CN113286682A - 减少伺服控制中的能量累积 - Google Patents

减少伺服控制中的能量累积 Download PDF

Info

Publication number
CN113286682A
CN113286682A CN202080008137.5A CN202080008137A CN113286682A CN 113286682 A CN113286682 A CN 113286682A CN 202080008137 A CN202080008137 A CN 202080008137A CN 113286682 A CN113286682 A CN 113286682A
Authority
CN
China
Prior art keywords
state
joint
commanded
difference
error threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080008137.5A
Other languages
English (en)
Other versions
CN113286682B (zh
Inventor
G·布里森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Operations Inc filed Critical Intuitive Surgical Operations Inc
Publication of CN113286682A publication Critical patent/CN113286682A/zh
Application granted granted Critical
Publication of CN113286682B publication Critical patent/CN113286682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/066Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39445Select between jog modes, user, robot coordinates, tool, system feed, joint feed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40399Selection of master-slave operation mode
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45118Endoscopic, laparoscopic manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45123Electrogoniometer, neuronavigator, medical robot used by surgeon to operate

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Robotics (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本申请公开一种计算机辅助医疗系统,其包括操纵器臂和控制器。该控制器包括计算机处理器。该控制器被配置为对与操纵器臂的至少一个操纵器臂段相关联的至少一个接头进行伺服,该伺服包括执行伺服回路。执行伺服回路包括:获取操纵器臂的实际状态;计算命令状态与实际状态之间的差,其中命令状态用于对至少一个接头进行伺服;以及确定该差是否超出误差阈值。基于确定该差确实超出误差阈值,使用偏移来更新命令状态以减小该差,并且基于确定该差不超出误差阈值,不更新命令状态。控制器进一步被配置为应用命令状态以控制实际状态。

