide metal strip foil | |
CN101367092A (en) | A Work Roll Technology for Controlling Edge Fall of Cold Rolled Steel | |
CN113118215B (en) | Wide-width strip foil rolling equipment | |
CN214767788U (en) | Structure for forming cladding arc on working roll by metal strip foil | |
CN113118212B (en) | Wide foil rolling mill capable of preventing warping and rolling method | |
WO2022217718A1 (en) | Uniform-tension rolling method | |
JP7470201B2 (en) | Rolling stands for rolling metal strips | |
WO2022217716A1 (en) | Rolling device and rolling method | |
CN214866113U (en) | High finishing mill with foil | |
CN215467035U (en) | Rolling mill with unequal-diameter working rolls | |
CN113560826B (en) | A welded pipe forming method with comprehensive control of springback in warm forming and light bending | |
CN109663817B (en) | Transverse thickness precision control method of wide and thick plate flat roller mill | |
CN214976682U (en) | Unequal-diameter adjusting roller set | |
CN215918632U (en) | Rolling mill with asymmetric roller system framework | |
CN116713323A (en) | Cold rolling method for reducing transverse thickness difference and improving plate shape | |
JP2825984B2 (en) | Hot finish rolling apparatus and rolling method for metal sheet | |
JP3553294B2 (en) | Rolling method of metal foil | |
CN102581005A (en) | Plate rolling device | |
JP3302411B2 (en) | Strip crown control method in rolling of single crown metal strip | |
JPS6328688B2 (en) | ||
RU2225272C2 (en) | Method for cold rolling of strips in multistand mill | |
JP3728893B2 (en) | Temper rolling method for metal sheet | |
JPS608121B2 (en) | Shape adjustment device for multiple simultaneous reduction rolling mills | |
JPH0459111A (en) | Method for controlling crown on cold rolling of tandem mill | |
JP2001205305A (en) | Thin strip rolling mill and rolling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A rolling method for wide metal strip foil Granted publication date: 20230411 Pledgee: Agricultural Bank of China Limited by Share Ltd. Chizhou branch Pledgor: Anhui Jinchi New Material Co.,Ltd.|SHANGHAI WUXING COPPER CO.,LTD. Registration number: Y2024980058204 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |