CN113272724B - 液晶透镜及其控制方法、液晶眼镜 - Google Patents

液晶透镜及其控制方法、液晶眼镜 Download PDF

Info

Publication number
CN113272724B
CN113272724B CN201980002139.0A CN201980002139A CN113272724B CN 113272724 B CN113272724 B CN 113272724B CN 201980002139 A CN201980002139 A CN 201980002139A CN 113272724 B CN113272724 B CN 113272724B
Authority
CN
China
Prior art keywords
electrode
liquid crystal
driving
crystal lens
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980002139.0A
Other languages
English (en)
Other versions
CN113272724A (zh
Inventor
王海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Publication of CN113272724A publication Critical patent/CN113272724A/zh
Application granted granted Critical
Publication of CN113272724B publication Critical patent/CN113272724B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Abstract

一种液晶透镜(100),具有至少两个驱动区域,液晶透镜(100)包括第一电极层(1)和第二电极层(2)。第一电极层(1)包括多个第一电极组(10),每个第一电极组(10)包括多个第一电极(101),每个第一电极组(10)所的多个第一电极(101)被配置为一一对应接收多个第一驱动信号(SD1),至少两个驱动区域中的每个驱动区域对应至少一个第一电极组(10)。第二电极层(2)与第一电极层(1)相对设置,包括被配置为一一对应接收至少一个第二驱动信号(SD2)的至少一个第二电极(201)。处于相同位置的第一电极(101)所接收的第一驱动信号(SD1)与对应的第二电极(201)所接收的第二驱动信号(SD2)之间所形成的驱动电压,在同一驱动区域内相等或大致相等,在不同驱动区域内其绝对值沿液晶透镜(100)的径向且由液晶透镜(100)的中心指向边缘的方向递增。

Description

液晶透镜及其控制方法、液晶眼镜
技术领域
本公开涉及液晶光学技术领域,尤其涉及一种液晶透镜及其控制方法、液晶眼镜、非暂态计算机可读存储介质。
背景技术
液晶透镜具有可调谐性、低功耗、结构轻巧等优点,可应用于三维显示、图像处理等场景中。
发明内容
一方面,提供一种液晶透镜,具有至少两个驱动区域,所述液晶透镜包括:第一电极层,包括多个第一电极组,每个第一电极组包括多个第一电极,每个第一电极组所包括的多个第一电极被配置为一一对应接收多个第一驱动信号,每个驱动区域对应至少一个第一电极组;与所述第一电极层相对设置的第二电极层,包括至少一个第二电极,所述至少一个第二电极被配置为一一对应接收至少一个第二驱动信号。同一驱动区域内,每个第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压相等或大致相等;不同驱动区域内,每个第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压不同,且该驱动电压的绝对值沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向递增。
在一些实施例中,液晶透镜还包括:与所述多个第一电极组一一对应的多个第一信号线组,每个第一信号线组包括多条第一信号线,每个第一信号线组所包括的多条第一信号线与对应的第一电极组所包括的多个第一电极一一对应电连接,每条第一信号线被配置为向与其电连接的第一电极传输第一驱动信号;与所述至少一个第二电极一一对应电连接的至少一条第二信号线,每条第二信号线被配置为向与其电连接的第二电极传输第二驱动信号。
在一些实施例中,液晶透镜还包括:与所述至少两个驱动区域一一对应的至少两个第一信号接收端组,每个第一信号接收端组包括多个第一信号接收端。对于每个驱动区域,每个第一信号线组所包括的多条第一信号线分别对应地电连接至对应的第一信号接收端组所包括的多个第一信号接收端,且与各第一电极组中处于相同位置的第一电极电连接的各第一信号线电连接至同一个第一信号接收端。
在一些实施例中,液晶透镜还包括:与所述至少两个第一信号接收端组一一对应的至少两个第一连接线组,每个第一连接线组包括多条第一连接线。对于每个驱动区域,每个第一信号线组所包括的多条第一信号线分别通过对应的第一连接线组所包括的多条第一连接线电连接至对应的第一信号接收端组所包括的多个第一信号接收端,且与各第一电极组中处于相同位置的第一电极电连接的各第一信号线通过同一条第一连接线电连接至同一个第一信号接收端。
在一些实施例中,液晶透镜还包括:与所述至少一条第二信号线一一对应电连接的至少一个第二信号接收端。
在一些实施例中,液晶透镜还包括:与所述至少一个第二信号接收端一一对应电连接的至少一条第二连接线,每条第二信号线通过一条第二连接线电连接至对应的第二信号接收端。
在一些实施例中,所述至少两个驱动区域包括非补偿驱动区域和至少一个补偿驱动区域,所述至少一个补偿驱动区域依次套设在所述非补偿驱动区域的周围;处于所述补偿驱动区域内的各第一电极组所包括的各第一电极的宽度小于预设尺寸,处于所述非驱动区域的各第一电极组所包括的各第一电极的宽度大于或等于所述预设尺寸,其中,所述预设宽度与相邻两个第一电极之间产生的干扰电场的强度在可接受范围之内的情况下所对应的第一电极的宽度相关。
在一些实施例中,所述预设宽度为10.3μm。
在一些实施例中,液晶透镜还包括第一绝缘层,所述第一电极层包括层叠设置的第一子电极层和第二子电极层,所述第一绝缘层位于所述第一子电极层和所述第二子电极层之间;所述多个第一电极组所包括的多个第一电极中,一部分第一电极设置于所述第一子电极层中,另外一部分第一电极设置于所述第二子电极层中。
在一些实施例中,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,所述多个第一电极组所包括的多个第一电极交替设置于所述第一子电极层和所述第二子电极层中。
在一些实施例中,所述第二电极层包括至少两个第二电极,所述至少两个第二电极同层设置,且相邻两个第二电极之间具有间隙以使二者保持相互绝缘;所述至少两个驱动区域与所述至少两个第二电极一一对应。
在一些实施例中,液晶透镜,还包括第二绝缘层,所述第二电极层包括层叠设置的第三子电极层和第四子电极层,所述第二绝缘层位于所述第三子电极层和所述第四子电极层之间;所述第二电极层包括至少两个第二电极,其中至少一个第二电极设置于所述第三子电极层中,其余第二电极设置于所述第四子电极层中。
在一些实施例中,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,所述第二电极层所包括的至少两个第二电极交替设置于所述第三子电极层和所述第四子电极层中。
在一些实施例中,所述第二电极层所包括的至少两个第二电极中,一个第二电极为圆形电极或者整面的电极,其余第二电极为环形电极;所述圆形电极或者整面的电极设置于所述第三子电极层和所述第四子电极层中的任意一者中,所述环形电极设置于所述第三子电极层和所述第四子电极层中的另外一者中。
在一些实施例中,所述至少两个驱动区域包括非补偿驱动区域和至少一个补偿驱动区域,所述至少一个补偿驱动区域依次套设在所述非补偿驱动区域的周围;所述环形电极对应所述补偿驱动区域;在所述第二电极层包括圆形电极的情况下,所述圆形电极对应所述非补偿驱动区域。
在一些实施例中,所述液晶透镜具有3~8个驱动区域。
又一方面,提供一种液晶眼镜,包括如上任一实施例所述的液晶透镜。
另一方面,提供一种液晶透镜的控制方法,应用于如上任一实施例所述的液晶透镜,所述控制方法包括:向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号,并向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号,使每个第一电极与该第一电极对应的第二电极之间形成驱动电压。其中,对于液晶透镜的同一驱动区域,各第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压相等;对于液晶透镜的不同驱动区域,各第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压不同,且该驱动电压的绝对值沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向递增,以使液晶透镜在各个驱动区域的相位差相等或大致相等。
在一些实施例中,所述向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号的步骤,包括:对于同一驱动区域,向该驱动区域对应的各第一电极组中处于相同位置的第一电极分别传输相同的第一驱动信号;对于不同驱动区域,向不同驱动区域对应的各第一电极组中处于相同位置的第一电极分别传输不同的第一驱动信号,且沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,这些第一驱动信号的电压值依次递增或递减。所述向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号的步骤,包括:向第二电极层中的各第二电极分别传输相同的第二驱动信号。
在一些实施例中,所述第二电极层包括与所述至少两个驱动区域一一对应的至少两个第二电极;所述向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号的步骤,包括:向液晶透镜的至少两个驱动区域内的各第一电极组中处于相同位置的第一电极传输相同的第一驱动信号;所述向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号的步骤,包括:向不同驱动区域对应的第二电极分别传输不同的第二驱动信号,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,这些第二驱动信号的电压值依次递增或递减。
在一些实施例中,所述第二电极层包括一个圆形电极或者整面电极,以及至少一个环形电极;所述向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号的步骤,包括:向液晶透镜的至少两个驱动区域内的各第一电极组中处于相同位置的第一电极传输相同的第一驱动信号;所述向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号的步骤,包括:向不同的环形电极传输不同的第二驱动信号,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,这些第二驱动信号的电压值依次递增或递减。
再一方面,提供一种非暂态计算机可读存储介质,存储有计算机程序指令,所述计算机程序指令在处理器上运行时,使得所述处理器执行如上任一实施例所述的液晶透镜的控制方法。
再一方面,提供一种计算机程序产品,所述计算机程序产品包含计算机程序指令,当其在计算机上运行时,使得计算机执行如上任一实施例所述的液晶透镜的控制方法。
再一方面,提供一种计算机程序,该程序被加载到处理器后,使处理器执行如上任一实施例所述的液晶透镜的控制方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据相关技术的一种液晶透镜的俯视结构示意图;
图2为根据相关技术的一种液晶透镜的第一电极层的俯视结构示意图;
图3为根据相关技术的一种液晶透镜沿图1中虚线XX’的剖面结构示意图;
图4为根据本公开的一些实施例的一种液晶透镜的俯视结构示意图;
图5为根据本公开的一些实施例的一种液晶透镜沿图4中虚线AA’的剖面结构示意图;
图6为根据本公开的一些实施例的一种液晶透镜的第一电极组的结构示意图;
图7为根据本公开的一些实施例的另一种液晶透镜沿图4中虚线AA’的剖面结构示意图;
图8为根据本公开的一些实施例的一种液晶透镜的第二电极层的俯视示意图;
图9为根据本公开的一些实施例的又一种液晶透镜沿图4中虚线AA’的剖面结构示意图;
图10为根据本公开的一些实施例的一种液晶透镜的第三子电极层的俯视示意图;
图11为根据本公开的一些实施例的一种液晶透镜的第四子电极层的俯视示意图;
图12为根据本公开的一些实施例的再一种液晶透镜沿图4中虚线AA’的剖面结构示意图;
图13为根据本公开的一些实施例的另一种液晶透镜的第三子电极层的俯视示意图;
图14为根据本公开的一些实施例的另一种液晶透镜的第四子电极层的俯视示意图;
图15为根据本公开的一些实施例的再一种液晶透镜沿图4中虚线AA’的剖面结构示意图;
图16为根据本公开的一些实施例的另一种液晶透镜的第一电极组的结构示意图;
图17为根据本公开的一些实施例的再一种液晶透镜沿图4中虚线AA’的剖面结构示意图;
图18为根据本公开的一些实施例的一种液晶眼镜的结构示意图。
具体实施方式
下面将结合附图,对本公开的一些实施例进行描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
液晶透镜一般包括两块基板,及夹设与两块基板之间的液晶层,其中,两块基板上均设置有电极。通过向两块基板上的电极分别施加电压,可以驱动夹设在中间的液晶层的液晶分子偏转,从而实现透过液晶透镜的光线透射率及光程差的改变,使得液晶透镜可以模拟各种光学透镜,例如凸透镜、菲涅尔透镜、凹透镜等。
参见图1~图3,在一些示例中,液晶透镜100’被用于模拟菲涅尔透镜200,该液晶透镜100’为圆形,包括相对设置的第一基板01’和第二基板02’,及夹设于二者之间的液晶层3’。其中,第一基板01’包括第一电极层1’,第一电极层1’包括多个第一电极101’,处于液晶透镜100’的中心O’位置处的第一电极101’为圆形,其余第一电极101’为环形,沿液晶透镜100’的径向且由液晶透镜100’的中心O’指向边缘的方向O’B’,各环形的第一电极101’依次套设。第二基板02’包括第二电极层2’,该第二电极层2’为整面的电极。
第一基板01’的第一电极层1’所包括的多个第一电极101’分为第一电极组10’,每个第一电极组10’包括多个第一电极101’,每个第一电极组10’中的第一电极101’的数量相同,图2和图3中示例性的示出每个第一电极组10’包括三个第一电极101’。
在每个第一电极组10’中,多个第一电极101’的位置沿液晶透镜100’的径向且由其中心O’指向边缘B’的方向O’B’分别编号为P1~PN,N为每个第一电极组10’所包括的第一电极101’的数量,N为大于或等于2的整数。例如,图3中每个第一电极组10’包括三个第一电极101’,沿方向O’B’,每个第一电极组10’所包括的三个第一电极101’的位置分别编号为P1、P2、P3
在以下的描述中,将各第一电极组10’中位置编号相同的第一电极101’称为处于相同位置的各第一电极101’。例如,图3所示出的两个第一电极组10’中位置编号均为P2(也即均处于位置P2)的两个第一电极101’为处于相同位置的第一电极101’。
继续参见图2和图3,沿方向O’B’,液晶透镜100’所要模拟的菲涅尔透镜200包括多个依次套设的环形的锯齿A,每个锯齿A的高度H相等或大致相等,且沿方向O’B’,各锯齿A的宽度W递减。
液晶透镜100’中第一基板01’的每个第一电极组10’被配置为对应模拟一个锯齿A,向每个第一电极组10’中的各第一电极101’传输第一驱动电压信号SD1’,并使每个第一电极组10’中的各第一电极101’的电压值沿方向O’B’递增,例如,每个第一电极组10’中,处于位置P1的第一电极101’的电压值、处于位置P2的第一电极101’的电压值、处于位置P3的第一电极101’的电压值递增。同时,向液晶透镜100’的第二基板02’的第二电极层2’传输第二驱动电压SD2’。
这样,每个第一电极组10’中的各第一电极101’与第二电极层2’之间形成驱动电场,液晶层3’中的液晶分子在该驱动电场的作用下发生偏转。液晶层3’的与每个第一电极组10’对应的区域内,液晶分子的偏转角(液晶分子的长轴与第一基板01’所在平面之间的夹角)沿方向O’B’递增,从而使折射率系数沿方向O’B’递减,实现相应的第一电极组10’对对应的锯齿A的光学特性的模拟。
在液晶透镜100’的驱动过程中,每个第一电极组10’中处于相同位置的第一电极101’的电压值相等,以使液晶层3’的与处于同一位置的第一电极101’对应的区域内的液晶分子的偏转角相等或大致相等,从而使液晶层3’的与处于同一位置的第一电极101’的对应的部分的折射率系数相等或大致相等,这样能够使各第一电极组10’所模拟的锯齿A的高度H相等或大致相等。
第一电极层1’的各第一电极101’的宽度L’沿方向O’B’递减,这样液晶层3’的与各第一电极组10’对应的部分能够模拟出沿方向O’B’宽度W递减的各锯齿A。此外,第一电极层1’通常包括两个子电极层,各第一电极101’被交替设置于不同的子电极层中,其中,设置于同一子电极层中的相邻两个第一电极101’之间的间隔等于或约等于设置于另一子电极层中的、且正投影位于该相邻的两个第一电极101’的正投影之间的第一电极101’的宽度L’。
本公开的发明人经研究发现,液晶透镜100’中设置于同一子电极层的相邻的第一电极101’之间会产生横向电场,该横向电场对于驱动液晶分子偏转的驱动电场(驱动电场的电场方向垂直于第一基板01’)会产生干扰,称之为干扰电场。沿方向O’B’,随着第一电极101’的宽度递减,设置于同一子电极层中的相邻的第一电极101’之间的间隔逐渐减小,干扰电场的强度逐渐增大,导致干扰电场对于驱动电场的影响逐渐增大。因此,在同一组第一驱动信号SD1’和同一个第二驱动信号SD2’所形成的驱动电压的驱动下,中心部分中的液晶分子能够达到预期的偏转角,边缘部分中的液晶分子则会因为受到干扰电场的影响而无法达到预期的偏转角,从而造成边缘部分的折射率系数无法达到所需折射率系数,边缘部分的成像较模糊,这导致液晶透镜100’的视场(Field of view,FOV)较小。例如,在一些相关技术中,液晶透镜100’的视场仅能达到约为-13.7°~+13.7°。
本公开的一些实施例提供了一种液晶透镜100,参见图4、图5和图6,液晶透镜100具有至少两个驱动区域(例如,驱动区域S0、驱动区域S1和驱动区域S2),液晶透镜100包括第一电极层1和第二电极层2,第一电极层1与第二电极层2相对设置。
其中,第一电极层1包括多个第一电极组10,所述多个第一电极组10中的每个第一电极组10包括多个第一电极101,每个第一电极组10所包括的多个第一电极101被配置为一一对应接收多个第一驱动信号SD1。液晶透镜100的至少两个驱动区域中的每个驱动区域对应至少一个第一电极组10。第二电极层2包括至少一个第二电极201,所述至少一个第二电极201被配置为一一对应接收至少一个第二驱动信号SD2
同一驱动区域内,每个第一电极组10中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压相等或大致相等。
不同驱动区域内,每个第一电极组10中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压不同,且该驱动电压的绝对值沿液晶透镜的径向且由液晶透镜的中心O指向边缘B的方向OB递增。
如此,液晶透镜100的不同驱动区域内,处于相同位置的各第一电极101所接收的第一驱动信号SD1,与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压沿的绝对值沿方向OB递增,因此,液晶层3的与处于相同位置的第一电极101对应的各部分所受到的驱动电压的绝对值沿方向OB递增。由此可知,相比于液晶透镜100的中心部分中处于某一位置的第一电极101与对应的第二电极2所形成的驱动电压,边缘部分中处于同一位置的第一电极101与对应的第二电极2所形成的驱动电压增大。这样,边缘部分中增大的驱动电压使原本因受到干扰电场影响而无法达到预期偏转角的液晶分子进一步偏转,偏转角变大,从而使边缘部分中的液晶分子的偏转角接近甚至达到所需的偏转角。如此一来,液晶透镜100的边缘部分的折射率系数也能够达到所需折射率系数而成像较清晰,增大了液晶透镜100的视场。
需要说明的是,此处并未对如上所述的液晶透镜100的每个第一电极组10所包括的第一电极101的数量做出限定。可以根据实际的使用需求来设定每个第一电极组10所包括的第一电极101的数量。
示例性的,参见图5,液晶透镜100中的每个第一电极组10包括三个第一电极101。作为另一种示例,参见图15,液晶透镜100中的每个第一电极组10包括六个第一电极101。
在一些实施例中,参见图5,液晶透镜100还包括多个第一信号线组30和至少一条第二信号线601。其中,所述多个第一信号线组30与所述多个第一电极组10一一对应。每个第一信号线组30包括多条第一信号线301,每个第一信号线组30所包括的多条第一信号线301与对应的第一电极组10所包括的多个第一电极101一一对应电连接,每条第一信号线301被配置为向与其电连接的第一电极101传输第一驱动信号SD1。至少一条第二信号线601与至少一个第二电极201一一对应电连接,每条第二信号线601被配置为向与其电连接的第二电极201传输第二驱动信号SD2
这里,液晶透镜100通过各第一信号线组30向相应的第一电极组10传输第一信号SD1,从而使各第一电极组10能够相互独立地接收第一信号SD1
此外,液晶透镜100通过各第一信号线101向相应的第一电极101传输第一驱动信号SD1,通过各第二信号线601向相应的第二电极201传输第二驱动信号SD2,从而使各第一电极101能够相互独立地接收到第一驱动信号SD1、使各第二电极201能够相互独立地接收到第二驱动信号SD2,实现了对各第一电极101和各第二电极201的电压的独立控制。
在一些实施例中,参见图4和图5,液晶透镜100还包括:与至少两个驱动区域一一对应的至少两个第一信号接收端组40,每个第一信号接收端组40包括多个第一信号接收端401。
对于每个驱动区域,每个第一信号线组30所包括的多条第一信号线301分别对应地电连接至对应的第一信号接收端组40所包括的多个第一信号接收端401,且与各第一电极组10中处于相同位置的第一电极101电连接的各第一信号线301电连接至同一个第一信号接收端401。
此处,第一信号线301将相应的第一电极101与相应的第一信号端401电连接,液晶透镜100能够通过同一第一信号接收端401向同一驱动区域内的处于相同位置的第一信号线301传输同一第一驱动信号SD1,从而使同一驱动区域内的处于相同位置的各第一电极101的电压相等或大致相等。如此,每个驱动区域仅需要对应一个第一信号接收端组40即能够实现第一驱动信号SD1的传输,因此液晶透镜100中的第一信号接收端组40的数量较少。
在一些实施例中,参见图5,液晶透镜100还包括:与至少两个第一信号接收端组40一一对应的至少两个第一连接线组50,每个第一连接线组50包括多条第一连接线501。
对于每个驱动区域,每个第一信号线组30所包括的多条第一信号线301分别通过对应的第一连接线组50所包括的多条第一连接线501电连接至对应的第一信号接收端组40所包括的多个第一信号接收端401,且与各第一电极组10中处于相同位置的第一电极101电连接的各第一信号线301通过同一条第一连接线501电连接至同一个第一信号接收端401。
这里,第一连接线501将相应的第一信号线301和相应的第一信号接收端401电连接,液晶透镜100能够通过各第一连接线501实现向相应的第一电极101传输第一驱动信号SD1。此外,每个第一信号接收端401与一个第一连接线501对应,而无需每个第一信号线301均与相应的第一信号接收端401直接电连接,从而能够节省布线空间及简化液晶透镜100的结构。
在一些实施例中,参见图5,液晶透镜100还包括:与所述至少一条第二信号线601一一对应电连接的至少一个第二信号接收端701。
这样,液晶透镜100通过各第二信号接收端701向相应的第二电极201传输第二驱动信号SD2
在一些实施例中,参见图5,液晶透镜100还包括:与所述至少一个第二信号接收端701一一对应电连接的至少一条第二连接线801,每条第二信号线601通过一条第二连接线801电连接至对应的第二信号接收端701。
这样,第二连接线801将相应的第二信号线601和相应的第二信号接收端701电连接,液晶透镜100能够通过各第二连接线801实现向相应的第二电极201传输第二驱动信号SD2
在一些实施例中,参见图5,液晶透镜100还包括第一绝缘层51,第一电极层1包括层叠设置的第一子电极层11和第二子电极层12,第一绝缘层51位于第一子电极层11和第二子电极层12之间。液晶透镜100的多个第一电极组10所包括的多个第一电极101中,一部分第一电极101设置于第一子电极层11中,另外一部分第一电极设101置于二子电极层12中。
示例性的,沿液晶透镜100的径向且由液晶透镜的中心O指向边缘B的方向OB,所述多个第一电极组10所包括的多个第一电极101交替设置于第一子电极层11和第二子电极层12中。
这里,第一子电极层11和第二子电极层12之间通过第一绝缘层51绝缘隔开,第一电极层1中每相邻的两个第一电极101设置于不同的子电极层中,这使得各第一电极101在第一衬底41上的正投影之间不必留有缝隙。如此一来,各第一电极101之间能够紧密排布,且相互之间不会发生电连接,而是能够独立地接收第一驱动信号SD1。这样,液晶透镜100中的驱动电场能够更有效地控制液晶分子,液晶层3中的未处于驱动电场的有效控制范围的液晶分子的数量较少甚至为零,从而提高了液晶透镜100对于其液晶分子的控制精度。
在一些实施例中,参见图4和图5,液晶透镜100所包括至少两个驱动区域分为两种类型的驱动区域:补偿驱动区域SC和非补偿驱动区域SUC。示例性的,液晶透镜100包括一个非补偿驱动区域SUC和至少一个补偿驱动区域SC。非补偿驱动区域SUC处于液晶透镜100的中心O处,各补偿驱动区域SC的形状为环形,沿方向OB,各补偿驱动区域SC依次套设于非补偿驱动区域SUC的周围。例如,如图5所示,液晶透镜100包括三个驱动区域S0、S1和S2,其中,驱动区域S0为非补偿驱动区域SUC,驱动区域S1和S2均为补偿驱动区域SC
需要说明的是,上述“补偿驱动区域”是指需要对驱动电压进行电压补偿的驱动区域。由于该种驱动区域内,干扰电场对液晶分子的偏转角的影响较大,因此需要增加驱动电压的电压值,以使偏转角增大,使其达到所需的偏转角,这相当于对该种驱动区域内的驱动电压进行了补偿,因此称该种驱动区域为补偿驱动区域。
上述“非补偿驱动区域”是指无需对驱动电压进行电压补偿的驱动区域。由于该种驱动区域内,干扰电场对液晶分子的偏转角的影响较小,几乎可以忽略不计,因此无需增加驱动电压的电压值,偏转角即可达到预期的偏转角,这相当于无需对该种驱动区域内的驱动电压进行补偿,因此称该种驱动区域为非补偿驱动区域。
本公开实施例对于非补偿驱动区域SUC与最邻近的补偿驱动区域SC之间的界限的设置位置并不具体限定。由于沿方向OB,相邻两个第一电极101之间产生的干扰电场的强度逐渐增强,因此,在一些示例中,可将上述干扰电场在可接受范围内的最大临界值所对应的第一电极101的位置,设置为非补偿驱动区域与最邻近的补偿驱动区域之间的界限,即上述干扰电场在可接受范围内的最大临界值所对应的第一电极101以内的各第一电极101(包括该第一电极101)所处的区域为非补偿驱动区域,上述干扰电场在可接受范围内的最大临界值所对应的第一电极101以外的各第一电极101(不包括该第一电极101)所处的区域为补偿驱动区域。
需要说明的是,干扰电场的强度在可接受范围指的是,干扰电场对液晶分子的偏转角的影响较小,几乎可以忽略不计。
由上面的描述可知,在液晶透镜100中,各第一电极101的宽度沿方向OB递减。在一些实施例中,称干扰电场在可接受范围内的最大临界值所对应的第一电极101的宽度为预设尺寸L0,则:
在液晶透镜100的非补偿驱动区域SUC内,各第一电极组10所包括的第一电极101的宽度L大于或等于预设尺寸L0。这样,非补偿驱动区域SUC中,位于同一子电极层中的相邻的第一电极101之间的间隔较大,所产生的干扰电场对液晶分子的偏转角度的影响较小,几乎可以忽略不计,因此,对非补偿驱动区域SUC中的驱动电压不进行电压补偿,液晶分子的偏转角度仍能够到达预期的偏转角度。
在液晶透镜100的补偿驱动区域SC内,各第一电极组10所包括的各第一电极101的宽度L小于预设尺寸L0。这样,补偿驱动区域SC中,位于同一子电极层中的相邻的第一电极101之间的间隔较小,所产生的干扰电场对液晶分子的偏转角度影响较大,而使其无法达到预期的偏转角。因此,对补偿驱动区域SC中的驱动电压进行电压补偿,能够使液晶分子的偏转角度增大,使其更接近甚至达到所需的偏转角度。
示例性的,如上所述的预设尺寸L0为10.3μm。参见图4和图5,液晶透镜100的形状为圆形,其半径R为8.36mm,非补偿区域SUC为圆形,两个补偿驱动区域SC为环形。处于非补偿区域SUC内的各第一电极组10所包括的各第一电极101的宽度L的取值范围为10.9μm~320.9μm,处于补偿驱动区域SC内的各第一电极组10所包括的各第一电极101的宽度L的取值范围为3.9μm~10.9μm(不包括10.9μm)。在这种情况下,非补偿驱动区域SUC的半径R1等于3.17mm;套设在非补偿驱动区域SUC周围的驱动区域S1(作为补偿驱动区域SC)的内径为3.17mm,外径为4.65mm;套设在驱动区域S1周围的驱动区域S2的内径为4.65mm,外径为8.36mm。
本公开实施例对于液晶透镜100所包括的驱动区域的数量并不做限定。在一些实施例中,驱动区域的数量的设定与液晶透镜100的尺寸大小和液晶透镜100所需的控制精度有关。
在一些示例中,根据液晶透镜100的尺寸增加或减少驱动区域的数量。例如,若液晶透镜100的直径较大,则相应地增加驱动区域的数量。又例如,若液晶透镜100的直径较小,则相应地减少驱动区域的数量。
在另一些示例中,在液晶透镜100的尺寸一定的情况下,根据所需要的控制精度增加或减少驱动区域的数量。例如,若液晶透镜100对于控制精度的要求较高,则可以设置数量相对较多的驱动区域。又例如,若液晶透镜100对于控制精度的要求较低,则可以设置数量相对较多的驱动区域,这样能够减少液晶透镜100的第一连接线501和第一信号接收端401的数量,从而简化液晶透镜100的内部结构。
示例性的,液晶透镜100具有3~8个驱动区域。
在一些实施例中,参见图4、图7和图8,液晶透镜100的第二电极层2包括至少两个第二电极201,该至少两个第二电极201同层设置,且相邻两个第二电极201之间具有间隙以使二者保持相互绝缘,至少两个驱动区域与至少两个第二电极201一一对应。
每个驱动区域对应的第二电极201能够独立地接收的第二驱动信号SD2,如此一来,沿方向OB,向不同的驱动区域对应的第二电极201传输电压值不同的第二驱动信号SD2,能够使不同驱动区域内每个第一电极组10中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压不同。从而,通过调节各第二电极201所接收的第二驱动信号SD2的电压值的大小,使驱动电压的绝对值沿方向OB递增。
示例性的,沿方向OB,与各驱动区域对应的第二电极201接收的第二驱动信号SD2的电压值递增,每个第一电极组10接收第一驱动信号SD1为同一组第一驱动信号SD1。需要说明的是,在这里,同一组第一驱动信号SD1指的是,各第一电极组10中处于相同位置的第一电极101所接收的第一驱动信号SD1的电压值相等或大致相等。
作为另一个示例,沿方向OB,与各驱动区域对应的第二电极201接收的第二驱动信号SD2的电压值递增,并且,不同的驱动区域中,第一电极组10中处于相同位置的第一电极101接收的第一驱动信号SD1递增。
在另一些实施例中,参见图9~图14,液晶透镜100还包括第二绝缘层6,第二电极层2包括层叠设置的第三子电极层21和第四子电极层22,第二绝缘层6位于第三子电极层21和第四子电极层22之间。第二电极层2包括至少两个第二电极201。其中,至少一个第二电极201设置于第三子电极层21中,其余第二电极201设置于第四子电极层22中。
示例性的,参见图9~图11,沿液晶透镜100的径向且由液晶透镜的中心O指向边缘B的方向OB,第二电极层2所包括的至少两个第二电极201交替设置于第三子电极层21和第四子电极层22中。
第二电极层2中相邻的第二电极201设置于不同的子电极层中,处于同一子电极层中的第二电极201之间具有间隔,例如,参见图10,处于第三子电极层21中的两个第二电极201之间具有间隔。这样一来,各第二电极201能够紧密排布且相互之间不会发生电连接。如此一来,驱动电场的排布的更紧密,减少液晶层3中的无法处于驱动电场的控制范围的液晶分子的数量,从而提高了液晶透镜100对于其液晶分子的控制精度。
作为另一种示例,参见图12~图14,第二电极层2所包括的至少两个第二电极201中,一个第二电极201为圆形电极201A或者整面的电极,其余第二电极201为环形电极201B。
该圆形电极201A或者整面的电极设置于第三子电极层21和第四子电极层22中的任意一者中,环形电极201B设置于第三子电极层21和第四子电极层22中的另外一者中。
需要说明的是,图12~图14仅以圆形电极201A或者整面的电极设置于第三子电极层21,环形电极201B设置于第四子电极层22中为例示出,但这并不能作为对于本公开的限制。在本公开的其他实施例中,还可以将圆形电极201A或者整面的电极设置于第四子电极层22中,将环形电极201B设置于第三子电极层21中。
本公开中的液晶透镜100的第二电极层2中,环形电极201B与圆形电极201A或者整面的电极层叠设置,圆形电极201A或者整面的电极的正投影与环形电极之间201B的正投影存在重叠区域(可参照图12),第二电极层2的与该重叠区域对应的部分的电压值为圆形电极201A或者整面的电极所接收的第二驱动信号SD2与环形电极201B的所接收的第二驱动信号SD2的电压叠加值。这样,通过调节环形电极201B的电压值,能够使环形电极201B所对应的不同驱动区域中形成电压值不同的驱动电压。沿方向OB,若使各环形电极所接收的第二驱动信号SD2的电压值递增,则够使不同驱动区域中的驱动电压的电压值沿方向OB递增,从而使液晶透镜100的边缘部分中的液晶分子的偏转角度接近甚至达到所需的偏转角。
