CN113276414A - 一种基于3d打印的微型同轴结构波导的制备方法 - Google Patents
一种基于3d打印的微型同轴结构波导的制备方法 Download PDFInfo
- Publication number
- CN113276414A CN113276414A CN202110593907.3A CN202110593907A CN113276414A CN 113276414 A CN113276414 A CN 113276414A CN 202110593907 A CN202110593907 A CN 202110593907A CN 113276414 A CN113276414 A CN 113276414A
- Authority
- CN
- China
- Prior art keywords
- printing
- micro coaxial
- coaxial structure
- preparation
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
- H01P11/001—Manufacturing waveguides or transmission lines of the waveguide type
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
Abstract
本发明提供了一种基于3D打印的微型同轴结构波导的制备方法。该方法是首先构造微型同轴结构波导的三维模型,并对每个部分的材料进行标注,然后利用超高精度的3D打印机对整个结构进行多材料打印,整个打印过程通过计算机系统进行精确地控制,从而实现微型同轴结构波导地三维快速制作。本发明创新性地将超高精度的3D打印工艺应用于微型同轴结构波导的制备中,其有益效果有:工艺简单,加工速度快;可以在一定程度上解决加工过程中的内外导体金属薄膜粘连、支撑材料的形变及单层金属陡直度不好的问题;可以将固定部件添加至任意需要的位置,加强固定效果,减少损耗;可以填平以往加工时添加的释放孔结构,进一步减少信号在传输过程中的损耗。
Description
技术领域
本发明涉及微波通信器件设计加工领域,特别涉及一种基于3D打印的微型同轴结构波导的制备方法。
背景技术
3D打印技术是上世纪80年代开始兴起的一种快速成型新制造技术,又称增材制造,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术,具有数字化、智能化、机械自动化等特点。3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造。因此3D打印技术在微波通信器件设计加工领域还是很有应用潜力的。
微型同轴结构波导主要由以下几个部分组成:外导体、中心导体、用来固定中心导体的固定部件(与中心导体接触且封装在外导体之内)、中心导体与外导体之间的介质。其中外导体主要用于屏蔽和支撑,内导体及内外导体间作为介质的空气用于传导电磁波。此类同轴结构相较于微带线及带状线结构的主要优点在于超高的隔离度及较小的插入损耗,这些优点使得器件在使用过程中相关设备部件的整体尺寸大大减小。
因此,一种基于3D打印的微型同轴结构波导的制备方法成为了亟待解决的问题。
发明内容
本发明所要解决的技术问题是:通过超高精度的3D打印技术实现微型同轴结构波导的三维快速制作。
本发明解决其技术问题所采用的技术方案的具体步骤如下:
步骤a、通过使用三维建模软件(例如solidworks、Creo等)或者对实际同轴波导进行三维扫描来构建微型同轴结构波导的三维模型,然后处理三维模型使其能够满足3D打印的要求;
步骤b、对微型同轴结构波导三维模型的各个部分进行材料标注;
步骤c、使用计算机系统分析三维模型,根据材料特性完成不同结构的打印喷头分配;
步骤d、在计算机系统的控制下,使用超高精度的3D打印机打印微型同轴结构波导。
步骤所述的计算机系统通过机械控制系统,完成对打印喷头的区分、定位、旋转和移动,根据微型同轴结构波导的三维模型、各个部分的材料要求,自动完成对使用不同材料的结构的分类以及打印喷头分配。最后,通过计算机系统完成对超高精度的3D打印机的精确控制,从而实现微型同轴结构波导的三维快速制作。
步骤所述的多材料是充当微型同轴结构波导的中心导体和外导体的金属材料以及充当用于固定中心导体的固定部件的绝缘材料。
步骤所述的超高精度的3D打印机是针对微波通信器件设计加工领域的要求设计的,按微型同轴结构波导的实际形状、尺寸和构造要求,设计打印架的形状、尺寸以及打印喷头的类型、数量、布置形式,在计算机系统的控制下,打印喷头可以前后、左右、上下来回打印每一层,打印喷头的数量应大于等于1个,打印精度在微米级。
附图说明
图1本发明所述方法的流程图;
图2本发明中涉及的微型同轴结构波导整体结构示意图;
图3本发明中涉及的微型同轴结构波导具体结构示意图。
图中:
1— 外导体;2—内导体;3—支撑材料。
具体实施方式
以下将结合附图,对本发明进行详细说明:
结合图1至图3所示,本实施例公开的一种基于3D打印的微型同轴结构波导的制备方法,微型同轴结构波导主要由以下几个部分组成:外导体1、内导体2和用来固定内导体2的支撑材料3;
首先构造微型同轴结构波导三维模型,并对每个部分的材料进行标注,然后利用超高精度的3D打印机对整个结构进行多材料打印,整个打印过程通过计算机系统进行精确地控制,从而实现微型同轴结构波导地三维快速制作。
具体地,所述的计算机系统通过机械控制系统,完成对打印喷头的区分、定位、旋转和移动,根据微型同轴结构波导的三维模型、各个部分的材料要求,自动完成对使用不同材料的结构的分类以及打印喷头分配,最后,通过计算机系统完成对超高精度的3D打印机的精确控制,从而实现微型同轴结构波导的三维快速制作。
具体地,所述的三维模型是通过三维建模软件设计出来的,或者是通过对实际同轴波导进行三维扫描,获得该结构的三维模型,然后处理三维模型使其能够满足3D打印的要求。
具体地,所述的多材料是充当微型同轴结构波导的中心导体和外导体的金属材料以及充当用于固定中心导体的固定部件的绝缘材料。
具体地,所述的超高精度的3D打印机是针对微波通信器件设计加工领域的要求设计的,按微型同轴结构波导的实际形状、尺寸和构造要求,设计打印架的形状、尺寸以及打印喷头的类型、数量、布置形式,在计算机系统的控制下,打印喷头可以前后、左右、上下来回打印每一层,打印喷头的数量应大于等于1个,打印精度在微米级。
Claims (5)
1.一种基于3D打印的微型同轴结构波导的制备方法,其特征在于:
首先构造微型同轴结构波导三维模型,并对每个部分的材料进行标注,然后利用超高精度的3D打印机对整个结构进行多材料打印,整个打印过程通过计算机系统进行精确地控制,从而实现微型同轴结构波导地三维快速制作。
2.根据权利要求1所述的一种基于3D打印的微型同轴结构波导的制备方法,其特征在于:
所述的计算机系统通过机械控制系统,完成对打印喷头的区分、定位、旋转和移动,根据微型同轴结构波导的三维模型、各个部分的材料要求,自动完成对使用不同材料的结构的分类以及打印喷头分配,最后,通过计算机系统完成对超高精度的3D打印机的精确控制,从而实现微型同轴结构波导的三维快速制作。
3.根据权利要求1所述的一种基于3D打印的微型同轴结构波导的制备方法,其特征在于:
所述的三维模型是通过三维建模软件设计出来的,或者是通过对实际同轴波导进行三维扫描,获得该结构的三维模型,然后处理三维模型使其能够满足3D打印的要求。
4.根据权利要求1所述的一种基于3D打印的微型同轴结构波导的制备方法,其特征在于:
所述的多材料是充当微型同轴结构波导的中心导体和外导体的金属材料以及充当用于固定中心导体的固定部件的绝缘材料。
5.根据权利要求1所述的一种基于3D打印的微型同轴结构波导的制备方法,其特征在于:
所述的超高精度的3D打印机是针对微波通信器件设计加工领域的要求设计的,按微型同轴结构波导的实际形状、尺寸和构造要求,设计打印架的形状、尺寸以及打印喷头的类型、数量、布置形式,在计算机系统的控制下,打印喷头可以前后、左右、上下来回打印每一层,打印喷头的数量应大于等于1个,打印精度在微米级。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110593907.3A CN113276414A (zh) | 2021-05-28 | 2021-05-28 | 一种基于3d打印的微型同轴结构波导的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110593907.3A CN113276414A (zh) | 2021-05-28 | 2021-05-28 | 一种基于3d打印的微型同轴结构波导的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113276414A true CN113276414A (zh) | 2021-08-20 |
Family
ID=77282627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110593907.3A Pending CN113276414A (zh) | 2021-05-28 | 2021-05-28 | 一种基于3d打印的微型同轴结构波导的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113276414A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512781A (zh) * | 2022-02-25 | 2022-05-17 | 南京理工大学 | 一种基于3d打印的同轴屏蔽线缆及其制造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106747476A (zh) * | 2016-11-28 | 2017-05-31 | 贵州航天计量测试技术研究所 | 一种ltcc滤波器多喷头打印集成制造方法 |
CN109075418A (zh) * | 2016-03-04 | 2018-12-21 | 瑞士十二公司 | 用于增材制造波导的方法和根据所述方法制造的波导装置 |
-
2021
- 2021-05-28 CN CN202110593907.3A patent/CN113276414A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109075418A (zh) * | 2016-03-04 | 2018-12-21 | 瑞士十二公司 | 用于增材制造波导的方法和根据所述方法制造的波导装置 |
CN106747476A (zh) * | 2016-11-28 | 2017-05-31 | 贵州航天计量测试技术研究所 | 一种ltcc滤波器多喷头打印集成制造方法 |
Non-Patent Citations (1)
Title |
---|
汪郁东等: "超宽带矩形微同轴滤波器制备及性能分析", 《遥测遥控》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114512781A (zh) * | 2022-02-25 | 2022-05-17 | 南京理工大学 | 一种基于3d打印的同轴屏蔽线缆及其制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9583813B2 (en) | Systems and methods for manufacturing passive waveguide components | |
CN110430666B (zh) | 一种3d打印电路板的制备方法 | |
Macdonald et al. | 3D printing for the rapid prototyping of structural electronics | |
US7419630B2 (en) | Methods and systems for rapid prototyping of high density circuits | |
CN106469596B (zh) | 用于磁性材料的增材制造系统和方法 | |
CN113276414A (zh) | 一种基于3d打印的微型同轴结构波导的制备方法 | |
CN105720362A (zh) | 一种3d打印射频天线的方法 | |
Shen et al. | A simple electroless plating solution for 3D printed microwave components | |
CN108790327B (zh) | 聚四氟乙烯填充薄膜复合玻璃布的高性能覆铜板及其制造工艺 | |
EP0642903A2 (en) | Method and apparatus for producing molded parts | |
CN107529274B (zh) | 一种基于3d打印的介质集成悬置线电路结构 | |
US10096880B2 (en) | Waveguide comprising first and second components attachable together using an extruding lip and an intruding groove | |
CN103480845A (zh) | 一种3d打印方法及其送粉刷机构 | |
US20170179607A1 (en) | Circuit board for hf applications including an integrated broadband antenna | |
CN108901138B (zh) | 基于3d打印陶瓷与金属线路的一体化制备方法 | |
CN104722757A (zh) | 一种激光3d打印专用型砂及其制备工艺和应用 | |
CN110430674A (zh) | 一种电镀沉积电路板的制备方法 | |
Sorocki et al. | Low-cost microwave components’ fabrication in hybrid technology of laminates and additive manufacturing on an example of miniaturized suspended directional coupler | |
CN104441358A (zh) | 一种陶瓷模种制作方法 | |
Huang et al. | Layer-by-layer stereolithography of three-dimensional antennas | |
Bartlett et al. | Structured-glass waveguide technology for high-performance millimetre-wave components and systems | |
CN112074086A (zh) | 一种新型立体3d电路板的制作方法 | |
Roué et al. | Three-dimensional printing of a waveguide termination for millimeter wave applications | |
CN110536551A (zh) | 一种电路板的制备方法 | |
CN113072035A (zh) | 太赫兹矩圆波导电铸芯模微结构的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210820 |
|
WD01 | Invention patent application deemed withdrawn after publication |