Description

减少伺服控制中的能量累积
相关申请的交叉引用
本申请要求根据35U S.C.§119(e)的于2019年3月29日提交的美国临时专利申请序列号62/826,780的优先权的权益,该申请在此通过整体引用并入本文。
技术领域
本发明总体上提供了改进的机器人和/或医疗(包括外科手术)设备、系统和方法。
背景技术
概述
机器人设备的系统可以用于在工作部位执行任务。例如,机器人系统可以包括机器人操纵器,以操纵用于执行任务的器械。机器人操纵器可以包括通过一个或多个接头耦接在一起的两个或多个连杆。接头可以是主动移动和控制的主动接头。接头也可以是依从主动接头的移动或依从外部操纵的被动接头。这样的主动接头和被动接头可以是转动接头或棱柱型接头(prismatic joint)。然后,可以通过接头的位置和取向、机器人操纵器的结构以及连杆的耦接来确定机器人操纵器的配置。
机器人系统包括工业机器人系统和娱乐机器人系统。机器人系统还包括用于诊断、非外科手术治疗、外科手术治疗等程序的医疗机器人系统。作为具体示例,机器人系统包括微创机器人远程外科手术系统,在该系统中,外科医生可以从床边或远程位置对患者进行手术。远程外科手术通常是指使用外科手术系统执行的外科手术,其中外科医生使用某种形式的远程控制(例如伺服机构)来操纵外科手术器械移动,而不是用手直接握住和移动器械。可用于远程外科手术或其他远程医疗程序的机器人医疗系统可以包括远程可控的机器人操纵器。操作员可以远程地控制远程可控的机器人操纵器的运动。操作员还可以手动将机器人医疗系统的工件移动到其环境内的位置或取向。
发明内容
一般而言,在一个方面中,一个或多个实施例涉及一种计算机辅助医疗系统,其包括操纵器臂和包括计算机处理器的控制器,该控制器至少配置有非离合器模式和离合器模式。在非离合器模式下时,控制器被配置为伺服与该操纵器臂的至少一个操纵器臂段相关联的至少一个接头,该伺服包括执行伺服回路,该伺服回路包括:获取该操纵器臂的实际状态;计算命令状态与实际状态之间的差,该命令状态用于伺服所述至少一个接头;确定该差是否超过误差阈值;基于确定该差确实超过误差阈值,使用偏移以减小差来更新命令状态,并应用命令状态来控制实际状态;以及基于确定该差不超过误差阈值,不更新命令状态,并应用命令状态来控制实际状态。在离合器模式下时,控制器被配置为使所述至少一个接头浮动。
一般而言,在一个方面中,一个或多个实施例涉及一种用于操作医疗系统的方法。该方法包括,在非离合器模式下时,伺服与医疗系统的操纵器臂的至少一个操纵器臂段相关联的至少一个接头,该伺服包括执行伺服回路,该伺服回路包括:获取该操纵器臂的实际状态;计算命令状态与实际状态之间的差,该命令状态用于伺服所述至少一个接头;确定该差是否超过误差阈值;基于确定该差确实超过误差阈值,使用偏移以减小差来更新命令状态,并应用命令状态来控制实际状态;以及基于确定该差不超过误差阈值,不更新命令状态,并应用命令状态来控制实际状态。该方法进一步包括,在离合器模式下时,使所述至少一个接头浮动。
一般而言,在一个方面中,一个或多个实施例涉及一种非暂时性机器可读介质,其包括由与医疗系统相关联的一个或多个处理器执行的多个机器可读指令,该多个机器可读指令使所述一个或多个处理器执行一种方法,该方法包括:在非离合器模式下,伺服与医疗系统的操纵器臂的至少一个操纵器臂段相关联的至少一个接头,该伺服包括执行伺服回路,该伺服回路包括:获取该操纵器臂的实际状态;计算命令状态与实际状态之间的差,该命令状态用于伺服所述至少一个接头;确定该差是否超过误差阈值;基于确定该差确实超过误差阈值,使用偏移以减小差来更新命令状态,并应用命令状态来控制实际状态;以及基于确定该差不超过误差阈值,不更新命令状态,并应用命令状态来控制实际状态。该方法进一步包括:在离合器模式下,使所述至少一个接头浮动。
根据以下描述和所附权利要求,本发明的其他方面将变得显而易见。
附图说明
图1A示出了根据一个或多个实施例的机器人程序场景的俯视图,该机器人程序场景包括使用机器人操纵器的机器人组件,用于在工作部位以机器人形式移动具有末端执行器的工具或器械。
图1B示意性地示出了根据一个或多个实施例的图1A的机器人程序场景的各种部件。
图2示出了根据一个或多个实施例的图示用于在图1A的机器人组件中输入程序命令的主操作员控制台或工作站的透视图。
图3示出了根据一个或多个实施例的图1A的电子推车的透视图。
图4示出了根据一个或多个实施例的具有四个操纵器臂的机器人组件的透视图。
图5示出了根据一个或多个实施例的操纵器组件的示例。
图6示出了根据一个或多个实施例的工具或器械的透视图。
图7A和图7B示出了根据一个或多个实施例的用于控制机器人组件的控制架构。
图8示出了根据一个或多个实施例的概念性地图示用于避免在伺服控制机构中累积过多能量的方法的图。
图9示出了根据一个或多个实施例的描述用于限制或减少伺服控制机构中的能量累积的方法的流程图。
图10A示意性地示出了根据一个或多个实施例的在位置保持任务中的操纵器组件。
图10B1和图10B2示意性地示出了根据一个或多个实施例的在远程操作任务中的操纵器组件。
具体实施方式
现在将参考附图详细描述本公开的特定实施例。为了一致性,各个附图中的相同元件由相同的附图标记表示。
在本公开的实施例的以下详细描述中,阐述了许多具体细节以便提供对本发明的更透彻的理解。然而,对于本领域的普通技术人员显而易见的是,可以在没有这些具体细节的情况下实践本发明。在其他情况下,没有详细描述众所周知的特征,以避免不必要地使描述变得复杂。
在整个申请中,序数(例如,第一、第二、第三等)可以用作元件(即,申请中的任何名词)的形容词。除非明确公开,例如通过使用术语“在……之前”、“在……之后”、“单个”和其他此类术语,否则序数的使用并不暗示或创建元件的任何特定顺序,也不意味着将任何元件限制为仅单个元件。相反,序数的使用是在元件之间进行区分。举例来说,第一元件不同于第二元件,并且第一元件可以包含一个以上的元件并且在元件的顺序中在第二元件之后(或之前)。
尽管本文所描述的一些示例涉及外科手术程序或工具,或医疗程序和医疗工具,但是所公开的技术适用于医疗和非医疗程序,以及医疗和非医疗工具。例如,本文所描述的工具、系统和方法可用于包括工业用途、一般机器人用途以及感测或操纵非组织工件的非医疗目的。其他示例应用涉及美容改进、人体或动物解剖结构的成像、从人体或动物解剖结构收集数据、设置或拆卸系统以及培训医务人员或非医务人员。另外的示例应用包括对从人或动物解剖结构上去除的组织(不返回到人或动物解剖结构上)使用程序,以及在人或动物尸体上执行程序。此外,这些技术还可用于包括或不包括外科手术方面的医学治疗或诊断程序。
一般而言,本公开的实施例可以促进机器人系统的使用并在各种条件下改进工作流程。例如,机器人系统的操纵器臂可能不总是能够立即遵循命令以到达命令位置、速度或一般来说的命令状态。各种原因可阻止操纵器臂遵循该命令。结果可能是命令状态和实际状态之间的差异。由于各种原因,这种差异可能是不希望的。例如,当命令状态与实际状态之间的差异很明显时,一旦不再被阻止移动,则操纵器臂可执行突然且大幅度的移动。此外,尽管操纵器臂的实际状态可以直接观察到,但是命令状态通常不能被操作员或助手观察到。因此,差异的累积可能不会被注意到,从而当操纵器臂朝着命令状态的移动最终发生时,可能使助手感到震惊。该移动可以进一步导致操纵器臂与助手、患者或机器人系统的其他部件发生强烈碰撞。
本公开的实施例提供了将操纵器臂的命令状态和实际状态之间的差异限制到可接受水平的能力。根据一个或多个实施例,对差异的限制适用于不同的场景,包括但不限于其中操纵器臂被阻挡(例如,被障碍物阻挡)的场景、其中操纵器臂是外部反向驱动的场景、其中无法完成远程操纵任务(即,“遵循”任务,其中操纵器臂根据操作员操纵的不是操纵器臂的输入设备所发出的命令进行移动)的场景等。下面描述了这些场景中的每个。
现在参考附图,其中在若干视图中相同的附图标记表示相同的部分。图1A示出了机器人程序场景中的计算机辅助医疗系统(100)(以下称为系统(100))的俯视图。虽然在图1A中,微创机器人外科手术系统被示为计算机辅助医疗系统(100),但是以下描述适用于其他场景和系统,例如非外科手术场景或系统、非医疗场景或系统。在该示例中,对躺在手术台(110)上的患者(190)执行诊断或外科手术程序。该系统可以包括用户控制系统(120),以在程序期间供操作员(192)(例如,诸如外科医生的临床医生)使用。一个或多个助手(194)也可以参与该程序。系统(100)可以进一步包括机器人操纵系统(130)(例如,患者侧机器人设备)和辅助系统(140)。机器人操纵系统(130)可以包括至少一个操纵器臂(150),每个操纵器臂可以支撑可移除地耦接的工具(160)(也称为器械(160))。在图示的程序中,工具(160)可以通过诸如喉咙或肛门的自然孔口或通过切口进入患者(190)的身体,而操作员(192)通过用户控制系统(120)观察工作部位(例如外科手术场景中的外科手术部位)。工作部位的图像可以通过成像设备(例如,内窥镜、光学相机或超声探头)获取,该成像设备即用于对工作部位进行成像的工具(160),其可以由机器人操纵系统(130)进行操纵,以便对成像设备进行定位和定向。辅助系统(140)可用于处理工作部位的图像,以通过用户控制系统(120)或位于程序本地或远程的其他显示系统显示给操作员(192)。一次使用的工具(160)的数量通常取决于任务和空间约束以及其他因素。如果在程序期间更换、清洁、检查或重新装载工具(160)中的一个或多个是适当的,则助手(194)可以将工具(160)从操纵器臂(150)上移除,并且用例如来自托盘(180)或其他类型的工具储存室的相同的工具(160)或另一工具(160)进行替换。
图1B示意性地示出了系统(102)。系统(102)可以包括一个或多个计算系统(142)。计算系统(142)可以用于处理由用户控制系统(120)提供的来自操作员的输入。计算系统可以进一步用于向显示器(144)提供输出,例如视频图像。一个或多个计算系统(142)可以进一步用于控制机器人操纵系统(130)。
计算系统(142)可以包括一个或多个计算机处理器、非永久性存储(例如,易失性存储器,诸如随机存取存储器(RAM)、高速缓存)、永久性存储(例如,硬盘、诸如光盘(CD)驱动或数字通用光盘(DVD)驱动之类的光驱、闪存等)、通信接口(例如,蓝牙接口、红外接口、网络接口、光学接口等)以及许多其他元件和功能。
计算系统(142)的计算机处理器可以是用于处理指令的集成电路。例如,计算机处理器可以是处理器的一个或多个核心或微核心。计算系统(142)还可以包括一个或多个输入设备,例如触摸屏、键盘、鼠标、麦克风、触摸板、电子笔或任何其他类型的输入设备。
计算系统(142)的通信接口可以包括集成电路,用于将计算系统(142)连接到网络(未示出)(例如,局域网(LAN)、诸如互联网的广域网(WAN)、移动网络或任何其他类型的网络)和/或连接到另一个设备(例如,另一个计算系统(142))。
此外,计算系统(142)可以包括一个或多个输出设备,例如显示设备(例如,液晶显示器(LCD)、等离子显示器、触摸屏、有机LED显示器(OLED)、投影仪或其他显示设备)、打印机、扬声器、外部存储或任何其他输出设备。输出设备中的一个或多个可以与(一个或多个)输入设备相同或不同。存在许多不同类型的计算系统,并且前述的(一个或多个)输入和输出设备可以采取其他形式。
用以执行本公开的实施例的计算机可读程序代码形式的软件指令可以全部或部分地临时或永久地存储在非暂时性计算机可读介质(例如,CD、DVD、存储设备、软盘、磁带、闪存、物理内存或任何其他计算机可读存储介质)上。具体地,软件指令可以对应于计算机可读程序代码,该计算机可读程序代码在由(一个或多个)处理器执行时被配置为执行本发明的一个或多个实施例。