在一些实施例中,如图4、图12~图14所示,在液晶透镜100的至少两个驱动区域包括非补偿驱动区域SUC和至少一个补偿驱动区域SC的情况下,环形电极201B对应驱动区域S1和驱动区域S2,这里驱动区域S1和S2均作为补偿驱动区域SC。在第二电极层2包括圆形电极201A的情况下,圆形电极201A对应驱动区域S0,这里驱动区域S0作为非补偿驱动区域SUC
需要说明的是,图5、图7、图9、图12、图15和图17所示出的第一电极101与第一信号线301之间的连接、第一信号线301与第一连接线501之间的连接、第一连接线501与第一驱动信号接收端401之间的连接,以及第二电极201与第二信号线601之间的连接、第二信号线601与第二连接线801之间的连接、第二连接线801与第二驱动信号接收端701之间的连接,仅是一种电连接的示意,以区分出如上所述的各部件所传输或接收的驱动信号,这并不能作为对于如上所述的液晶透镜100中的实际连接结构的限定,本领域技术人员根据如上所述的附图中的液晶透镜100中各部件的电连接示意图,可以根据实际需求对液晶透镜100中的实际电连接结构进行设计和设置。
以下将参照图5、图16和图17,对如上所述的液晶透镜100作示例性的、整体的介绍。
液晶透镜100具有三个驱动区域S0、S1和S2,其中,驱动区域S0为非补偿区域SUC,驱动区域S1和S2为补偿区域SC,驱动区域S1套设于驱动区域S0的周围,驱动区域S2套设于驱动区域S1的周围。
液晶透镜100包括依次层叠设置的第一衬底41、第一电极层1、第一取向层61、液晶层3、第二取向层62、第二电极层2和第二衬底42。
其中,第一电极层1包括第一子电极层11和第二子电极层12,第一子电极层设置于第二子电极层12的背向第一衬底41的一侧。液晶透镜100还包括设置于第一子电极层11和第二子电极层12之间的第一绝缘层51。
第一电极层1包括多个第一电极组10,每个第一电极组包括六个第一电极101,第一电极层1中的每相邻的两个第一电极101设置于不同的子电极层中。每个第一电极组10中的各第一电极101的位置沿方向OB依次编号为P1、P2、P3、P4、P5和P6
液晶透镜100还包括与多个第一电极组10一一对应的多个第一信号线组30,每个第一信号线组30包括六个第一信号线301,每个第一电极组10所包括的六个第一电极101一一对应与一个第一信号线组30所包括的六个第一信号线301电连接。
液晶透镜100还包括三个第一连接线组50和与之一一对应的三个第一信号接收端组40。每个液晶透镜100的驱动区域与一个第一连接线组50对应,并与一个第一信号接收端组40对应。每个第一连接线组50包括六个第一连接线501,每个第一信号接收端组40包括六个第一信号接收端401。每个第一信号接收端组接收一组第一驱动信号SD1:SD1-1、SD1-2、SD1-3、SD1-4、SD1-5和SD1-6
每个驱动区域中的处于相同位置的第一电极101对应的第一信号线301通过同一个第一连接线501电连接至同一个第一信号接收端401:处于位置P1的第一电极101电连接至接收第一驱动信号SD1-1的第一信号接收端401,处于位置P2的第一电极101电连接至接收第一驱动信号SD1-2的第一信号接收端401,处于位置P3的第一电极101电连接至接收第一驱动信号SD1-3的第一信号接收端401,处于位置P4的第一电极101电连接至接收第一驱动信号SD1-4的第一信号接收端401,处于位置P5的第一电极101电连接至接收第一驱动信号SD1-5的第一信号接收端401,处于位置P6的第一电极101电连接至接收第一驱动信号SD1-6的第一信号接收端401。
这里,第一驱动信号SD1-1、SD1-2、SD1-3、SD1-4、SD1-5和SD1-6的电压值递增或递减。例如,若液晶透镜100模拟凸透镜的光学特性,则第一驱动信号SD1-1、SD1-2、SD1-3、SD1-4、SD1-5和SD1-6的电压值递增;例如,若液晶透镜100模拟凹透镜的光学特性,则第一驱动信号SD1-1、SD1-2、SD1-3、SD1-4、SD1-5和SD1-6的电压值递减。
第二电极层2包括第三子电极层21和第四子电极层22,第一子电极层21设置于第三子电极层22的背向第一衬底41的一侧。液晶透镜100还包括设置于第三子电极层21和第四子电极层22之间的第二绝缘层52。
第二电极层2包括三个第二电极201:201A、201B和201B’,其中第二电极201A为圆形电极,第二电极201B和第二电极201B’均为环形电极。第二电极201A覆盖液晶透镜100所具有的三个驱动区域S0、S1和S2,第二电极201B’套设于第二电极201B的外围,第二电极201B与驱动区域S1对应,第二电极201B’与驱动区域S2对应。
液晶透镜100还包括:三个第二信号线601、三个第二连接线801和三个第二信号接收端701。每个第二电极201电连接与一个第二信号线601,每个第二信号线601通过一个第二连接线801电连接至一个第二信号接收端701,每个第二信号接收端701接收一个第二驱动信号SD2。与第二电极201A、第二电极201B和第二电极201B’对应的第二信号接收端701依次接收第二驱动信号SD2-1、SD2-2和SD2-3。第二驱动信号SD2-1、SD2-2和SD2-3的电压值依次增加。
参见图18,本公开的一些实施例还提供了一种液晶眼镜1000,该液晶眼镜1000包括如上任一实施例所述的液晶透镜100。
该液晶眼镜1000具有与如上所述的液晶透镜100相同的结构,其也具有边缘部分成像清晰,视场较大的优势。由于前述实施例已经对液晶透镜100的有益效果进行了详细的描述,此处不再赘述。
本公开的一些实施例还提供了一种液晶透镜的控制方法,应用于如上任一实施例所述的液晶透镜100,该液晶透镜的控制方法包括:
向液晶透镜100的第一电极层1中每个第一电极组10的多个第一电极101分别传输第一驱动信号SD1,并向液晶透镜100的第二电极层2中的各第二电极201分别传输第二驱动信号SD2,使每个第一电极101与该第一电极101对应的第二电极201之间形成驱动电压。
其中,对于液晶透镜100的同一驱动区域,各第一电极组10中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压相等。
而对于液晶透镜100的不同驱动区域,各第一电极组10中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压不同,且该驱动电压沿液晶透镜100的径向且由液晶透镜100的中心O指向边缘B的方向OB递增,以使液晶透镜100在各个驱动区域的相位差相等或大致相等。
如此一来,相比于液晶透镜100的中心部分中处于某一位置的第一电极101与对应的第二电极2所形成的驱动电压,边缘部分中处于同一位置的第一电极101与对应的第二电极2所形成的驱动电压增大。这样,边缘部分中增大的驱动电压使原本因受到干扰电场影响而无法达到预期偏转角的液晶分子进一步偏转,偏转角变大,从而使边缘部分中的液晶分子的偏转角接近甚至达到所需的偏转角,液晶透镜100的边缘部分的折射率也能够达到所需折射率而成像较清晰,增大了液晶透镜100的视场。
基于此,在一些实施例中,参见图5,向液晶透镜100的第一电极层1中每个第一电极组10的多个第一电极101分别传输第一驱动信号SD1的步骤包括:
对于同一驱动区域,向该驱动区域对应的各第一电极组10中处于相同位置的第一电极101分别传输相同的第一驱动信号SD1
对于不同驱动区域,向不同驱动区域对应的各第一电极组10中处于相同位置的第一电极101分别传输不同的第一驱动信号SD1,且沿液晶透镜100的径向且由液晶透镜100的中心O指向边缘B的方向OB,这些第一驱动信号SD1的电压值依次递增。
所述向液晶透镜100的第二电极层2中的各第二电极201分别传输第二驱动信号收到的步骤,包括:向第二电极层2中的各第二电极201分别传输相同的第二驱动信号SD2
示例性的,下面将参照图15和图16,以向液晶透镜100的第二电极201传输的第二到驱动信号SD2为0V为例,对如上所述的液晶透镜的控制方法进行示例性的说明。
这里,液晶透镜100的每个第一电极组10中包括六个第一电极101,沿方向OB,第一电极组10中的各第一电极101的位置分别被编号为P1、P2、P3、P4、P5和P6。液晶透镜100具有沿方向OB依次排布的驱动区域S0、S1和S2
不同驱动区域内,向每个第一电极组10中所包括的六个第一电极101传输的第一驱动信号SD1(包括第一驱动信号SD1-1~SD1-6)的电压如表1所示。
此处,处于位置P1的第一电极101接收第一驱动信号SD1-1,处于位置P2的第一电极101接收第一驱动信号SD1-2,处于位置P3的第一电极101接收第一驱动信号SD1-3,处于位置P4的第一电极101接收第一驱动信号SD1-4,处于位置P5的第一电极101接收第一驱动信号SD1-5,处于位置P6的第一电极101接收第一驱动信号SD1-6
表1
Figure BDA0002250596750000251
由表1可知,在同一个驱动区域内,例如,驱动区域S0中,每个第一电极组10中的处于不同位置上的第一电极101的所接收到的第一驱动信号SD1的电压值沿方向OB递增,也即在方向OB上,同一第一电极组10中的各第一电极101的电压依次增加,驱动区域S1和S2中,同一电极组10中的各第一电极101的电压也具有如此的变化规律。
这里,需要说明的是,同一驱动区域内各第一电极组10中处于相同位置的第一电极101的电压值是相等或近似相等的。例如,驱动区域S0中,各第一电极组10中的处于位置P1的第一电极101的电压值相等或近似相等。
如图15所示,沿方向OB,不同驱动区域中,向处于相同位置的第一电极101传输的第一驱动信号SD1的电压值依次递增。以处于位置P3的第一电极101为例,向驱动区域S0、S1和S2中的处于位置P3的第一电极101传输的第一驱动信号SD1-3分别为2.1V、2.49V和3.524V,即沿方向OB不同驱动区域内的处于位置P3的第一电极101的电压值递增。这样,驱动区域S0、S1和S2中的处于位置P3的第一电极101与第二电极201形成的驱动电压的绝对值分别为2.1V、2.49V和3.524V,也就是说,沿方向OB,不同驱动区域中处于相同位置的第一电极101与第二电极201所形成的驱动电压的绝对值递增。
需要指出的是,不同驱动区域中的处于位置P1的第一电极101与对应的第二电极201所形成的的驱动电压为0V,也就是说,液晶层3的与各处于位置P1的第一电极101对应的区域中,液晶分子需要处于未被驱动的状态中。此时液晶分子自然平行或大致平行于第一基板41,液晶分子的长轴与干扰电场的电场方向平行或大致平行,因此干扰电场对该区域内的液晶分子的偏转角度不会造成影响。在另一示例中,也可以向不同驱动区域中处于位置P1的第一电极101分别传输电压值递增的第一驱动信号SD1-1
在如上所述的实施例中,液晶透镜100的视场能够达到-31.5°~+31.5°,有效增大了视场。
在一些实施例中,参见图7和图9,第二电极层2包括与至少两个驱动区域一一对应的至少两个第二电极201。
向液晶透镜100的第一电极层1中每个第一电极组10的多个第一电极101分别传输第一驱动信号SD1的步骤,包括:向液晶透镜100的至少两个驱动区域内的各第一电极组10中处于相同位置的第一电极101传输相同的第一驱动信号SD1
向液晶透镜100的第二电极层2中的各第二电极201分别传输第二驱动信号SD2的步骤,包括:向不同驱动区域对应的第二电极201分别传输不同的第二驱动信号SD2,沿液晶透镜100的径向且由液晶透镜100的中心O指向边缘B的方向OB,这些第二驱动信号SD2的电压值依次递增或递减。例如,第二驱动信号SD2包括SD2-1、SD2-2和SD2-3,且沿OB方向,各第二电极201依次接收第二驱动信号SD2-1、SD2-2和SD2-3,在这种情况下,第二驱动信号SD2-1的电压值小于第二驱动信号SD2-2的电压值,第二驱动信号SD2-2的电压值小于第二驱动信号SD2-3的电压值。
示例性的,在向第二电极201传输的第二驱动信号SD2的电压值小于或等于第一驱动信号SD1的电压值的情况下,沿方向OB,向不同驱动区域对应的第二电极201分别传输电压值递减的第二驱动信号SD2
以图7或图9中所示出的液晶透镜100为例,向各驱动区域中的每个第一电极组10中处于位置P1的第一电极101、处于位置P2的第一电极101和处于位置P3的第一电极101传输的第一驱动信号SD1(包括第一驱动信号SD1-1~SD1-3)分别为0V、2.5V和5V。沿方向OB,向不同驱动区域对应的第二电极201传输的SD2(包括第二驱动信号SD2-1~SD2-3)分别为0V、-1V和-2V。
这样,沿方向OB,不同驱动区域中的处于位置P1的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为0V、1V和2V,处于位置P2的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为2.5V、3.5V和4.5V,处于位置P3的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为5V、6V和7V。也就是说,沿方向OB,不同驱动区域中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压的绝对值递增。
示例性的,在向第二电极201传输的第二驱动信号SD2的电压值大于或等于第一驱动信号SD1的电压值的情况下,沿方向OB,向不同驱动区域对应的第二电极201分别传输电压值递增的第二驱动信号SD2
以图7或图9中所示的液晶透镜100为例,向各驱动区域中的每个第一电极组10的处于位置P1的第一电极101、处于位置P2的第一电极101和处于位置P3的第一电极101传输的第一驱动信号SD1(包括第一驱动信号SD1-1~SD1-3)分别为0V、-2.5V和-5V。沿方向OB,向不同驱动区域对应的第二电极201传输的SD2(包括第二驱动信号SD2-1~SD2-3)分别为0V、1V和2V。
这样,沿方向OB,不同驱动区域中的处于位置P1的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为0V、1V和2V,不同驱动区域中的处于位置P2的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为2.5V、3.5V和4.5V,不同驱动区域中的处于位置P3的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为5V、6V和7V。也就是说,沿方向OB,不同驱动区域中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压的绝对值递增。
在一些实施例中,参见图12~图14,第二电极层2包括一个圆形电极201A或者整面电极,以及至少一个环形电极201B。
向液晶透镜100的第一电极层1中每个第一电极组10的多个第一电极101分别传输第一驱动信号SD1的步骤,包括:向液晶透镜100的至少两个驱动区域内的各第一电极组10中处于相同位置的第一电极101传输相同的第一驱动信号SD1
向液晶透镜100的第二电极层2中的各第二电极201分别传输第二驱动信号SD2的步骤,包括:向不同的环形电极201B传输不同的第二驱动信号SD2,沿液晶透镜100的径向且由液晶透镜的中心O指向边缘B的方向OB,这些第二驱动信号SD2的电压值依次递增或递减。
示例性的,向圆形电极201A传输电压值为0V的第二驱动信号SD2-1,向各第一电极101传输电压为正的第一驱动信号SD1,向环形电极201B传输的第二驱动信号SD2(包括第二驱动信号SD2-2和SD2-3)的电压值范围为-1V~-5V。
在一些实施例中,在向第二电极201传输的第二驱动信号SD2的电压值小于或等于第一驱动信号SD1的电压值的情况下,沿方向OB,向各环形电极201B分别传输电压值递减的第二驱动信号SD2
下面将参照图4和图17,对如上所述的液晶透镜的控制方法进行示例性的说明。
液晶透镜的第二电极层2包括一个圆形电极201A,液晶透镜100具有沿方向OB依次排布的驱动区域S0、S1和S2,驱动区域S0为非补偿驱动区域SUC,驱动区域S1为补偿驱动区域SC,驱动区域S2为补偿驱动区域SC。圆形电极201A与驱动区域S0对应,环形电极201B与驱动区域S1对应,环形电极201B’与驱动区域S2对应。
驱动区域S0、S1和S2中,每个第一电极组10中包括的处于位置P1的第一电极101、处于位置P2的第一电极101、处于位置P3的第一电极101、处于位置P4的第一电极101、处于位置P5的第一电极101和处于位置P6的第一电极101接收到的第一驱动信号SD1(包括第一驱动信号SD1-1~SD1-6)分别为0V、1V、2V、3V、4V和5V。
向圆形电极201A传输的第二驱动信号SD2-1为0V,向环形电极201B传输的第二驱动信号SD2-2为-1V,向环形电极201B’传输的第二驱动信号SD2-3为-2V。
需要指出的是,对于各驱动区域,第二电极层2的电压值应为驱动区域多对应的全部的第二电极201接收的第二驱动信号SD2的电压叠加值。
这样,沿方向OB,不同驱动区域中的,处于位置P1的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为0V、1V和2V,处于位置P2的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为1V、2V和3V,处于位置P3的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为2V、3V和4V,处于位置P4的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为3V、4V和5V,处于位置P5的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为4V、5V和6V,处于位置P6的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为5V、6V和7V。也就是说,沿方向OB,不同驱动区域中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压的绝对值递增。
在另一些实施例中,在向第二电极201传输的第二驱动信号SD2的电压值大于或等于第一驱动信号SD1的电压值的情况下,沿方向OB,向各环形电极201B分别传输电压值递增的第二驱动信号SD2
下面将再次参照图4和图17,对如上所述的液晶透镜的控制方法进行示例性的说明。
需要说明的是,各第二电极201与各驱动区域的对应,以及各驱动区域中的第一电极组10的不同位置的第一电极101接收的第一驱动信号SD1,与如上所述的第二驱动信号SD2的电压值小于或等于第一驱动信号SD1的电压值的情况下的相同,此处不再赘述。
向圆形电极201A传输的第二驱动信号SD2-1为5V,向环形电极201B传输的第二驱动信号SD2-2为1V,向环形电极201B’传输的第二驱动信号SD2-3为2V。需要指出的是,对于各驱动区域,第二电极层2的电压值应为驱动区域所对应的全部的第二电极201接收的第二驱动信号SD2的电压叠加值。
这样,沿方向OB,不同驱动区域中的,处于位置P1的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为5V、6V和7V,处于位置P2的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为4V、5V和6V,处于位置P3的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为3V、4V和5V,处于位置P4的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为2V、3V和4V,处于位置P5的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为1V、2V和3V,处于位置P6的第一电极101与对应的第二电极201之间所形成的驱动电压的绝对值分别为0V、1V和2V。也就是说,沿方向OB,不同驱动区域中处于相同位置的第一电极101所接收的第一驱动信号SD1与对应的第二电极201所接收的第二驱动信号SD2之间所形成的驱动电压的绝对值递增。
本公开的一些实施例中还提供了一种非暂态计算机可读存储介质,存储有计算机程序指令,该计算机程序指令在处理器上运行时,使得处理器执行如上任一实施例所述的液晶透镜的控制方法。
该非暂态计算机可读存储介质同如上所述的液晶透镜的控制方法一样,也具有增大液晶透镜的视场的效果,此处不再赘述。
本公开的一些实施例中还提供了一种计算机程序产品,该计算机程序产品包含计算机程序指令,当其在计算机上运行时,使得计算机执行如上任一实施例所述的液晶透镜的控制方法。
本公开的一些实施例中还提供了一种计算机程序,该程序被加载到处理器后,使处理器执行如上任一实施例所述的液晶透镜的控制方法。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

1.一种液晶透镜,具有至少两个驱动区域;所述液晶透镜包括:
第一电极层,包括多个第一电极组,每个第一电极组包括多个第一电极;每个第一电极组所包括的多个第一电极被配置为一一对应接收多个第一驱动信号;每个驱动区域对应至少一个第一电极组;
与所述第一电极层相对设置的第二电极层,包括至少一个第二电极;所述至少一个第二电极被配置为一一对应接收至少一个第二驱动信号;
同一驱动区域内,每个第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压相等或大致相等;
不同驱动区域内,每个第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压不同,且该驱动电压的绝对值沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向递增。
2.根据权利要求1所述的液晶透镜,还包括:
与所述多个第一电极组一一对应的多个第一信号线组,每个第一信号线组包括多条第一信号线,每个第一信号线组所包括的多条第一信号线与对应的第一电极组所包括的多个第一电极一一对应电连接;每条第一信号线被配置为向与其电连接的第一电极传输第一驱动信号;
与所述至少一个第二电极一一对应电连接的至少一条第二信号线;每条第二信号线被配置为向与其电连接的第二电极传输第二驱动信号。
3.根据权利要求2所述的液晶透镜,还包括:与所述至少两个驱动区域一一对应的至少两个第一信号接收端组,每个第一信号接收端组包括多个第一信号接收端;
对于每个驱动区域,每个第一信号线组所包括的多条第一信号线分别对应地电连接至对应的第一信号接收端组所包括的多个第一信号接收端,且与各第一电极组中处于相同位置的第一电极电连接的各第一信号线电连接至同一个第一信号接收端。
4.根据权利要求3所述的液晶透镜,还包括:与所述至少两个第一信号接收端组一一对应的至少两个第一连接线组,每个第一连接线组包括多条第一连接线;
对于每个驱动区域,每个第一信号线组所包括的多条第一信号线分别通过对应的第一连接线组所包括的多条第一连接线电连接至对应的第一信号接收端组所包括的多个第一信号接收端,且与各第一电极组中处于相同位置的第一电极电连接的各第一信号线通过同一条第一连接线电连接至同一个第一信号接收端。
5.根据权利要求2所述的液晶透镜,还包括:与所述至少一条第二信号线一一对应电连接的至少一个第二信号接收端。
6.根据权利要求5所述的液晶透镜,还包括:与所述至少一个第二信号接收端一一对应电连接的至少一条第二连接线,每条第二信号线通过一条第二连接线电连接至对应的第二信号接收端。
7.根据权利要求1~6中任一项所述的液晶透镜,所述至少两个驱动区域包括非补偿驱动区域和至少一个补偿驱动区域,所述至少一个补偿驱动区域依次套设在所述非补偿驱动区域的周围;
处于所述补偿驱动区域内的各第一电极组所包括的各第一电极的宽度小于预设尺寸,处于所述非补偿驱动区域的各第一电极组所包括的各第一电极的宽度大于或等于所述预设尺寸;
其中,所述预设尺寸与相邻两个第一电极之间产生的干扰电场的强度在可接受范围之内的情况下所对应的第一电极的宽度相关。
8.根据权利要求7所述的液晶透镜,所述预设尺寸为10.3μm。
9.根据权利要求1~6中任一项所述的液晶透镜,还包括:第一绝缘层;
所述第一电极层包括层叠设置的第一子电极层和第二子电极层,所述第一绝缘层位于所述第一子电极层和所述第二子电极层之间;
所述多个第一电极组所包括的多个第一电极中,一部分第一电极设置于所述第一子电极层中,另外一部分第一电极设置于所述第二子电极层中。
10.根据权利要求9所述的液晶透镜,其中,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,所述多个第一电极组所包括的多个第一电极交替设置于所述第一子电极层和所述第二子电极层中。
11.根据权利要求1~6中任一项所述的液晶透镜,所述第二电极层包括至少两个第二电极,所述至少两个第二电极同层设置,且相邻两个第二电极之间具有间隙以使二者保持相互绝缘;
所述至少两个驱动区域与所述至少两个第二电极一一对应。
12.根据权利要求1~6中任一项所述的液晶透镜,还包括:第二绝缘层;
所述第二电极层包括层叠设置的第三子电极层和第四子电极层,所述第二绝缘层位于所述第三子电极层和所述第四子电极层之间;
所述第二电极层包括至少两个第二电极,其中至少一个第二电极设置于所述第三子电极层中,其余第二电极设置于所述第四子电极层中。
13.根据权利要求12所述的液晶透镜,其中,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,所述第二电极层所包括的至少两个第二电极交替设置于所述第三子电极层和所述第四子电极层中。
14.根据权利要求12所述的液晶透镜,其中,所述第二电极层所包括的至少两个第二电极中,一个第二电极为圆形电极或者整面的电极,其余第二电极为环形电极;
所述圆形电极或者整面的电极设置于所述第三子电极层和所述第四子电极层中的任意一者中,所述环形电极设置于所述第三子电极层和所述第四子电极层中的另外一者中。
15.根据权利要求14所述的液晶透镜,所述至少两个驱动区域包括非补偿驱动区域和至少一个补偿驱动区域,所述至少一个补偿驱动区域依次套设在所述非补偿驱动区域的周围;
所述环形电极对应所述补偿驱动区域;在所述第二电极层包括圆形电极的情况下,所述圆形电极对应所述非补偿驱动区域。
16.根据权利要求1所述的液晶透镜,所述液晶透镜具有3~8个驱动区域。
17.一种液晶眼镜,包括如权利要求1~16中任一项所述的液晶透镜。
18.一种液晶透镜的控制方法,应用于如权利要求1~16中任一项所述的液晶透镜,所述控制方法包括:
向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号,并向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号,使每个第一电极与该第一电极对应的第二电极之间形成驱动电压;其中,
对于液晶透镜的同一驱动区域,各第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压相等;
对于液晶透镜的不同驱动区域,各第一电极组中处于相同位置的第一电极所接收的第一驱动信号与对应的第二电极所接收的第二驱动信号之间所形成的驱动电压不同,且该驱动电压的绝对值沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向递增,以使液晶透镜在各个驱动区域的相位差相等或大致相等。
19.根据权利要求18所述的液晶透镜的控制方法,其中,所述向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号的步骤,包括:
对于同一驱动区域,向该驱动区域对应的各第一电极组中处于相同位置的第一电极分别传输相同的第一驱动信号;
对于不同驱动区域,向不同驱动区域对应的各第一电极组中处于相同位置的第一电极分别传输不同的第一驱动信号,且沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,这些第一驱动信号的电压值依次递增或递减;
所述向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号的步骤,包括:
向第二电极层中的各第二电极分别传输相同的第二驱动信号。
20.根据权利要求18所述的液晶透镜的控制方法,其中,所述第二电极层包括与所述至少两个驱动区域一一对应的至少两个第二电极;
所述向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号的步骤,包括:
向液晶透镜的至少两个驱动区域内的各第一电极组中处于相同位置的第一电极传输相同的第一驱动信号;
所述向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号的步骤,包括:
向不同驱动区域对应的第二电极分别传输不同的第二驱动信号,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,这些第二驱动信号的电压值依次递增或递减。
21.根据权利要求18所述的液晶透镜的控制方法,其中,所述第二电极层包括一个圆形电极或者整面电极,以及至少一个环形电极;
所述向液晶透镜的第一电极层中每个第一电极组的多个第一电极分别传输第一驱动信号的步骤,包括:
向液晶透镜的至少两个驱动区域内的各第一电极组中处于相同位置的第一电极传输相同的第一驱动信号;
所述向液晶透镜的第二电极层中的各第二电极分别传输第二驱动信号的步骤,包括:
向不同的环形电极传输不同的第二驱动信号,沿液晶透镜的径向且由液晶透镜的中心指向边缘的方向,这些第二驱动信号的电压值依次递增或递减。
CN201980002139.0A 2019-10-25 2019-10-25 液晶透镜及其控制方法、液晶眼镜 Active CN113272724B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113311 WO2021077409A1 (zh) 2019-10-25 2019-10-25 液晶透镜及其控制方法、液晶眼镜

Publications (2)

Publication Number Publication Date
CN113272724A CN113272724A (zh) 2021-08-17
CN113272724B true CN113272724B (zh) 2023-06-09

Family

ID=75619643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980002139.0A Active CN113272724B (zh) 2019-10-25 2019-10-25 液晶透镜及其控制方法、液晶眼镜

Country Status (4)

Country Link
US (1) US11460736B2 (zh)
EP (1) EP4050405A4 (zh)
CN (1) CN113272724B (zh)
WO (1) WO2021077409A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889240A (zh) * 2007-12-06 2010-11-17 西铁城控股株式会社 液晶菲涅耳透镜
CN102116991A (zh) * 2009-12-30 2011-07-06 乐金显示有限公司 电场驱动液晶透镜单元及采用该透镜单元的立体图像显示装置
CN102193202A (zh) * 2010-03-17 2011-09-21 三星电子株式会社 利用衍射透镜的图像显示装置
CN102967969A (zh) * 2011-08-30 2013-03-13 株式会社日本显示器西 液晶光学器件
CN104122734A (zh) * 2014-05-28 2014-10-29 友达光电股份有限公司 透镜结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885139B2 (en) * 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
KR101419234B1 (ko) 2007-12-18 2014-07-15 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
KR101603237B1 (ko) * 2009-10-27 2016-03-15 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 영상 표시 장치
KR101812511B1 (ko) * 2011-06-07 2018-01-31 삼성디스플레이 주식회사 렌즈 패널, 이의제조 방법 및 이를 갖는 표시 장치
US9933685B2 (en) 2013-08-05 2018-04-03 The Hong Kong University Of Science And Technology Switchable liquid crystal fresnel lens
KR20150045135A (ko) * 2013-10-18 2015-04-28 삼성디스플레이 주식회사 입체영상 표시장치와 그 구동방법
CN103760712B (zh) 2014-01-28 2016-08-17 重庆卓美华视光电有限公司 液晶透镜及使用该液晶透镜的立体显示装置
KR20160108756A (ko) * 2015-03-06 2016-09-20 삼성디스플레이 주식회사 액정 렌즈 패널 및 그 구동 방법
CN108490704B (zh) * 2018-03-30 2021-08-20 京东方科技集团股份有限公司 液晶镜片及其控制方法和液晶眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889240A (zh) * 2007-12-06 2010-11-17 西铁城控股株式会社 液晶菲涅耳透镜
CN102116991A (zh) * 2009-12-30 2011-07-06 乐金显示有限公司 电场驱动液晶透镜单元及采用该透镜单元的立体图像显示装置
CN102193202A (zh) * 2010-03-17 2011-09-21 三星电子株式会社 利用衍射透镜的图像显示装置
CN102967969A (zh) * 2011-08-30 2013-03-13 株式会社日本显示器西 液晶光学器件
CN104122734A (zh) * 2014-05-28 2014-10-29 友达光电股份有限公司 透镜结构

Also Published As

Publication number Publication date
US11460736B2 (en) 2022-10-04
EP4050405A1 (en) 2022-08-31
US20210373390A1 (en) 2021-12-02
CN113272724A (zh) 2021-08-17
EP4050405A4 (en) 2022-11-09
WO2021077409A1 (zh) 2021-04-29

Similar Documents

Publication Publication Date Title
US8482684B2 (en) Stereoscopic image display apparatus
US10788727B2 (en) Liquid crystal light deflector
JP7059259B2 (ja) カメラモジュール
KR102393526B1 (ko) 곡면 표시 장치
KR102594490B1 (ko) 광학 이미징 렌즈 및 이미징 장치
JP6414998B2 (ja) 液晶素子、偏向素子、液晶モジュール、及び電子機器
US9651792B2 (en) Image display apparatus
US10663789B2 (en) Lens substrate, liquid crystal lens, and liquid crystal glasses
CN108572453B (zh) 显示器
WO2013105240A1 (ja) 液晶光学素子及び立体画像表示装置
US20180059490A1 (en) Electrically tunable optical phase modulation element
US11143882B2 (en) Liquid crystal lens and display apparatus with liquid crystal lens
JP6107869B2 (ja) 光変調器
US20200018977A1 (en) Display device and automobile head-up display system using the same
TWI463213B (zh) Image display device
CN113009692A (zh) 近眼光场显示装置
CN110346941A (zh) 一种显示组件和显示装置
US20150362637A1 (en) Electro-optical device and electronic apparatus
CN113272724B (zh) 液晶透镜及其控制方法、液晶眼镜
CN108388025B (zh) 镜片及其制作方法、眼镜和光学系统
US20130271804A1 (en) Vibrating element having meandering shape, and optical reflection element
JP6220204B2 (ja) 液晶光学素子、画像表示装置、および撮像装置
KR102391893B1 (ko) 액체렌즈 및 이를 포함하는 카메라 모듈 및 광학기기
US20150160464A1 (en) Liquid crystal lens and display device including liquid crystal lens
US9091891B2 (en) Liquid crystal optical apparatus and stereoscopic image display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant