CN113283093B - 一种基于新能源发电并网协调成本的评估方法 - Google Patents

一种基于新能源发电并网协调成本的评估方法 Download PDF

Info

Publication number
CN113283093B
CN113283093B CN202110598488.2A CN202110598488A CN113283093B CN 113283093 B CN113283093 B CN 113283093B CN 202110598488 A CN202110598488 A CN 202110598488A CN 113283093 B CN113283093 B CN 113283093B
Authority
CN
China
Prior art keywords
power
wind
photovoltaic
grid
wind power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110598488.2A
Other languages
English (en)
Other versions
CN113283093A (zh
Inventor
赵雪楠
尚国政
李原
尹洪全
石永富
陈颖
李昱材
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Shenyang Institute of Engineering
State Grid Eastern Inner Mongolia Power Co Ltd
Original Assignee
Shenyang Institute of Engineering
State Grid Eastern Inner Mongolia Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Engineering, State Grid Eastern Inner Mongolia Power Co Ltd filed Critical Shenyang Institute of Engineering
Priority to CN202110598488.2A priority Critical patent/CN113283093B/zh
Publication of CN113283093A publication Critical patent/CN113283093A/zh
Application granted granted Critical
Publication of CN113283093B publication Critical patent/CN113283093B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0206Price or cost determination based on market factors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Photovoltaic Devices (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开一种基于新能源发电并网协调成本的评估方法,针对影响电网协调运行成本的各类因素进行建模分析,通过外部环境参数和运营商运营参数构建函数关系,计算相关系数,最终得到基于新能源发电并网协调成本计算方法。通过计算调节成本综合评估值判断电网运行经济压力,方便电网运行在保证安全的情况下较为准确评估电网内某类电源对其他电源的经济影响,有利于帮助电网进行电力交易机制建设,减低经济成本。

Description

一种基于新能源发电并网协调成本的评估方法
技术领域
本发明涉及电网协调控制技术领域,尤其涉及一种基于新能源发电并网协调成本的评估方法。
背景技术
随着风、光新能源发电比例不断提高,形成一种风电光伏并网协调供电的趋势,而不同比例的风电光伏并网,造成了电网供电能力的差异化,因此需要对不同比例风电光伏的并网协调发电成本进行评估。目前大部分研究集中于单独使用风力发电或太阳能发电,鲜有使用将风电与光伏联合互补,没有综合考虑风电光伏出力情况以及风电光伏所占系统发电比例。因此本发明评估不同比例风电光伏的并网协调发电能力,需要综合考虑风电光伏出力情况以及风电光伏所占系统发电比例,从而更好的了解风、光新能源发电并网对电网供电能力的影响。
发明内容
针对上述现有技术的不足,本发明提供一种基于新能源发电并网协调成本的评估方法。
为解决上述技术问题,本发明所采取的技术方案是:一种基于新能源发电并网协调成本的评估方法,包括如下步骤:
步骤1:计算风电光伏并网结构中,各个风电场风电出力的总有功功率PWP,并进行归一化处理得到
Figure BDA0003091977110000011
过程如下:
步骤1.1:计算单一风电并网的有功功率PW
Figure BDA0003091977110000012
式中,ρ代表空气密度,A为叶轮横截面积,vi为第i个风电场风力速度,δWP为风能利用系数,n为采样个数;
步骤1.2:考虑单一的风电并网完成度较低,需要对各个风电场整体区域风电有功功率进行计算得到PWP
步骤1.3:对各个风电场风电出力有功功率进行归一化:
Figure BDA0003091977110000013
其中,PWPN为风电场装机容量,
Figure BDA0003091977110000021
为归一化后的有功功率。
步骤2:根据各个风电场风电出力的总有功功率PWP计算风电光伏并网结构中风电场集群的总有功功率PWS,并进行归一化处理得到
Figure BDA0003091977110000022
步骤3:考虑具体天气数值预报变量合集HW对风电出力的影响,同时考虑风向对风电出力的影响,得到风电并网能力评估成本函数R1为:
Figure BDA0003091977110000023
其中,
Figure BDA0003091977110000024
表示归一化后的天气数值预报变量合集,Dc为风速方向的余弦值,Ds为风速方向的正弦值,n为当日采取的典型风速数值数目;
所述考虑风向对风电出力的影响,则对风向分别进行正弦余弦分解,可得:
Figure BDA0003091977110000025
其中,D(t)为某时刻风速方向角度函数,Dc为风速方向的余弦值,Ds为风速方向的正弦值。
步骤4:考虑光伏电站输出电流IPV受环境因素的影响,计算光伏有功功率期望输出为:
Figure BDA0003091977110000026
其中,θP为电池板与太阳夹角,γ表示辐射强度,vW为实时风速矢量,TP表示温度特征值,τh为湿度典型特征量,UPV为光伏电池板输出电压,ΔvW为风速变化量;
对vW进行受力分解,取
Figure BDA0003091977110000027
为有效值代入,其中cosβ为实时风力与光伏电池板之间夹角余弦值,上式变为:
Figure BDA0003091977110000028
所述光伏电站输出电流IPV的计算过程如下:
Figure BDA0003091977110000029
其中,Iph表示光伏电池随外界环境变化输出的光生电流,I0为光伏电池额定电流,q代表电子电荷,U代表负载两端电压,A代表PN理想因子;k为玻尔兹曼常数,β为光伏出力系数,T为绝对温度。
步骤5:为了保证系统的稳定运营,各支路保持一定的储备,确保电网不在接近其功率极限的情况下运行,其储备系数KPV为:
Figure BDA0003091977110000031
式中,PM为线路承受功率极限,PPV为光伏有功功率期望输出,η1、η2分别为风电、光伏参与比例;
步骤6:根据光伏出力特点以及光伏电池储备系数KPV,可得光伏并网能力评估成本函数为:
Figure BDA0003091977110000032
式中,σ为风电光伏互补系统总有功功率波动率,n为取样个数;
所述风电光伏互补系统总有功功率波动率σ的计算过程如下:
Figure BDA0003091977110000033
式中,Pr为风电光伏总额定值,
Figure BDA0003091977110000034
为总有功功率最大值,
Figure BDA0003091977110000035
为总有功功率最小值。
步骤7:当风电光伏共同参与并网协调发电,则新能源发电并网协调成本f的计算公式为:
Figure BDA0003091977110000036
式中,Ptotal为风电光伏互补系统总有功功率,即Ptotal=PWP+PPV
采用上述技术方案所产生的有益效果在于:通过本发明提供的方法,减小了由于风电和光伏的不确定性对电网的冲击,计算调节成本综合评估值判断电网运行经济压力,方便电网运行在保证安全的情况下较为准确评估电网内某类电源对其他电源的经济影响,有利于促进以风光为主的新能源大规模、高质量、市场化的发展,同时兼顾风光投资经济性和深入推进市场化的导向,来满足能源转型和“30·60双碳”目标要求。有利于帮助电网进行电力交易机制建设,提升电网的系统灵活调节能力,减低经济成本。
附图说明
图1为本发明实施例中提供的基于新能源发电并网协调成本的评估方法的流程图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
如图1所示,本实施例中基于新能源发电并网协调成本的评估方法如下所述:
步骤1:计算风电光伏并网结构中,各个风电场风电出力的总有功功率PWP,并进行归一化处理得到
Figure BDA0003091977110000041
过程如下:
步骤1.1:计算单一风电并网的有功功率PW
Figure BDA0003091977110000042
式中,ρ代表空气密度,A为叶轮横截面积,vi为第i个风电场风力速度,δWP为风能利用系数,n为采样个数;
一般而言,若要使得δWP到达最大值δWPmax,就要找到它的最佳叶尖速比λWPout,其中:
Figure BDA0003091977110000043
n表示风轮的转速,单位r/s;ω表示风轮的角速度,单位rad/s。R表示线路等效阻抗,式中
Figure BDA0003091977110000044
表示风轮的工作运行状态,当此风机的λWP与λWPout相近时,δWP的值越高;当λ与λWPout的值相差较大时,δWP的值越小,风能利用效率下降。风电协调度降低。
本实施例中,根据某风光互补地区测量所得数据,测得ρ=1.29,A=50,v取典型特征值为20.6,δWP=0.75。则风电场出力总有功功率为
Figure BDA0003091977110000045
ω=5000r/s,δWPmax=0.59310,就要找到它的最佳叶尖速比λWPout,其中:
Figure BDA0003091977110000046
n=104r/s;ω=6000rad/s,R=125Ω,v=650,式中λWP≈3864π。
步骤1.2:考虑单一的风电并网完成度较低,需要对各个风电场整体区域风电有功功率进行计算得到PWP
本实施例中,计算得到各个风电场整体区域风电有功功率PWP=0.8MW;
步骤1.3:对各个风电场风电出力有功功率进行归一化:
Figure BDA0003091977110000051
其中,PWPN为风电场装机容量,
Figure BDA0003091977110000052
为归一化后的有功功率。
本实施例中,风电场装机容量PWPN=1MW,则
Figure BDA0003091977110000053
为归一化后的有功功率。
步骤2:根据各个风电场风电出力的总有功功率PWP计算风电光伏并网结构中风电场集群的总有功功率PWS,并进行归一化处理得到
Figure BDA0003091977110000054
本实施例中,风电集群总有功功率归一化后,表示为
Figure BDA0003091977110000055
步骤3:考虑具体天气数值预报变量合集HW对风电出力的影响,同时考虑风向对风电出力的影响,得到风电并网能力评估成本函数R1为:
Figure BDA0003091977110000056
其中,
Figure BDA0003091977110000057
表示归一化后的天气数值预报变量合集,如风速、温度、气压等;Dc为风速方向的余弦值,Ds为风速方向的正弦值,n为当日采取的典型风速数值数目;
所述考虑风向对风电出力的影响,则对风向分别进行正弦余弦分解,可得:
Figure BDA0003091977110000058
其中,D(t)为某时刻风速方向角度函数,Dc为风速方向的余弦值,Ds为风速方向的正弦值。
本实施例中,根据历史天气数据推算出
Figure BDA0003091977110000059
代入D(t)=v(t)cosθ,在某典型时刻D(t)≈45°进行正弦余弦分解,可得
Figure BDA0003091977110000061
根据风电出力特点以及风电机组典型风能利用系数,可得风电并网能力评估成本函数为:
Figure BDA0003091977110000062
步骤4:考虑光伏电站输出电流IPV受环境因素的影响,计算光伏有功功率期望输出为:
Figure BDA0003091977110000063
其中,θP为电池板与太阳夹角,γ表示辐射强度,vW为实时风速矢量,TP表示温度特征值,τh为湿度典型特征量,UPV为光伏电池板输出电压,ΔvW为风速变化量;
对vW进行受力分解,取
Figure BDA0003091977110000064
为有效值代入,其中cosβ为实时风力与光伏电池板之间夹角余弦值,上式变为:
Figure BDA0003091977110000065
所述光伏电站输出电流IPV的计算过程如下:
Figure BDA0003091977110000066
其中,Iph表示光伏电池随外界环境变化输出的光生电流,I0为光伏电池额定电流,q代表电子电荷(一般取1.6×10-19C),U代表负载两端电压,A代表PN理想因子,一般取值在1-2之间;k为玻尔兹曼常数(一般取1.38×10-23J/K),β为光伏出力系数,T为绝对温度(T=t+273℃)。
本实施例中,光伏电池随外界环境变化输出的光生电流Iph=7.5A、电子电荷q=1.6×10-19C,负载两端电压U=48V,PN理想因子A=1.5,光伏电池额定电流I0=8.33A,玻尔兹曼常数k=1.38×10-23J/K,绝对温度T=283。光伏出力系数β=10。
光伏发电系统出力建模,其中光伏电站输出电流为:
Figure BDA0003091977110000071
电池板与太阳夹角θP≈26.5651°,辐射强度γ=8,实时风速矢量vW=50m/s,温度特征值TP=1,湿度典型特征量τh=0.2。求解光伏有功功率期望输出为:
Figure BDA0003091977110000072
解得PPV=5946.4583kW。
步骤5:为了保证系统的稳定运营,各支路保持一定的储备,确保电网不在接近其功率极限的情况下运行,其储备系数KPV为:
Figure BDA0003091977110000073
式中,PM为线路承受功率极限,PPV为光伏有功功率期望输出,η1、η2分别为风电、光伏参与比例,正常运行方式下KPV>15%;
本实施例中,线路承受功率极限PM=300000kW,风电、光伏参与比例分别为η1=45%、η2=35%,得到储备系数KPV≈18.85%,由于其值大于15%,故处于正常运行时方式。
步骤6:根据光伏出力特点以及光伏电池储备系数KPV,可得光伏并网能力评估成本函数为:
Figure BDA0003091977110000074
式中,σ为风电光伏互补系统总有功功率波动率,n为取样个数;
所述风电光伏互补系统总有功功率波动率σ的计算过程如下:
Figure BDA0003091977110000075
式中,Pr为风电光伏总额定值,
Figure BDA0003091977110000076
为总有功功率最大值,
Figure BDA0003091977110000077
为总有功功率最小值。
本实施例中,风电光伏互补系统总有功功率为:Ptotal=217388kW;风电光伏总额定值Pr=230000kW。总有功功率最大值
Figure BDA0003091977110000078
总有功功率最小值
Figure BDA0003091977110000079
则在时间t-t0时间段内总有功功率波动率σ为:
Figure BDA0003091977110000081
求解得σ=4.3478%。
根据光伏出力特点以及光伏电池储备系数KPV,可得光伏并网能力评估成本函数为:
Figure BDA0003091977110000082
步骤7:当风电光伏共同参与并网协调发电,则新能源发电并网协调成本f的计算公式为:
Figure BDA0003091977110000083
式中,Ptotal为风电光伏互补系统总有功功率,即Ptotal=PWP+PPV
本实施例中,由于地理特征较为分散,风光互补集成度高,通过以上分别针对风电光伏系统模型的建模,当两者共同参与二者并网协调能力发电能力成本表示为f:
Figure BDA0003091977110000084
求解得f=0.5641元/kWh。

Claims (4)

1.一种基于新能源发电并网协调成本的评估方法,其特征在于,包括如下步骤:
步骤1:计算风电光伏并网结构中,各个风电场风电出力的总有功功率PWP,并进行归一化处理得到
Figure FDA0003790054470000011
步骤1.1:计算单一风电并网的有功功率PW
Figure FDA0003790054470000012
式中,ρ代表空气密度,A为叶轮横截面积,vi为第i个风电场风力速度,δWP为风能利用系数,n为采样个数;
步骤1.2:考虑单一的风电并网完成度较低,需要对各个风电场整体区域风电有功功率进行计算得到PWP
步骤1.3:对各个风电场风电出力有功功率进行归一化:
Figure FDA0003790054470000013
其中,PWPN为风电场装机容量,
Figure FDA0003790054470000014
为归一化后的有功功率;
步骤2:根据各个风电场风电出力的总有功功率PWP计算风电光伏并网结构中风电场集群的总有功功率PWS,并进行归一化处理得到
Figure FDA0003790054470000015
步骤3:考虑具体天气数值预报变量合集HW对风电出力的影响,同时考虑风向对风电出力的影响,得到风电并网能力评估成本函数R1为:
Figure FDA0003790054470000016
其中,
Figure FDA0003790054470000017
表示归一化后的天气数值预报变量合集,Dc为风速方向的余弦值,Ds为风速方向的正弦值,n为当日采取的典型风速数值数目;
步骤4:考虑光伏电站输出电流IPV受环境因素的影响,计算光伏有功功率期望输出为:
Figure FDA0003790054470000018
其中,θP为电池板与太阳夹角,γ表示辐射强度,vW为实时风速矢量,TP表示温度特征值,τh为湿度典型特征量,UPV为光伏电池板输出电压,△vW为风速变化量;
对vW进行受力分解,取
Figure FDA0003790054470000021
为有效值代入,其中cosβ为实时风力与光伏电池板之间夹角余弦值,上式变为:
Figure FDA0003790054470000022
步骤5:为了保证系统的稳定运营,各支路保持一定的储备,确保电网不在接近其功率极限的情况下运行,其储备系数KPV为:
Figure FDA0003790054470000023
式中,PM为线路承受功率极限,PPV为光伏有功功率期望输出,η1、η2分别为风电、光伏参与比例;
步骤6:根据光伏出力特点以及光伏电池储备系数KPV,得光伏并网能力评估成本函数为:
Figure FDA0003790054470000024
式中,σ为风电光伏互补系统总有功功率波动率,n为取样个数;
步骤7:当风电光伏共同参与并网协调发电,则新能源发电并网协调成本f的计算公式为:
Figure FDA0003790054470000025
式中,Ptotal为风电光伏互补系统总有功功率,即Ptotal=PWP+PPV
2.根据权利要求1所述的基于新能源发电并网协调成本的评估方法,其特征在于,所述考虑风向对风电出力的影响,则对风向分别进行正弦余弦分解,得:
Figure FDA0003790054470000026
其中,D(t)为某时刻风速方向角度函数,Dc为风速方向的余弦值,Ds为风速方向的正弦值。
3.根据权利要求1所述的基于新能源发电并网协调成本的评估方法,其特征在于,所述光伏电站输出电流IPV的计算过程如下:
Figure FDA0003790054470000031
其中,Iph表示光伏电池随外界环境变化输出的光生电流,I0为光伏电池额定电流,q代表电子电荷,U代表负载两端电压,A代表PN理想因子;k为玻尔兹曼常数,β为光伏出力系数,T为绝对温度。
4.根据权利要求1所述的基于新能源发电并网协调成本的评估方法,其特征在于,所述风电光伏互补系统总有功功率波动率σ的计算过程如下:
Figure FDA0003790054470000032
式中,Pr为风电光伏总额定值,
Figure FDA0003790054470000033
为总有功功率最大值,
Figure FDA0003790054470000034
为总有功功率最小值。
CN202110598488.2A 2021-05-31 2021-05-31 一种基于新能源发电并网协调成本的评估方法 Expired - Fee Related CN113283093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110598488.2A CN113283093B (zh) 2021-05-31 2021-05-31 一种基于新能源发电并网协调成本的评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110598488.2A CN113283093B (zh) 2021-05-31 2021-05-31 一种基于新能源发电并网协调成本的评估方法

Publications (2)

Publication Number Publication Date
CN113283093A CN113283093A (zh) 2021-08-20
CN113283093B true CN113283093B (zh) 2022-09-27

Family

ID=77282585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110598488.2A Expired - Fee Related CN113283093B (zh) 2021-05-31 2021-05-31 一种基于新能源发电并网协调成本的评估方法

Country Status (1)

Country Link
CN (1) CN113283093B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013701A (zh) * 2010-12-06 2011-04-13 青海电力科学试验研究院 一种高海拔地区电网光伏发电接纳能力计算方法
CN105117788A (zh) * 2015-07-22 2015-12-02 河南行知专利服务有限公司 一种风力发电功率预测方法
CN110880789A (zh) * 2019-12-06 2020-03-13 国网江苏省电力有限公司南通供电分公司 一种风电、光伏联合发电系统经济调度方法
CN111668881A (zh) * 2020-06-19 2020-09-15 国网冀北电力有限公司 考虑新能源出力对电网线损影响的评估方法
CN112234655A (zh) * 2020-07-30 2021-01-15 国网甘肃省电力公司电力科学研究院 一种送端电网安全稳定的源网协调调峰优化方法
CN112288130A (zh) * 2020-09-24 2021-01-29 国网内蒙古东部电力有限公司 一种基于两阶段多目标优化的新能源消纳计算方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931241B (zh) * 2010-09-21 2013-04-17 许继集团有限公司 风电场并网协调控制方法
US9098876B2 (en) * 2013-05-06 2015-08-04 Viridity Energy, Inc. Facilitating revenue generation from wholesale electricity markets based on a self-tuning energy asset model
CN110808608A (zh) * 2019-10-22 2020-02-18 国网江苏省电力有限公司电力科学研究院 规模化新能源参与受端电网调频调压能力评估方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013701A (zh) * 2010-12-06 2011-04-13 青海电力科学试验研究院 一种高海拔地区电网光伏发电接纳能力计算方法
CN105117788A (zh) * 2015-07-22 2015-12-02 河南行知专利服务有限公司 一种风力发电功率预测方法
CN110880789A (zh) * 2019-12-06 2020-03-13 国网江苏省电力有限公司南通供电分公司 一种风电、光伏联合发电系统经济调度方法
CN111668881A (zh) * 2020-06-19 2020-09-15 国网冀北电力有限公司 考虑新能源出力对电网线损影响的评估方法
CN112234655A (zh) * 2020-07-30 2021-01-15 国网甘肃省电力公司电力科学研究院 一种送端电网安全稳定的源网协调调峰优化方法
CN112288130A (zh) * 2020-09-24 2021-01-29 国网内蒙古东部电力有限公司 一种基于两阶段多目标优化的新能源消纳计算方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Life cycle cost evaluation of off-grid PV-wind hybrid power systems;Fabio Morea等;《INTELEC 07 - 29th International Telecommunications Energy Conference》;20080208;第439-441页 *
光伏发电功率预测和模型分析;liyxi26;《https://max.book118.com/html/2015/1219/31635998.shtm》;20151220;第1-27页 *
光伏发电并网工程投资估算分析;万里-叶飘;《http://ishare.iask.sina.com.cn/f/1cMU8sUrPNz.html》;20210330;第1页 *
可再生能源发电并网协调策略的研究;于大洋;《中国博士学位论文全文数据库 (工程科技Ⅱ辑)》;20100815(第8期);第C042-19页 *
基于多市场联动的区域能源系统低碳路径研究;赵国涛等;《电力建设》;20210301;第42卷(第3期);第19-26页 *
电力市场环境下风电并网系统的可用输电能力评估研究;贾磊;《中国硕士学位论文全文数据库 (工程科技Ⅱ辑)》;20180915(第9期);第C042-161页 *

Also Published As

Publication number Publication date
CN113283093A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN110365013B (zh) 一种光热-光伏-风电联合发电系统的容量优化方法
CN105354632B (zh) 一种考虑尾流效应的风电场功率优化分配策略
CN102419394B (zh) 一种预测分辨率可变的风光功率预测方法
CN111709850B (zh) 一种考虑船舶横摇的新能源船舶电力系统容量优化方法
An et al. Coordinative optimization of hydro-photovoltaic-wind-battery complementary power stations
CN112600209A (zh) 一种含潮流能的海岛独立微电网容量多目标优化配置方法
CN110808615A (zh) 考虑不确定性的气电虚拟电厂调度优化方法
Li et al. Coordinated control scheme of a hybrid renewable power system based on hydrogen energy storage
Karamov et al. Modeling a solar power plant with regard to changes in environmental parameters
Zahedi Technical analysis of an electric power system consisting of solar PV energy, wind power, and hydrogen fuel cell
CN113283093B (zh) 一种基于新能源发电并网协调成本的评估方法
Ahshan et al. Distributed wind systems for moderate wind speed sites
CN107832489A (zh) 一种光伏面板最佳数目及月倾角的计算方法
CN109546647B (zh) 一种用于含风光水储的电力系统的安全稳定评估方法
Lachheb et al. Fostering Sustainability through the Integration of Renewable Energy in an Agricultural Hydroponic Greenhouse
Cao et al. Capacity Optimal Configuration of Wind-Hydrogen Low Carbon Energy System
Madhav et al. A review on renewable energy sources for hybrid power generation
Malsagov et al. New energy production concept in the Republic of Ingushetia
Ojo et al. The Modelling and Simulation Of Power Flow and Fault Analysis For A Hybrid DC Microgrid
CN116484553B (zh) 一种考虑多能互补的微电网优化设计方法
Yang et al. Theoretical and Experimental Verification of Wind Powered Hydrogen Storage Energy System
Wenli Research on Energy Storage and Hydrogen Production System of Offshore Wind-solar Hybrid Power Generation Based on 3D Finite Element Method
Alekseevich et al. Features of design and operation of wind-diesel complexes
Bhol et al. Optimal Dispatch of a Hybrid Renewable Energy System Using Modified PSO Algorithm
Roy et al. Performance and Energy Metrics Analysis of Stand Alone Rooftop PV plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230803

Address after: 010020 No. 11 Erdos East Street, Saihan District, Hohhot City, Inner Mongolia Autonomous Region

Patentee after: STATE GRID EAST INNER MONGOLIA ELECTRIC POWER Co.,Ltd.

Patentee after: SHENYANG INSTITUTE OF ENGINEERING

Patentee after: STATE GRID CORPORATION OF CHINA

Address before: 010020 No. 11 Erdos East Street, Saihan District, Hohhot City, Inner Mongolia Autonomous Region

Patentee before: STATE GRID EAST INNER MONGOLIA ELECTRIC POWER Co.,Ltd.

Patentee before: SHENYANG INSTITUTE OF ENGINEERING

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220927