计算系统(142)可以连接到网络或作为其一部分。该网络可以包括多个节点。每个节点可以对应于计算系统(142)或一组节点。举例来说,本公开的实施例可以在连接到其他节点的分布式系统的节点上实现。再举另一个示例,本发明的实施例可以在具有多个节点的分布式计算系统上实现,其中本公开的每个部分可以位于分布式计算系统内的不同节点上。此外,前述计算系统(142)的一个或多个元件可以位于远程位置并通过网络连接到其他元件。
机器人操纵系统(130)可以使用包括成像设备(例如,单视或立体内窥镜、超声探头)的工具(160)来捕获工作部位的图像并将所捕获的图像输出到辅助系统(140)。类似于其他工具(160),带有成像设备的工具具有机械接口(未示出),该机械接口允许成像设备耦接至操纵器臂(150)。不同工具(160)(例如,带有成像设备的工具)的机械接口可以相同或彼此不同。因此,在适用的情况下,可以使用机械适配器以将工具(160)耦接至操纵器臂(150)。可替代地,可以将诸如专用成像工具的特定工具(160)安装在专门设计以用于容纳这种工具(160)的操纵器臂(150)上。辅助系统(140)可以在任何后续显示之前以各种方式处理所捕获的图像。例如,辅助系统(140)可以在经由用户控制系统(120)向操纵员显示组合图像之前将所捕获的图像与虚拟控制界面重叠。机器人操纵系统(130)可以输出所捕获的图像以在辅助系统(140)外部进行处理。一个或多个单独的显示器(144)也可以与计算系统(142)和/或辅助系统(140)耦接,以用于图像(诸如程序部位的图像)或其他相关图像的本地和/或远程显示。
图2示出了用户控制系统(120)的透视图。用户控制系统(120)包括左眼显示器(202)和右眼显示器(204),用于向操作员(192)(图1A中所示)呈现能够实现深度感知的工作部位的协调立体图。用户控制系统(120)进一步包括一个或多个输入控制设备(210),该一个或多个输入控制设备继而使机器人操纵系统(130)(图1A中所示)操纵一个或多个工具。输入控制设备(210)可以提供与其关联的工具(160)(图1A中所示)相同的自由度,以便为操作员提供远程呈现,或使输入控制设备(210)与工具(160)(图1A中所示)成为一体的感知,使得操作员具有直接控制工具(160)的强烈感觉。为此,可以采用位置、力和/或触觉反馈传感器(未示出),以通过输入控制设备(210)将来自工具(160)的位置、力和/或触觉传回操作员的手。
图3示出了辅助系统(140)的透视图。辅助系统(140)可以与成像设备类型的工具(160)(图1A中示出)耦接,并且可以包括处理器(未示出)以处理所捕获的图像以用于后续显示,例如向在操作员控制台或位于本地和/或远程的另一个合适的显示器上的操作员显示。例如,在使用立体内窥镜的情况下,辅助系统(140)可以处理所捕获的图像,以便向操作员呈现工作部位的协调立体图像。这种协调可以包括相对的图像之间的对准,并且可以包括调整立体内窥镜的立体工作距离。作为另一个示例,图像处理可以包括使用先前确定的相机校准参数,以便补偿图像捕获设备的成像误差,例如光学像差。
图4示出了具有多个操纵器臂(150)的机器人操纵系统(130),每个操纵器臂(150)在操纵器臂的远端处支撑器械或工具(160)。所示的机器人操纵系统(130)包括四个操纵器臂(150),其可用于支撑用于操纵的工具(160)或用于成像的工具(160),例如用于捕获程序部位的图像的立体内窥镜。下面参考图5提供操纵器臂150的更详细描述,并且下面参考图6提供工具(160)的更详细描述。在微创场景中,可以通过患者中的切口来定位和操纵工具(160),使得运动学远程中心维持在切口处,以便最小化切口的尺寸或施加于切口周围组织的力。当工具(160)定位在作为成像设备操作的工具的视野内时,工作部位的图像可以包括器械或工具(160)的远端的图像。
可以使用不同类型和不同末端执行器的各种工具(160)或器械。在程序期间,工具(160)中的至少一些可以被移除和更换。在外科手术场景中,末端执行器可以包括但不限于DeBakey钳、微型钳、波茨(Potts)剪刀、施夹器、手术刀和电灼探针。这些末端执行器中的一些可以具有单个末端执行器元件,而另一些末端执行器可以包括数个末端执行器元件,诸如第一末端执行器元件和第二末端执行器元件,它们可以相对于彼此枢转以限定一对末端执行器钳爪。
在外科手术场景中,工具(160)的细长轴允许末端执行器和轴的远端通过微创孔(通常是通过诸如腹壁的体壁)向远侧插入外科手术工作部位。外科手术工作部位可以被吹气。末端执行器在患者体内的移动通常至少部分地通过使工具(160)围绕轴穿过微创孔的位置枢转来实现。因此,操纵器臂(150)可以将器械的近侧壳体移动到患者体外,以使轴延伸穿过微创孔,以提供末端执行器的所需的移动。因此,操纵器臂(150)可以在患者体外经历移动。
图5中示出了根据本公开的实施例的操纵器组件(500)的示例。操纵器组件(500)包括操纵器臂(502),并且可以进一步包括工具(520)(也称为器械(520))(在图5中,仅示出工具(520)的轴线,而不是工具(520)本身)。换句话说,在一些实施例中,操纵器组件(500)可以是具有工具(520)的操纵器臂(502),而在另一些实施例中是没有工具(520)的操纵器臂(502)。其他部件可以被包括在操纵器组件(500)中。如上所描述的,在操作期间,操纵器臂(502)通常支撑远侧器械或工具(520)并实现工具(520)的移动。由于可以将具有不同末端执行器的若干不同工具(520)顺序地安装在操纵器臂(502)上,或者在程序期间需要将工具(520)移除并重新安装,因此远侧工具支架有助于移除和更换已安装的器械或工具(520)。如参考图4可以理解的,操纵器臂(502)向近侧安装到机器人组件的基座。可替代地,操纵器臂(502)可以安装到可以独立移动的单独的基座,例如,通过将操纵器臂(502)安装到单操纵器臂推车上,该单操纵器臂推车提供有允许操纵器臂(502)在各个位置处直接或间接地安装到手术台(图1A中所示)的安装夹具。通常,操纵器臂(502)包括在近端基座和远侧工具支架之间延伸的多个操纵器臂段和相关联的接头。
在例如图5所示的实施例中,操纵器臂(502)包括多个接头(诸如旋转接头J1、J2、J3、J4和J5以及棱柱型接头J6)和连杆或操纵器臂段(504、506、508和510)。操纵器臂(502)的接头组合起来可以具有或可以不具有冗余的自由度。具有一个或多个冗余自由度的操纵器臂具有多个接头,使得所述多个接头可以被驱动到针对操纵器臂的一部分的给定位置和/或取向的一系列不同的配置中。例如,在被支撑在工具支架(510)内的远侧构件(512)保持特定状态并且可以包括末端执行器的给定位置或速度的同时,图5的操纵器臂(502)可以被机动到不同的配置中。工具支架(510)可以包括插管(516),工具(520)的工具轴延伸通过插管(516),并且工具支架(510)可以包括示出为盒形结构的滑架(514),其在横梁上平移,在朝着工作部位延伸通过插管(516)之前,工具附接至该滑架。
工具(520)的自由度的致动通常由操纵器的致动器来提供。这些致动器可以集成在滑架(514)中。工具(520)的远侧腕部可以允许工具(520)的末端执行器围绕工具腕部处的一个或多个接头的工具接头轴线枢转和/或线性运动。可以独立于末端执行器的位置和取向来控制末端执行器钳爪元件之间的角度。下面参考图6提供工具(520)的详细描述。
图6示出了根据一个或多个实施例的可以用于外科手术的工具(600)(也称为器械(600))的示例。工具(600)包括轴(610)、位于轴(610)的工作端的腕部(620)以及设置在腕部(620)上的末端执行器(640)。腕部(620)可以使末端执行器(640)相对于轴(610)能够枢转。腕部(620)可以具有至少一个自由度。壳体(630)位于轴(610)的相对端,该壳体(630)可释放地布置成将工具(600)耦接至操纵器臂(502)。轴(610)可以可旋转地耦接至壳体(630),以使轴(610)相对于壳体(630)能够如箭头(692)所示地进行角位移,从而允许耦接至轴的末端执行器(640)经由腕部(620)旋转。在图5中,当工具(520)被耦接或安装在操纵器臂(502)上时,轴(610)延伸通过套管(516)。工具(520)通常可释放地安装在操纵器臂(502)的工具支架(510)上,该工具支架可以被驱动以沿着由棱柱型接头(J6)形成的线性引导件平移。返回图6,这也可以称为IO,进/出移动或插入轴线(612)。如题为“SurgicalTools for Use in Minimally Invasive Telesurgical Applications(用于微创远程外科手术应用的外科手术工具)”美国专利号6,394,998中所描述的,壳体(630)可以包括线轴,该线轴可旋转以控制电缆以致动末端执行器(640)的连杆。操纵器臂(502)的工具支架(510)可以包括用于与线轴耦接以在工具(600)连接到操纵器臂(502)时驱动线轴的盘。该盘可以由致动器(例如,电动机)驱动,该致动器响应于来自相关联的输入控制设备(例如,图2中的输入控制设备(210))的输入,以将末端执行器(640)驱动至如由输入控制设备(210)的移动或任何其他控制信号所指定的期望的取向。此外,可以提供适当定位的传感器(例如编码器、电位计等),以使得能够测量接头位置。如图5所示,致动器和传感器可以设置在工具支架(510)的滑架(514)中。
不同的工具(600)可以配备有具有不同的几何形状、自由度和/或功能的不同的末端执行器(640)。末端执行器可以具有单个构件或两个或多个构件。具有单个构件的末端执行器的示例包括但不限于手术刀、烧灼电极、冲洗或抽吸设备、内窥镜(可以有或没有腕部)等。具有两个构件的末端执行器的示例包括但不限于钳子、施夹器、剪刀、解剖工具、镊子等。末端执行器(640)的构件可以单独地角度位移,从而不仅允许末端执行器的打开和关闭,而且还能够角度位移以改变末端执行器(640)作为整体相对于腕部(620)的取向。
尽管图1A、图1B、图2、图3、图4、图5和图6示出了部件的各种配置,但是在不脱离本发明的范围的情况下可以使用其他配置。例如,可以将各种部件组合以创建单个部件。作为另一示例,由单个部件所执行的功能可以由两个或多个部件执行。此外,尽管在外科手术场景的背景下描述了部件,但是本公开的实施例可以同等地适用于涉及机器人操纵的其他领域。
转到图7A,示出了根据一个或多个实施例的用于控制包括操纵器臂和安装在其上的器械或工具的操纵器组件的控制架构。以一种控制架构为例。本领域技术人员将理解,在不脱离本公开的情况下,可以使用其他控制架构。此外,在所图示的控制架构中,在控制架构的框之间交换特定的信号(例如,位置)。在不脱离本公开的情况下,可以使用其他信号(例如,速度、加速度、力等)。同样,控制架构可以实现不同的模式(未示出)。例如,如图2所示,在由用户操作的输入控制设备(210)的控制下执行机器人任务期间,机器人操纵组件的各种接头可以被位置控制。同样,在另一种控制模式下,例如在工具更换模式下,一个或多个接头可以“浮动”,从而允许助手容易地外部铰接这些一个或多个接头,例如通过反向驱动这些一个或多个接头。浮动接头可以通过外部施加的力来反向驱动,而无需抵消反向驱动力的控制算法或被配置为抵消这种反向驱动力的制动力。例如,可以将浮动接头控制为处于“离合器模式”,在该模式中,用于浮动接头的命令位置是当前位置,以辅助外部操纵。作为进一步的示例,用户可以向浮动接头远侧的连杆施加力,从而导致浮动接头的反向驱动。特别是当接头可以沿重力拉动方向移动时(例如,接头的轴线不竖直),浮动接头可以进一步进行重力补偿。另外,摩擦补偿可以促进反向驱动。附加地或可替代地,还可以控制浮动接头以施加其他特性,例如一定程度的阻尼。
在操纵器组件的操作期间可以组合多种控制模式,例如,一些接头被位置控制,以抵抗或反弹那些接头的外部铰接,而其他接头可以是浮动的并有助于那些其他接头的外部铰接。另外,操纵器组件的一个或多个接头可以是被动的,即,完全不受位置或速度控制(但是可以部分或完全施加制动)。被动接头可以手动操作。被动接头还可以包括接头传感器,从而可以获取操纵器组件的完整运动学。此外,在一些实施例中,被动接头可以包含用于提供重力补偿、摩擦补偿或不包括主动驱动被动接头的运动的其他用途的致动器。
在一个或多个实施例中,通过控制器使用操纵器组件的致动器(例如,马达、螺线管等)驱动一个或多个接头来控制操纵器组件的接头移动,该接头移动由控制器的处理器计算。在数学上,控制器可以使用矢量和/或矩阵执行接头命令的至少一些计算,该矢量和/或矩阵中一些可以具有与接头的位置、速度和/或力/扭矩等相对应的元素。处理器可用的替代接头配置的范围可以被概念化为接头空间。接头空间可以例如具有与操纵器组件具有的自由度一样多的维度,并且操纵器组件的特定配置可以表示接头空间中的特定点,其中每个坐标对应于操纵器臂组件的相关联接头的接头状态。
如本文所使用的,术语接头或多个接头的“状态”分别是指与接头或多个接头相关联的控制变量。例如,角接头的状态可以指的是由该接头在其运动范围内限定的角度,和/或指接头的角速度。类似地,轴向或棱柱型接头的状态可以指接头的轴向位置,和/或指其轴向速度。尽管本文所描述的控制器中的一个或多个包括位置控制器,但是它们通常还具有速度控制方面。在不脱离本公开的情况下,替代实施例可以主要或完全依赖于速度控制器、力控制器、加速度控制器等。在美国专利号6,699,177中完全描述了可以在这种设备中使用的控制系统的许多方面,该专利通过整体引用并入本文。因此,只要所描述的运动是基于相关联的计算,就可以使用位置控制算法、速度控制算法、两者的组合等来执行本文所描述的接头的移动和末端执行器的移动的计算。
图7A的控制架构(700A)包括控制器(710),该控制器(710)基于命令移动(720)来驱动操纵器组件的接头致动器(790)。可以驱动任何数量的接头致动器(790)。
命令移动(720)可以是在工作空间在笛卡尔坐标空间(在本文中称为笛卡尔空间)中的一个或多个特征件的命令位置和/或速度。命令移动(720)可以是例如从用户控制系统(120)接收的移动命令(例如,以位置和/或速度的形式),或者是操纵器臂的一个或多个特征件的任何其他移动命令。特征件可以是物理地在操纵器组件上或物理地不在操纵器组件上的任何特征件,其可以用于限定要使用控制输入进行铰接的控制框架。操纵器组件上的特征件的示例包括工具的特征件(例如,末端执行器尖端、末端执行器上的中心点或末端执行器的U型夹)、操纵器臂的特征件(例如,被配置为与可移动器械物理耦接的器械支架)等。操纵器组件的特征件的另一个示例是在空的空间中的参考点,该参考点距工具尖端恰好为一定距离和角度。操纵器组件之外的特征件的另一个示例是目标组织,其相对于操纵器组件的一部分的位置可以被建立。
控制器(710)可以包括顶级控制器(730)、逆运动学控制器(740)、接头控制器(750)和正向运动学模型(760)。随后将描述这些部件中的每一个。
根据一个或多个实施例的顶级控制器(730)包括以计算机可读程序代码形式的指令,以接收命令移动(720),并将命令移动(720)转换为笛卡尔参考系中的位置。将命令移动(720)转换成笛卡尔位置所执行的步骤取决于所提供的命令移动(720)的格式。例如,如果命令移动(720)指定期望的末端执行器位置,则顶级控制器(730)可以使用例如位置时间(PT)或位置速度时间(PVT)插值来执行轨迹计划。可替代地,如果命令移动(720)包括速度命令,则顶级控制器(730)可以作为积分器操作。本领域技术人员将理解,顶级控制器(730)可以执行获取笛卡尔参考系中的位置信号所需的任何操作。在一个或多个实施例中,顶级控制器(730)在考虑了命令接头位置(742)的情况下根据命令移动(720)生成笛卡尔位置。命令接头位置(742)可以使顶级控制器能够确定待控制的接头的实际状态(例如,包括当前位置和/或速度等)。实际状态可以影响控制任务,因此可以由顶级控制器考虑。例如,对于操纵器组件的特定配置,命令移动可能是不希望的或不安全的,并且因此可以不被执行,或者可替代地被转换成可以安全地执行的替代命令移动。
根据一个或多个实施例的逆运动学控制器(740)包括计算机可读程序代码形式的指令,以将命令笛卡尔位置(732)转换为命令接头位置(例如,转动接头的接头角度)(742)。逆运动学控制器的操作可以在速度域中执行。换句话说,逆运动学控制器(740)可以寻求确定或求解接头速度矢量,该接头速度矢量可以被用于以末端执行器准确地遵循命令笛卡尔位置的方式来驱动操纵器臂组件的接头。逆运动学控制器(740)可以对计算出的接头速度进行积分以获取命令接头位置(742)。
笛卡尔误差(732)可以是由顶级控制器(730)所提供的笛卡尔位置(如先前所讨论的)与由正向运动学模型(760)所提供的笛卡尔位置(如下面所讨论的)的组合。更具体地,由正向运动学模型(760)所提供的笛卡尔位置可以表示操纵器组件在笛卡尔空间中的实际或当前位置(例如,末端执行器的)的估计。从表示命令移动的笛卡尔位置可以减去该估计,以获取用作向逆运动学控制器(740)的控制输入的待补偿的差。
虽然通常不存在将所需的笛卡尔空间位置映射到等效接头空间位置的闭合形式关系,但笛卡尔空间速度和接头空间速度之间的闭合形式关系通常存在。运动学雅可比矩阵是笛卡尔空间位置元素相对于接头空间位置元素的偏导数的矩阵。以这种方式,运动学雅可比矩阵捕获例如末端执行器和接头之间的运动学关系。换句话说,运动学雅可比矩阵捕获接头运动对末端执行器的影响。运动学雅可比矩阵(J)可用于将接头空间速度(dq/dt)映射到笛卡尔空间速度(dx/dt),例如末端执行器速度。
因此,即使在输入位置和输出位置之间没有闭合形式的映射时,逆运动学控制器(740)也可以迭代地使用速度的映射以基于命令轨迹来实现操纵器组件的移动。随后以简化的术语描述一种这样的实施方式。假设命令移动(720)包括在时间步长ti提供的笛卡尔位置。在每个时间步长(ti),由逆运动学控制器(740)计算笛卡尔速度(dx/dt),以执行期望的移动并校正与期望的笛卡尔位置的累积偏差(通过减去由正向运动学模型(760)产生的笛卡尔位置来获取)。然后,在速度域中使用雅可比矩阵(J#)的伪逆,将此命令笛卡尔位置(或减去正向运动学模型的输出后的笛卡尔误差(732))转换为命令接头位置(q)(742)。命令接头位置用于重新计算雅可比矩阵(J),该雅可比矩阵可用于下一时间步长所执行的计算。可以针对任何数量的接头执行所描述的步骤。
本文所描述的一些示例性操纵器组件具有比在工作部位内定位和移动末端执行器所需的自由度更多的自由度。例如,在一些实施例中,通过微创孔可以在内部外科手术部位以六个自由度定位的外科手术末端执行器可以具有九个自由度任务空间(六个末端执行器自由度(三个用于位置,三个用于取向)加上三个自由度以符合进入部位约束),但可以具有十个或多个自由度。具有比给定的末端执行器位置所需的自由度更多的自由度的高度可配置的操纵器臂组件可以被描述为具有或提供足够的自由度以允许用于工作空间中的末端执行器位置的一系列接头状态。例如,对于给定的末端执行器位置,操纵器组件可以占据一系列可替代的操纵器臂配置中的任何一种(并在其之间被驱动)。类似地,对于给定的末端执行器速度矢量,操纵器组件可以在雅可比矩阵的零空间内对于操纵器组件的各个接头具有一系列不同的接头移动速度。
当以冗余的自由度引导高度可配置的操纵器的移动时,逆雅可比矩阵通常不能完全定义接头矢量解。例如,系统中从笛卡尔命令(x)到接头位置(q)的映射可能占据给定的末端执行器状态的一系列接头状态,该映射是一对多的映射。换句话说,由于该机制是冗余的,因此存在数学上无穷多个解,由逆解所在的子空间表示。可以施加其他约束条件以获取唯一的解。本领域技术人员将理解,可以使用各种方法来执行逆运动学,包括用于具有和不具有冗余自由度的操纵器的逆运动学。
根据一个或多个实施例,每个接头控制器(750)包括计算机可读程序代码形式的指令,以将接收到的命令接头位置(742)转换成命令电流(752)以驱动接头致动器(790)中的一个致动器产生接头移动(792)。每个接头致动器(790)可以使用一个接头控制器(750)。通过运动学的操纵器组件,所有接头致动器的接头移动(792)可以产生反映命令移动(720)的操纵器臂移动。在本公开的一个实施例中,接头控制器控制接头的位置或角度。可替代地,接头控制器可以控制其他变量,例如接头速度、接头扭矩或接头力(在线性接头的情况下)。图7B中提供了接头控制器(750)的示例。
根据一个或多个实施例,正向运动学模型(760)包括计算机可读程序代码形式的指令,如先前所讨论的,以将所感测的接头位置(754)转换为笛卡尔位置。
控制器(710)可以在一个或多个计算系统上实现。这些一个或多个计算系统可以基于数字信号处理器(DSP)、中央处理器(CPU)等。参考图1B描述示例计算系统。每个计算系统可以在取决于操作性质的周期时间执行所描述的操作。在一个实施例中,逆运动学控制器(740)和接头控制器(750)的周期时间是相同的。可以使用任何类型的电或光通信网络(包括以太网、光纤、各种总线系统和/或任何其他类型的数字或模拟信号)来执行实现顶级控制器(730)、逆运动学控制器(740)和接头控制器(750)的计算系统之间的通信。
在一个或多个实施例中,控制器(710)进一步被配置为执行图9中描述的步骤中的至少一个。
转到图7B,示出了根据一个或多个实施例的接头控制器的控制架构(700B)。在示例中,闭环PD控制结构用于基于命令接头位置输入来控制接头位置。
接头控制器可以从相关联的接头致动器(790)接收所感测的接头状态(754)形式的反馈信号(具体地,在控制架构(700B)的情况下,在该示例中为感测接头位置)以启用闭环控制。包括接头状态(754)的所感测的接头位置可以从附接至接头的传感器所获取的信号中得出。这样的传感器可以是例如接头或接头致动器的增量式编码器、形状传感器或霍尔传感器。可以使用状态观察器或估计器(未示出)。PD控制结构使用两个控制增益(KP,KD),分别对命令接头位置(742)和所感测的接头位置之间的差(即误差信号)和其导数进行操作,以产生命令电流(752)。在本公开的一个或多个实施例中,命令电流(752)受到限制,并且因此所得到的接头扭矩或力也受到限制。该限制可以基于硬件限制,例如最大可接受的马达电流。该限制进一步可以是软件可配置的。
因此,马达电流(以及所得到的马达转矩或力)可以随着命令接头位置(742)和所感测的接头位置(754)之间的由比例控制增益(KP)所指示的位置误差线性增加,直到达到饱和极限。超出极限时,马达电流恒定。较高的Kp可以导致足以达到饱和极限的相对较小的位置误差,而较低的Kp则可以导致达到饱和极限所需的相对较大的位置误差。在本公开的一个实施例中,使用相对较高的Kp来获取具有有限的稳态误差的接头的响应位置控制。因此,位置误差的增加可快速导致达到饱和极限。尽管控制架构(700B)使用比例微分(PD)控制器,但是在不脱离本公开的情况下,可以使用诸如比例积分微分(PID)、全状态反馈、滑模或各种其他控制方案的其他控制器。此外,尽管图示出对接头位置的控制,但是在不脱离本公开的情况下,可以控制诸如速度、扭矩或力的其他变量。
命令信号的性质可以在操作期间进一步改变。例如,如图2所示,在由用户操作的输入控制设备(210)的控制下执行机器人任务期间,机器人操纵器组件的各个接头都可以被位置控制。然而,在另一种控制模式中,例如,在工具更换期间,一个或多个接头可以是“浮动的”,从而允许助手自由地反向驱动这些接头。在该模式中,尽管命令接头位置(742)是所感测的接头位置(754),但是一个或多个接头仍可以被位置控制。
转到图8,示出了概念性地图示用于避免在伺服控制机构中累积过多能量的方法的图。
假设如图7B所示的PD控制器被用于控制操纵器臂或包括操纵器臂和工具的操纵器臂组件的接头致动器。操纵器臂段的每个接头致动器可以使用一个PD控制器。如参考图7B所讨论的,PD控制器的比例控制增益可以在命令位置和所感测的接头位置之间的差上操作以生成驱动接头致动器的命令电流,并且接头致动器可以产生与命令电流成比例的扭矩。因此,命令接头位置与所感测的接头位置之间的较大差异导致由接头致动器产生的扭矩更大。因此,基于PD控制器的控制回路可以具有线性弹簧的特性:由于PD控制器需要付出更大的努力来补偿差,所以命令位置和实际接头位置相距越远,弹簧中存储的能量就越多。弹簧的系数可以由比例控制增益(KP)管制。
尽管命令接头位置与所感测的接头位置之间的差通常导致命令电流,该命令电流通过沿与差相反的方向来驱动接头致动器来补偿该差,但在某些情况下可能不会发生补偿。例如,假设(a)通过致动器附接到接头的操纵器臂段遇到障碍物阻挡运动,或者(b)通过致动器附接到接头的操纵器臂段被用户反向驱动。在任何一种情况下,都可以防止命令接头位置和所感测的接头位置之间的差减小,甚至可以增大。结果,在场景(a)中,当障碍物被移除时,操纵器臂可能会突然移动。突然的移动可能使用户感到惊讶或震惊,可能导致潜在的强烈碰撞等。在场景(b)中,即使用户在假设反向驱动操纵器臂将保持在反向驱动位置的情况下有意反向驱动操纵器臂,一旦用户停止操纵器臂的反向驱动,则操纵器臂就可能返回到命令位置。用户可能出于各种原因而反向驱动操纵器臂,例如,在试图避免危险或不便的位置时。
为了解决命令位置和所感测的接头位置之间的过度差异的不期望的累积,可以使用在图8中示出的用于避免或限制伺服控制机构中的过多能量累积的方法。具体地,如图8所示,误差阈值用于确定命令位置和所感测的接头位置之间(或更一般地,命令接头状态与实际接头状态之间)的差异是否可接受。可以相对于命令位置或更一般地命令状态来设置误差阈值。如果命令状态与实际状态之间的差超过误差阈值,则可以将命令状态更新为更接近于实际状态,从而将差减小到误差阈值以下的可接受水平。相反,如果命令状态与实际状态之间的差低于误差阈值,则可能无法更新命令状态。
参考前面介绍的场景(a)和场景(b),影响如下。对于(a),当存在障碍物时,从而阻止了操纵器臂段的移动,接头致动器可以产生作用于障碍物的力。因为即使位置误差将假设会产生更高的命令电流,接头的饱和极限也会通过KP来限制命令电流,所以该力可以是达到饱和极限时接头产生的最大力(或扭矩)的结果。一旦移除障碍物,由于将命令接头位置更新为接近所感测的接头位置,可能仅导致连杆的有限移动。这种移动几乎是不可察觉的。因此,移除障碍物不会导致不期望的后果,例如连杆的突然移动。对于(b),基于命令状态的更新,操纵器臂段可以被反向驱动并且可以保持在或靠近反向驱动位置。
尽管以上讨论介绍了使用基于接头的命令位置和实际位置之间的差的位置控制来用于避免在伺服控制机构中累积过多的能量的方法,但是本领域技术人员将理解,类似的范例也适用于其他配置。例如,替代配置可以应用于速度控制的接头。此外,虽然以上讨论是基于接头或多个接头的控制,其中变量(例如,命令接头位置、实际接头位置)在接头参考系中考虑,但该方法也可以在笛卡尔参考系中应用,例如如下所讨论的,当将类似的范例应用于整个操纵器臂时。
图9示出了根据一个或多个实施例的流程图。图9的流程图描绘了根据一个或多个实施例的用于在非离合器模式下减少或限制伺服控制机构中的能量累积的方法。非离合器模式可以用于执行任何涉及对操纵器臂的一个或多个接头进行伺服控制的任务,例如位置保持任务、远程操作(即“遵循”)任务和定位任务;这些任务可以涉及使用操纵器组件对环境进行操纵或成像。如先前参考图1A、图1B、图2、图3、图4、图5和图6所描述的,图9中的步骤中的一个或多个可以由系统的各种部件来执行。这些图描述了特定的操纵器臂和特定的工具,该操纵器臂和工具具有一定的自由度。然而,随后描述的方法不限于操纵器臂、工具和/或自由度的特定配置。相反,这些方法适用于在任何类型的场景中使用的与任何类型的工具配对的任何类型的操纵器臂。此外,所描述的方法可以应用于各种信号和空间。例如,该方法可以应用于接头空间和/或笛卡尔空间中的位置、速度或力信号。为了进一步说明该方法的应用,在图10A、图10B1和图10B2中提供了示例。接下来讨论各种应用和益处。
尽管顺序地呈现和描述了这些流程图中的各个步骤,但是本领域的普通技术人员将理解,一些或全部步骤可以以不同的顺序执行,可以被组合或省略,并且可以平行地执行一些或全部步骤。可以进一步执行附加步骤。此外,可以主动地或被动地执行这些步骤。例如,根据本发明的一个或多个实施例,一些步骤可以使用轮询或被中断驱动来执行。举例来说,根据本发明的一个或多个实施例,确定步骤可以不要求处理器处理指令,除非接收到中断以表明存在条件。作为另一个示例,根据本发明的一个或多个实施例,可以通过执行测试(诸如检查数据值以测试该值是否与所测试的条件一致)来执行确定步骤。因此,本公开的范围不应被认为限于图9中所示的步骤的特定布置。
转到图9的流程图,示出了一系列步骤,当被重复执行时,这些步骤可以形成用于对操纵器臂组件的至少一个接头进行伺服的伺服回路。伺服可以使操纵器组件进入操纵模式,从而允许操纵器组件执行机器人任务。操纵器臂或操纵器臂组件的控制可以涉及此类控制回路的层次结构。如先前在图7A中所示,一个控制回路可以用于从命令移动产生命令接头位置,该命令移动被提供作为输入。此外,如先前在图7B中所示,可以在接头水平上使用附加的控制回路,以将命令接头位置转换成命令电流以驱动接头致动器。如后续所描述的,以各种方式可以将用于减少伺服控制机构中的能量累积的方法与这些控制回路集成在一起。
在步骤900,获取期望状态。期望状态可以是对于与操纵器组件的一个或多个操纵器臂段相关联的一个或多个接头,或者对于整个操纵器组件。期望状态可以是期望位置、期望速度、期望力等。取决于用于减少能量累积的方法的实施方式,可以在笛卡尔参考系中或在接头参考系中提供期望状态。
在将用于减少能量累积的方法应用于整个操纵器组件或操纵器组件的多个操纵器臂段的实施方式中,可以在笛卡尔参考系中提供期望状态,例如以引导操纵器组件的末端执行器。在这样的实施方式中,基于图7A所示的控制架构,命令状态可以影响多个(或所有)操纵器段及其关联的接头的状态。
在将用于减少能量累积的方法应用于接头水平上的一个或多个操纵器臂段的实施方式中,可以在接头参考系中提供期望状态,以基于图7B中所示的控制架构,通过控制相关联的接头的位置、角度、扭矩或力来引导受影响的操纵器臂段。
在步骤902,获取实际状态。实际状态可以是实际位置、实际速度、实际转矩、实际力等。在一个或多个实施例中,用于后续步骤的实际状态由感测状态表示。可以从传感器(例如,接头致动器中的传感器)获取感测状态。因此,感测状态可以是实际状态的测量。可替代地,感测状态可以是实际状态的估计。为了后续讨论的目的,将感测/估计状态和实际状态视为等效项。取决于用于减少能量累积的方法的实施方式,可以在笛卡尔空间或接头空间中提供实际状态。
在将用于减少能量累积的方法应用于整个操纵器组件或操纵器组件的多个操纵器臂段的实施方式中,可以在笛卡尔空间中提供实际状态。实际状态可以表示例如操纵器组件的末端执行器的位置、速度、力或扭矩。在该实施方式中,为了获取实际状态,可以使用各个感测接头状态(例如,接头位置或速度)来重构笛卡尔空间中的操纵器臂组件的状态。
在将用于防止能量累积的方法应用于接头水平上的一个或多个操纵器臂段的实施方式中,可以在所考虑的接头的接头空间中提供实际状态,以反映相关联的操纵器臂段的状态。
在步骤904,获取命令状态。根据一个或多个实施例,通过从期望状态减去偏移来获取命令状态。如下所描述的,该偏移可以反映在图9的方法的步骤908的先前执行期间获取的期望状态与实际状态之间的差。最初,偏移量可以为零,使得命令状态等于期望状态。然而,随着时间的流逝,随着图9的方法解决能量累积(由于命令状态与实际状态之间的差异导致的),则偏移可以增加或减少。
在步骤906,将命令状态和实际状态之间的差与误差阈值进行比较,以确定该差是否超过误差阈值。绝对差可以用于进行确定,而不管该差是正还是负。误差阈值可以已经预先建立。对于可以接受较少能量累积的场景,减小的误差阈值可能是优选的,而对于可以接受更多能量累积的场景,可以使用增加的误差阈值。在不太希望改变命令状态的情况下,也可以使用增加的误差阈值。如果该差达到或超过误差阈值,则该方法的执行可以行进到步骤908。如果该差低于误差阈值,则该方法的执行可以绕过步骤908直接行进到步骤910。
在步骤908中,获取更新的偏移,并且使用更新的偏移来更新命令状态。在一个或多个实施例中,更新的偏移是减小命令状态与实际状态之间的差从而减少伺服回路中的能量累积的偏移,该偏移与对命令状态和实际状态之间的差执行操作的比例控制增益KP相关联。更具体地,可以计算更新的偏移,以在不完全到达命令状态的情况下实现命令状态向实际状态的调整。因此,命令状态可以最终接近实际状态。基于为致动器选择的比例控制增益(KP),命令状态与实际状态之间的结果差可能不足以达到相关联的致动器的饱和极限,即,命令状态可以设置为与达到饱和所需的实际状态的最小距离(或最小距离的小倍数)。换句话说,命令状态与实际状态之间的勉强足够的差是驱动伺服回路达到饱和的差,而该差不会显著大于达到饱和极限所需的差。命令状态的更新可以在单个时间瞬间中或在单个步骤或多个步骤中随时间(例如,在几分之一秒或几秒钟等)更逐渐地执行。多步或更逐渐的更新更可能与检查命令状态的意外跳跃(例如看似令人难以置信的跳跃,例如超出系统可以实现的跳跃或超出运行条件的预期最大值)的算法结合使用。在这种情况下,多步或更逐渐的更新将有助于避免错误地触发此类算法。在实际状态和命令状态之间已建立较大差异的场景下(例如在特定模式切换期间可能更常见),也更可能使用多步或更逐渐的更新。
在步骤910中,命令状态被应用以控制操纵器臂组件的实际状态。步骤910的控制任务可以由类似于图7A和图7B中所示的控制架构的控制架构来执行。
如果图9的方法是在笛卡尔空间中执行的,如图7A所示的整个控制回路可能受到命令状态的影响。可以基于命令状态来驱动操纵器臂组件的一个或多个接头。然而,操纵器臂组件还可以包括不受命令状态影响的接头,例如,被动接头(即,未配备接头致动器的接头)。
可替代地,如果图9的方法在接头空间中被执行,则如图7A所示的将被控制的接头的控制回路可能受到命令状态的影响。如果针对多个接头实现图9的方法,如图9所描述的,可以控制多个接头。
无论所描述的步骤是针对整个操纵器臂组件还是针对单个接头执行,减少或限制能量累积都可以减少不良情况的可能性。更具体地,由于减小了提供给与操纵器段相关联的一个或多个接头致动器的比例控制增益的命令状态与实际状态之间的差(通过将命令状态设置为更接近于实际状态),这些操纵器段中的能量累积是有限的。限制能量累积可以与可能有益的各种控制任务结合使用(专门用于促进外部反向驱动的控制任务除外,例如一个或多个接头的“浮动”)。可受益于所描述的用于减少或限制伺服控制机构中的能量累积的方法的控制任务的示例包括但不限于位置保持任务、远程操作任务和定位任务(包括使用位置时间(PT)和位置速度时间(PVT)插值的定位任务)。随后描述两个具体示例。
尽管图9的流程图的以上描述涵盖了一种在非离合器模式下用于对操纵器臂组件的至少一个接头进行伺服的方法,但是在不脱离本公开的情况下,对于相同的操纵器臂组件可以执行其他方法。在本公开的一个实施例中,操纵器组件的一个或多个接头或整个操纵器组件可以在离合器模式下操作。此外,一个或多个接头可以处于离合器模式,而其他接头可以处于操纵模式。在离合器模式下,一个或多个接头可以是“浮动的”,从而允许助手容易地在外部铰接这些一个或多个接头(例如通过反向驱动这些一个或多个接头)。浮动接头可能受到外部作用力的反向驱动,而没有控制算法来抵消反向驱动。例如,用户可以向浮动接头的远侧的连杆施加力,从而导致反向驱动。如先前所讨论的,浮动接头可以被重力和/或摩擦补偿,以进一步促进反向驱动。可以实现各种离合器模式。在本公开的一个实施例中,离合器模式允许用户移动操纵器臂的远程中心,同时允许或防止末端执行器移动。在本公开的一个实施例中,离合器模式允许用户移动操纵器臂的至少一些接头,同时防止工具或末端执行器移动。在不脱离本公开的情况下,可以针对操纵器组件实现所描述的离合器模式和附加离合器模式的组合。
以下示例仅用于说明目的,并不旨在限制本公开的范围。图10A示意性地示出了根据一个或多个实施例的处于位置保持任务中的操纵器组件(1000),即控制器处于操纵模式,在该操纵模式下,操纵器组件被伺服控制以保持位置。在位置保持任务中,操纵器组件被控制为在命令位置(1002)处保持静止(使用虚线示出在命令位置处的操纵器组件配置)。参考图1A和图1B中所示的配置,可以在机器人任务的阶段期间使用位置保持任务,在该机器人任务的阶段中,用户控制系统(120)不提供任何输入(例如,因为操纵器组件当前不在远程操作控制下),同时要求操纵器组件保持静止。因此,在没有外部干扰的情况下,命令位置被保持。在图10A中,施加外力(1004),使操纵器组件反向驱动。因此,实际位置变为反向驱动位置(1006)(使用实线示出在实际位置处的操纵器组件配置)。当操纵器组件受到外力而反向驱动时,随着接头的实际位置偏离保持命令位置所必需的接头位置,能量在操纵器组件的接头中开始累积。一旦由于反向驱动而超出误差阈值,将更新命令位置。在图10A的示例中,命令位置被更新为接近反向驱动位置(1006)。因此,即使在反向驱动位置(1006),接头致动器仍可产生最大的扭矩/力,这是基于由于更新的命定位置与反向驱动位置之间的剩余差很小而达到了接头致动器的饱和极限。一旦反向驱动停止,操纵器臂可以执行很小的移动以到达更新的命令位置。观察操纵器臂的操作员几乎无法察觉到很小的移动,或者在给定操作环境的情况下,操作员认为该很小的移动是可接受的。虽然在该示例中,位置保持任务是在笛卡尔空间中控制的末端执行器的上下文中描述的,但是位置保持任务可以针对单个接头以类似的方式执行。
根据一个或多个实施方式,当从不实现该方法的控制模式切换到实现用于限制能量累积的方法的控制模式时,所描述的方法可以特别有益。例如,假设在远程操作模式下控制操纵器接头(例如,使用由用户经由输入控制设备所提供的输入)。此外,假设远程操作模式未实现用于限制能量累积的方法。当切换到实现用于限制能量累积的方法的控制模式时(例如,保持模式),控制回路中的多余能量被消散。更具体地,将实际位置和命令位置之间的超出提供接头转矩饱和的差的可能差异减小到勉强足够维持饱和的水平。因此,接头扭矩在切换期间保持恒定(接头扭矩在切换之前和之后处于饱和),但是消散了多余的能量。
根据一个或多个实施例,图10B1示意性地示出了处于远程操作(即,“遵循”)任务中的操纵器组件(1050),图10B2示意性地示出了处于远程操作任务中的轨迹(1070)(例如,控制器处于操纵模式,在该操纵模式中,操纵器组件被伺服控制以遵循由轨迹(1070)指定的递增改变位置)。考虑例如图1A和图1B中所示的主从配置,如图2所示,可以在操作员的远程操作控制下从输入控制设备(210)获取命令轨迹。命令轨迹也可以从任何其他源获取。命令轨迹可以至少由终点指定,并且可以进一步包括中间点。位置时间(PT)和位置速度时间(PVT)路径插值算法可用于基于指定点建立命令轨迹。
在以下任务中,操纵器组件被控制成遵循命令位置(1052)(使用虚线示出在命令位置处的操纵器组件配置)。在图10B1中,假设命令位置(1052)仅是命令轨迹的一个点。下一个命令位置可以在其他地方引起移动,或者可替换地,下一个命令位置可以在相同位置中以保持操纵器组件静止。在没有外部干扰(例如障碍物)的情况下,操纵器臂组件将到达命令位置(1052)。
然而,在图10B1中,障碍物(1054)阻止操纵器臂到达命令位置(1052)。操纵器组件的实际位置被卡在阻挡位置(1056)(使用实线示出在阻挡位置中的操纵器组件配置)。由于操纵器组件无法到达命令位置,因此操纵器组件的接头致动器的命令扭矩可能饱和。当障碍物(1054)被移除时,操纵器组件可以移动到命令位置(1052)。如果命令位置和阻挡位置之间的差保持在误差阈值以下,则可能发生这种情况,从而不会导致命令位置的更新。但是,如果超出误差阈值,则将更新命令位置。在这种情况下,操纵器组件不移动到命令位置。反而,操纵器组件可以保持在阻挡位置处或附近,该阻挡位置现在对应于更新的命令位置。作为结果,当操纵器臂组件处于由操作员操作的输入控制设备的控制下时,操纵器臂最终可能以偏移(或更新的偏移量,如果在撞上障碍物之前已经存在偏移)来遵循操作员的命令。
转到图10B2,图示出附加的后续任务。最初,操纵器组件的命令状态跟踪命令轨迹(1072)。然而,由于障碍物(1074)的存在,命令轨迹仅可能部分完成。更具体地,由于障碍物而阻挡了沿y-方向的移动,但是没有阻止沿x-方向的移动。使用虚线样式示出命令轨迹中无法完成的部分。当操纵器组件与障碍物接触时,实际y-位置不再遵循命令轨迹上的命令y-位置。最终,命令y-位置和实际y-位置之间的差超出误差阈值,结果命令y-位置被更新。更新的命令y-位置接近实际y-位置。因此,与最初的命令y-位置相比,更新的命令y-位置具有跟踪偏移。如果已经存在先前的跟踪偏移,则由于遇到障碍物,跟踪偏移可能会更改。随着在命令轨迹上继续执行后续任务,可以保持跟踪偏移。因此,在该示例中,操纵器组件的命令状态以在y-方向上的跟踪偏移来跟踪命令轨迹。在x-方向上没有引入跟踪偏移。可替代地,随着后续任务的继续执行,跟踪偏移可以逐渐减小,并且因此跟踪偏移可以随时间消除。跟踪偏移可以通过任何函数来减小,例如指数衰减函数。指数衰减函数的时间常数可以根据需要来选择。
此外,可以使用棘轮特征件来减小跟踪偏移。棘轮特征件以依赖方向的方式减少跟踪偏移。参考图9,当期望状态朝着图9中的实际状态移动时,可以逐渐减小用于计算命令状态的偏移,从而允许命令状态逐渐接近期望状态,直到命令状态最终到达期望状态。偏移的减小可以以依赖偏移的方式指数地、线性地或使用任何其他函数来执行。当期望状态远离实际状态移动时,偏移可以保持恒定。由此获取棘轮行为,其中,当在一个方向上移动时,偏移减小,而当在相反方向上移动时,同时防止偏移增大。
作为图10B2中描述的以下任务的替代,尽管最初的命令状态可以在命令轨迹上移动,但是一旦遇到障碍物,就可以防止命令状态在命令轨迹上前进。一旦障碍物被移除,命令状态可以恢复在命令轨迹上的移动。在该替代实施方式中,将不引入跟踪偏移。
假设对于所描述的以下任务,命令轨迹是由控制输入控制设备的操作员提供的,当操纵器组件的实际位置不再对应于命令轨迹上的命令位置时,用户可能会收到触觉提示。该触觉提示可以是例如输入控制设备的振动。
尽管在示例中,以下任务是在笛卡尔空间中控制的末端执行器的上下文中描述的,但是对于单个接头,可以以类似的方式执行以下任务。
本公开的实施例适合于各种应用。参考图1A、图1B、图2、图3、图4、图5和图6中描述的操纵器组件,所描述的方法可以促进和/或改进机器人系统的使用和与机器人系统的交互。在一个实施例中,除非超出误差阈值,否则这些方法可以使操纵器组件保持其位置或遵循轨迹。这可以允许操纵器组件执行任务(例如远程外科手术任务)。一旦超出误差阈值,就可以允许操纵器组件滑动,从而允许反向驱动。因此,如果误差阈值被适当地设置,则提供不干扰任务执行的连续可用的滑动行为。滑动行为在各种情况下可能是有利的。具体地,滑动可以减少与操纵器组件与另一物体碰撞相关的风险。一旦移除阻挡移动的障碍物,就不会发生操纵器组件的突然移动。滑动可以进一步允许操纵器臂反向驱动。另外,例如当将接头从浮动控制模式切换到位置保持控制时,滑动可以允许从一种控制模式无缝过渡到另一种控制模式。为了获取期望的特性,可以定制滑动行为。
作为第一示例,无论是在笛卡尔空间中还是在接头空间中,可以向上调整误差阈值,以防止在小能量累积的情况下发生滑动。类似地,可以将误差阈值向下调整以允许在相对较小的能量累积时发生滑动。
作为第二示例,可以取决于操纵器组件的类型(例如,操纵器臂的类型和/或操纵器臂所支撑的工具的类型)来不同地设置误差阈值。例如,假设涉及多个操纵器臂的场景。这种场景在远程外科手术应用中很常见。一个或多个操纵器臂可以配备有操纵工具,而另一个操纵器臂可以配备有包括成像设备(例如内窥镜)的工具。在这种场景中,用于不同操纵器臂的不同误差阈值可能是有利的。可能期望的是,具有成像设备的操纵器臂比任何其他操纵器臂更耐滑动,以确保当承载工具的操纵器臂中的一个和配备有成像设备的操纵器臂之间发生碰撞时,由成像设备提供给外科医生的视野不会改变。类似地,某些工具的使用比其他工具使用更大的力,并且误差阈值的选择可以至少基于与工具相关联的预期力,并反映出该差。
作为第三示例,同一操纵器组件的不同接头可以被不同地配置以获取相关联的操纵器臂段的期望特性。对于一些接头,可以选择相对较低的误差阈值,而对于其他接头,可以选择较高的误差阈值。此外,对于一些接头,例如对于配置为浮动的接头,滑动特征件可能根本不可用。在一个示例中,滑动特征件可能不适用于操纵器臂的远程中心。这种设计选择可以确保控制器始终尝试使远程中心与一个孔对齐,工具通过该孔附接至操纵器臂。远程中心的控制可以在笛卡尔空间中执行。因此,滑动特征件可能不适用于在影响或可能影响远程中心移位的接头速度方向上的接头。然而,滑动特征件可用于沿接头速度方向的一个或多个接头,例如,其允许末端执行器或操纵器组件的另一部分滑动而不会使远程中心滑动。考虑例如具有内置运动学冗余的操纵器组件(例如图5中所示的操纵器臂)。冗余可以允许重新配置一些或全部操纵器臂接头,同时保持工具或工具的末端执行器固定,或同时保持远程中心固定。当助手注意到操纵器臂与物体(例如另一操纵器臂)碰撞的风险增加时,这种重新配置可能是有益的。重新配置将更改操纵器臂的配置,以减少碰撞风险。通过在笛卡尔空间中设置相对较低的误差阈值,可以促进即时重新配置。助手可以简单地将操纵器臂推向期望配置。在操纵器臂保持在主动控制下以维持末端执行器(或远程中心)的位置的同时,响应于助手推动操纵器臂,一些接头可以被允许滑动,从而完成重新配置移动而不干扰末端执行器的位置和取向(或远程中心位置)。
作为第四示例,可以在笛卡尔空间或接头空间中对操纵器组件的一个或多个接头实现滑动特征件,以解决操纵器组件的错误或不期望的行为,这可能是例如由于以下原因造成的:用户经由用户控制系统指定了不正确的命令。具体地,靠近操纵器组件的助手可以通过手动阻挡错误或不期望的移动来阻止此类行为。控制器可以被配置成当移动被阻挡至少指定的时间间隔时停止执行错误或不期望的移动。如果阻挡是短暂的(即小于指定的时间间隔,这可能是由于助手对操纵器组件的移动造成的意外干扰而导致的),则控制器可以配置为继续执行移动。相反,当阻挡至少持续指定的时间间隔时,控制器可以配置为放弃移动,例如通过在部分执行移动的同时停止移动的执行。
尽管已经针对有限数量的实施例描述了本发明,但是受益于本公开的本领域技术人员将理解,可以设计出不背离本文所公开的本发明的范围的其他实施例。因此,本发明的范围应仅由所附权利要求书限制。

Claims (25)

1.一种计算机辅助医疗系统,其包括:
操纵器臂;和
控制器,其包括计算机处理器,所述控制器配置有至少非离合器模式和离合器模式,
其中当处于所述非离合器模式时,所述控制器被配置为对与所述操纵器臂的至少一个操纵器臂段相关联的至少一个接头进行伺服,所述伺服包括执行伺服回路,所述伺服回路包括:
获取所述操纵器臂的实际状态,
计算命令状态与所述实际状态之间的差,所述命令状态用于伺服所述至少一个接头,
确定所述差是否超出误差阈值,
基于确定所述差确实超出所述误差阈值:
使用偏移来更新所述命令状态以减小所述差,以及
应用所述命令状态以控制所述实际状态,并且
基于确定所述差不超出所述误差阈值:
不更新所述命令状态,以及
应用所述命令状态以控制所述实际状态,并且
其中当处于所述离合器模式时,所述控制器被配置为使所述至少一个接头浮动。
2.根据权利要求1所述的计算机辅助医疗系统,
其中对所述至少一个接头所进行的所述伺服通过包括比例控制增益的反馈控制器来执行,并且
其中更新所述命令状态减少了所述伺服回路中的能量累积,与所述比例控制增益相关联的所述能量累积在所述命令状态与所述实际状态之间的所述差上进行操作。
3.根据权利要求1所述的计算机辅助医疗系统,其中所述命令状态和所述实际状态各自包括接头状态。
4.根据权利要求3所述的计算机辅助医疗系统,其中所述接头状态包括接头位置、接头速度、接头扭矩或接头力。
5.根据权利要求1所述的计算机辅助医疗系统,其中所述命令状态和所述实际状态各自包括笛卡尔参考系中的状态。
6.根据权利要求5所述的计算机辅助医疗系统,其中所述命令状态和所述实际状态各自包括:末端执行器位置、末端执行器取向、末端执行器速度或末端执行器力。
7.根据权利要求1所述的计算机辅助医疗系统,
其中所述至少一个接头包括第一接头和第二接头,
其中确定所述差是否超出所述误差阈值是分别针对所述第一接头和所述第二接头执行的,
其中所述误差阈值包括针对所述第一接头的第一误差阈值和针对所述第二接头的第二误差阈值,并且
其中所述第一误差阈值不同于所述第二误差阈值。
8.根据权利要求1所述的计算机辅助医疗系统,其中基于以下项中的至少一项来选择所述误差阈值:由所述操纵器臂支撑的工具的类型和所述至少一个操纵器段的期望特性。
9.根据权利要求1至8中任一项所述的计算机辅助医疗系统,其中所述非离合器模式是用于执行选自由以下各项组成的组的任务的模式:位置保持任务、遵循任务和定位任务。
10.根据权利要求9所述的计算机辅助医疗系统,
其中所述非离合器模式是用于执行所述位置保持任务或所述遵循任务的模式,并且
其中当执行所述位置保持任务或所述遵循任务时,更新所述命令状态包括将所述命令状态设置为与所述实际状态非常接近。
11.根据权利要求10所述的计算机辅助医疗系统,
其中通过从另一种模式切换来达到所述非离合器模式,并且
其中,在所述切换期间,当所述命令状态与所述实际状态之间存在差异时,将所述命令状态设置为与所述实际状态非常接近将消散所述伺服回路中的过多能量累积。
12.根据权利要求9所述的计算机辅助医疗系统,其中所述命令状态由在操作员的控制下从输入控制设备获取的期望状态管制,由所述偏移进行调节。
13.根据权利要求9所述的计算机辅助医疗系统,其中使用位置时间插值即PT插值或位置速度时间插值即PVT插值来执行所述定位任务。
14.根据权利要求1至8中任一项所述的计算机辅助医疗系统,其中当处于所述非离合器模式时,所述控制器进一步被配置为:
随着时间的推移,逐渐减少所述偏移,以及
随着时间的推移,使用逐渐减小的偏移来更新所述命令状态。
15.一种用于操作医疗系统的方法,其包括:
在非离合器模式下,对与所述医疗系统的操纵器臂的至少一个操纵器臂段相关联的至少一个接头进行伺服,所述伺服包括执行伺服回路,所述伺服回路包括:
获取所述操纵器臂的实际状态;
计算命令状态与所述实际状态之间的差,所述命令状态用于伺服所述至少一个接头;
确定所述差是否超出误差阈值;
基于确定所述差确实超出所述误差阈值:
使用偏移来更新所述命令状态以减小所述差,以及
应用所述命令状态以控制所述实际状态;并且
基于确定所述差不超出所述误差阈值:
不更新所述命令状态,以及
应用所述命令状态以控制所述实际状态;并且
在离合器模式下,使所述至少一个接头浮动。
16.根据权利要求15所述的方法,
其中对所述至少一个接头所进行的所述伺服通过包括比例控制增益的反馈控制器来执行,并且
其中更新所述命令状态减少了所述伺服回路中的能量累积,与所述比例控制增益相关联的所述能量累积在所述命令状态与所述实际状态之间的所述差上进行操作。
17.根据权利要求15所述的方法,
其中所述至少一个接头包括第一接头和第二接头,
其中确定所述差是否超出所述误差阈值是分别针对所述第一接头和所述第二接头执行的,
其中所述误差阈值包括针对所述第一接头的第一误差阈值和针对所述第二接头的第二误差阈值,并且
其中所述第一误差阈值不同于所述第二误差阈值。
18.根据权利要求15所述的方法,其中基于以下项中的至少一项来选择所述误差阈值:由所述操纵器臂支撑的工具的类型和所述至少一个操纵器段的期望特性。
19.根据权利要求15至18中任一项所述的方法,其中所述非离合器模式是用于执行选自由以下各项组成的组的任务的模式:位置保持任务、遵循任务和定位任务。
20.根据权利要求19所述的方法,
其中所述非离合器模式是用于执行所述位置保持任务或所述遵循任务的模式,并且
其中当执行所述位置保持任务或所述遵循任务时,更新所述命令状态包括将所述命令状态设置为与所述实际状态非常接近。
21.根据权利要求20所述的方法,
其中通过从另一种模式切换来达到所述非离合器模式,并且
其中,在所述切换期间,当所述命令状态与所述实际状态之间存在差异时,将所述命令状态设置为与所述实际状态非常接近将消散所述伺服回路中的过多能量累积。
22.根据权利要求20所述的方法,进一步包括:
在操作员的控制下从输入设备获取期望状态,
其中所述命令状态由所述期望状态管制,由所述偏移进行调节。
23.根据权利要求19所述的方法,其中使用位置时间插值即PT插值或位置速度时间插值即PVT插值来执行所述定位任务。
24.根据权利要求15至18中任一项所述的方法,进一步包括:在所述非离合器模式下:
随着时间的推移,逐渐减小所述偏移;以及
随着时间的推移,使用逐渐减小的偏移来更新所述命令状态。
25.一种非暂时性机器可读介质,其包括由与医疗系统相关联的一个或多个处理器执行的多个机器可读指令,所述多个机器可读指令使所述一个或多个处理器执行方法,所述方法包括:
在非离合器模式下,对与所述医疗系统的操纵器臂的至少一个操纵器臂段相关联的至少一个接头进行伺服,所述伺服包括执行伺服回路,所述伺服回路包括:
获取所述操纵器臂的实际状态;
计算命令状态与所述实际状态之间的差,所述命令状态用于伺服所述至少一个接头;
确定所述差是否超出误差阈值;
基于确定所述差确实超出所述误差阈值:
使用偏移来更新所述命令状态以减小所述差;以及
应用所述命令状态以控制所述实际状态;
基于确定所述差不超出所述误差阈值:
不更新所述命令状态,以及
应用所述命令状态以控制所述实际状态;并且
在离合器模式下,使所述至少一个接头浮动。
CN202080008137.5A 2019-03-29 2020-03-27 减少伺服控制中的能量累积 Active CN113286682B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962826780P 2019-03-29 2019-03-29
US62/826,780 2019-03-29
PCT/US2020/025481 WO2020205634A1 (en) 2019-03-29 2020-03-27 Reducing energy buildup in servo-controlled mechanisms

Publications (2)

Publication Number Publication Date
CN113286682A true CN113286682A (zh) 2021-08-20
CN113286682B CN113286682B (zh) 2024-08-06

Family

ID=70416555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080008137.5A Active CN113286682B (zh) 2019-03-29 2020-03-27 减少伺服控制中的能量累积

Country Status (3)

Country Link
EP (2) EP3946833B1 (zh)
CN (1) CN113286682B (zh)
WO (1) WO2020205634A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022221204A1 (en) * 2021-04-12 2022-10-20 Intuitive Surgical Operations, Inc. Controlled resistance in backdrivable joints

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355064A (en) * 1992-03-04 1994-10-11 Honda Giken Kogyo Kabushiki Kaisha Control system for legged mobile robot
US20070138992A1 (en) * 2005-12-20 2007-06-21 Intuitive Surgical Inc. Medical robotic system with sliding mode control
US20070151389A1 (en) * 2005-12-20 2007-07-05 Giuseppe Prisco Medical robotic system with programmably controlled constraints on error dynamics
CN101227870A (zh) * 2005-05-19 2008-07-23 直观外科手术公司 用于外科手术及其它应用的软件中心和高度可配置的机器人系统
US20130325254A1 (en) * 2012-05-30 2013-12-05 Universite Bordeaux 1 Method and device for detecting oscilatory failures in a position servocontrol subsystem of an aircraft control surface
CN104002856A (zh) * 2013-02-27 2014-08-27 株式会社捷太格特 电动转向设备
US20170220007A1 (en) * 2016-02-01 2017-08-03 Varian Semiconductor Equipment Associates, Inc. Proportional integral derivative control incorporating multiple actuators
US20170252116A1 (en) * 2015-02-03 2017-09-07 Olympus Corporation Medical manipulator system and method for controlling thereof
US20180168749A1 (en) * 2016-12-16 2018-06-21 Mako Surgical Corp. Techniques for detecting errors or loss of accuracy in a surgical robotic system
CN108406765A (zh) * 2018-02-06 2018-08-17 南京航空航天大学 一种开链式多臂机器人阻抗控制方法
CN109070363A (zh) * 2016-03-30 2018-12-21 索尼公司 机械臂控制方法及机械臂控制装置
CN109483529A (zh) * 2018-10-12 2019-03-19 华南智能机器人创新研究院 一种基于螺旋理论的机械臂伺服控制方法、系统及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683403A (ja) * 1992-07-17 1994-03-25 Fanuc Ltd 適応pi制御方式
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
EP3119342B1 (en) * 2014-03-17 2021-05-12 Intuitive Surgical Operations, Inc. System for maintaining a tool pose

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355064A (en) * 1992-03-04 1994-10-11 Honda Giken Kogyo Kabushiki Kaisha Control system for legged mobile robot
CN101227870A (zh) * 2005-05-19 2008-07-23 直观外科手术公司 用于外科手术及其它应用的软件中心和高度可配置的机器人系统
EP2332481A2 (en) * 2005-05-19 2011-06-15 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US20070138992A1 (en) * 2005-12-20 2007-06-21 Intuitive Surgical Inc. Medical robotic system with sliding mode control
US20070151389A1 (en) * 2005-12-20 2007-07-05 Giuseppe Prisco Medical robotic system with programmably controlled constraints on error dynamics
US20130325254A1 (en) * 2012-05-30 2013-12-05 Universite Bordeaux 1 Method and device for detecting oscilatory failures in a position servocontrol subsystem of an aircraft control surface
CN104002856A (zh) * 2013-02-27 2014-08-27 株式会社捷太格特 电动转向设备
US20170252116A1 (en) * 2015-02-03 2017-09-07 Olympus Corporation Medical manipulator system and method for controlling thereof
US20170220007A1 (en) * 2016-02-01 2017-08-03 Varian Semiconductor Equipment Associates, Inc. Proportional integral derivative control incorporating multiple actuators
CN109070363A (zh) * 2016-03-30 2018-12-21 索尼公司 机械臂控制方法及机械臂控制装置
US20180168749A1 (en) * 2016-12-16 2018-06-21 Mako Surgical Corp. Techniques for detecting errors or loss of accuracy in a surgical robotic system
CN108406765A (zh) * 2018-02-06 2018-08-17 南京航空航天大学 一种开链式多臂机器人阻抗控制方法
CN109483529A (zh) * 2018-10-12 2019-03-19 华南智能机器人创新研究院 一种基于螺旋理论的机械臂伺服控制方法、系统及装置

Also Published As

Publication number Publication date
EP3946833A1 (en) 2022-02-09
EP4272908A1 (en) 2023-11-08
CN113286682B (zh) 2024-08-06
WO2020205634A1 (en) 2020-10-08
US20220175472A1 (en) 2022-06-09
EP3946833B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
US11779415B2 (en) System and method for rapid halt and recovery of motion deviations in repositionable arms
US11903664B2 (en) Computer-assisted medical systems and methods
US20220022980A1 (en) Base positioning system for a controllable arm and related methods
US10405934B2 (en) Method for handling an operator command exceeding a medical device state limitation in a medical robotic system
CN113195174B (zh) 引导工具改变
EP2038712B1 (en) Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
JP6262216B2 (ja) 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法
US20220313349A1 (en) System and method of dithering to maintain grasp force
US20230064265A1 (en) Moveable display system
CN113286682B (zh) 减少伺服控制中的能量累积
Bihlmaier et al. Endoscope robots and automated camera guidance
US20230263585A1 (en) Method and system for coordinated multiple-tool movement using a drivable assembly
US12096998B2 (en) Reducing energy buildup in servo-controlled mechanisms
US20220296323A1 (en) Moveable display unit on track
US20240189051A1 (en) Controlled resistance in backdrivable joints
US20240208055A1 (en) Techniques for constraining motion of a drivable assembly
WO2024086122A1 (en) Controlling software remote centers of motion for computer-assisted systems subject to motion limits
CN117120218A (zh) 用于控制机器人操纵器或相关联工具的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant