CN113265388B - Tobacco system for producing ajmaline - Google Patents

Tobacco system for producing ajmaline Download PDF

Info

Publication number
CN113265388B
CN113265388B CN202010092362.3A CN202010092362A CN113265388B CN 113265388 B CN113265388 B CN 113265388B CN 202010092362 A CN202010092362 A CN 202010092362A CN 113265388 B CN113265388 B CN 113265388B
Authority
CN
China
Prior art keywords
leu
lys
glu
gly
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010092362.3A
Other languages
Chinese (zh)
Other versions
CN113265388A (en
Inventor
肖友利
吴世文
郑妍
董尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Center for Excellence in Molecular Plant Sciences of CAS
Original Assignee
Center for Excellence in Molecular Plant Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center for Excellence in Molecular Plant Sciences of CAS filed Critical Center for Excellence in Molecular Plant Sciences of CAS
Priority to CN202010092362.3A priority Critical patent/CN113265388B/en
Publication of CN113265388A publication Critical patent/CN113265388A/en
Application granted granted Critical
Publication of CN113265388B publication Critical patent/CN113265388B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01028Aromatic-L-amino-acid decarboxylase (4.1.1.28), i.e. tryptophane-decarboxylase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a vinca-derived tryptophan decarboxylase TDC, which has a nucleotide sequence of SEQ ID NO. 1 and can be used for producing ajmaline in a tobacco system. The invention takes tobacco as a mode chassis system, takes TDC, SLS, STR, NPF2.9, SGD and HYS as biological elements, constructs fusion genes, realizes the heterologous biosynthesis of the ajmaline, and has development prospect.

Description

Tobacco system for producing ajmaline
Technical Field
The invention belongs to the technical field of biosynthesis, and particularly relates to a tobacco system for producing ajmaline, and particularly relates to application of vinca-derived Tryptophan Decarboxylase (TDC) in producing ajmaline through expression in the tobacco system.
Background
Catharanthus roseus (Catharanthus roseus) is an important medicinal plant and contains abundant monoterpene indole alkaloid compounds. The hetero-yohimbine alkaloids are an important class of pharmaceutical compounds in the vinca rosea (Stavrinides et al, 2016). Ajmalicine (CAS No.:483-04-5, raubasine) is one of the heterothimbine alkaloids, and has been commercialized for the treatment of hypertension. The biomass of catharanthus roseus is low despite the high content of the ajmaline in the catharanthus roseus, and cannot meet the increasing social demand.
Based on metabolic engineering or synthetic biological strategies, heterologous synthesis of ajmaline is an effective means to meet the ever-increasing market demand. Currently, genes involved in the synthesis of ajmalicine and other heteroyohimbine alkaloids in vinca have been identified (Miettinen et al, 2014, stavrinides et al, 2016, 2015), which lays the foundation for the subsequent synthetic biological studies of ajmalicine and heteroyohimbine alkaloids.
Tobacco is an important model chassis system for synthetic biology research due to its large biomass and easy expression of plant-derived genes. This system has been successfully used for the heterologous synthesis of artemisinin and precursors, paclitaxel precursors, saponins and iridoids (Farhi et al, 2011 fuentes et al, 2016, li et al, 2019 malhotra et al, 2016, miettinen et al, 2014 paddon et al, 2013 reed et al, 2017), providing an important reference for the subsequent synthetic biology of the heterotrophic huntingine alkaloids in tobacco.
Disclosure of Invention
In order to realize biosynthesis of the ajmalicine in plants such as tobacco and the like, the tobacco is used as a model chassis system, an agrobacterium expression vector is constructed by a key gene obtained by cloning in catharanthus roseus, and heterologous expression is carried out in the tobacco through a tobacco transient expression system. Meanwhile, based on a synthetic biology strategy, the obtained key genes are used for constructing different fusion genes/proteins, so that the content of the ajmaline in the tobacco is further improved, and the biosynthesis of the ajmaline in the tobacco is realized for the first time.
Specifically, the present invention includes the following technical means.
A Tryptophan Decarboxylase (TDC) which is a polypeptide selected from the group consisting of:
(a) A polypeptide having the amino acid sequence of SEQ ID NO 1 (CrTDC);
(b) A polypeptide having 90% or more, preferably 95% or more, preferably 96% or more, preferably 97% or more, preferably 98% or more, more preferably 99% or more homology with SEQ ID NO 1.
Wherein the amino acid sequence of SEQ ID NO. 1 is:
MGSIDSTNVAMSNSPVGEFKPLEAEEFRKQAHRMVDFIADYYKNVETYPVLSEVEPGYLRKRIPETAPYLPESLDDIMKDIQKDIIPGMTNWMSPNFYAFFPATVSSAAFLGEMLSTALNSVGFTWVSSPAATELEMIVMDWLAQILKLPKSFMFSGTGGGVIQNTTSESILCTIIAARERALEKLGPDSIGKLVCYGSDQTHTMFPKTCKLAGIFPNNIRLIPTTVETDFGISPQVLRKMVEDDVAAGYVPLFLCATLGTTSTTATDPVDSLSEIANEFGIWIHVDAAYAGSACICPEFRHYLDGIERVDSLSLSPHKWLLAYLDCTCLWVKQPHLLLRALTTNPEYLKNKQSDLDKVVDFKNWQIATGRKFRSLKLWLILRSYGVVNLQSHIRSDVAMAKMFEEWVRSDSRFEIVVPRNFSLVCFRLKPDVSSLDVEEVNKKLLDMLNSTGRVYMTHTIVGGIYMLRLAVGSSLTEEHHVRRVWDLIQKLTDDLLKEA(SEQ ID NO:1)。
the second object of the present invention is to provide a gene encoding the above tryptophan decarboxylase TDC, such as SEQ ID NO: 1.
For example, the gene encoding the polypeptide of SEQ ID NO. 1 (CrTDC) (TDC gene for short) may be the nucleotide sequence shown in SEQ ID NO. 2, or a polynucleotide having 90% or more, preferably 95% or more, preferably 96% or more, preferably 97% or more, preferably 98% or more, more preferably 99% or more homology with SEQ ID NO. 2.
Wherein, the nucleotide sequence of SEQ ID NO. 2 is:
ATGGGCAGCATTGATTCAACAAATGTAGCCATGTCCAATTCTCCAGTTGGAGAATTTAAGCCACTTGAAGCTGAGGAATTCCGAAAACAAGCCCATCGTATGGTAGATTTCATAGCCGATTATTACAAAAATGTGGAAACATATCCGGTCCTTAGCGAAGTCGAACCTGGATATCTCCGAAAACGTATCCCCGAAACCGCTCCTTACCTCCCCGAATCACTCGACGACATCATGAAAGATATTCAGAAGGATATTATCCCAGGAATGACAAATTGGATGAGCCCTAATTTTTATGCATTTTTTCCTGCCACTGTTAGTTCAGCTGCCTTTTTAGGAGAAATGTTGTCTACTGCCCTAAATTCAGTAGGCTTTACTTGGGTTTCTTCACCAGCCGCCACCGAATTAGAAATGATTGTTATGGATTGGTTGGCTCAGATCCTTAAACTCCCCAAATCTTTCATGTTTTCAGGTACGGGTGGCGGCGTCATCCAAAACACCACTAGTGAGTCCATTCTTTGTACAATCATTGCCGCCCGGGAAAGGGCCCTGGAGAAGCTCGGTCCCGATAGTATTGGAAAACTTGTCTGTTACGGATCAGATCAAACCCATACCATGTTCCCAAAAACTTGCAAATTGGCGGGAATTTTCCCGAATAATATTAGGTTAATACCTACAACCGTCGAAACGGATTTCGGCATCTCACCTCAAGTTCTACGAAAAATGGTCGAGGATGACGTGGCGGCCGGATATGTACCGCTGTTCTTATGCGCTACCCTGGGTACCACCTCGACCACGGCTACCGATCCTGTGGACTCACTTTCTGAAATCGCTAACGAGTTTGGTATTTGGATCCACGTGGATGCGGCTTATGCGGGCAGCGCCTGTATATGTCCCGAGTTCAGACATTACTTGGATGGAATCGAGCGAGTTGACTCACTGAGTCTGAGTCCACACAAATGGCTACTCGCTTACTTAGATTGCACTTGCTTGTGGGTCAAGCAACCACATTTGTTACTAAGGGCACTCACTACGAATCCTGAGTATTTAAAAAATAAACAGAGTGATTTAGACAAAGTTGTGGACTTCAAAAATTGGCAAATCGCAACGGGACGAAAATTTCGGTCGCTTAAACTTTGGCTCATTTTACGTAGCTATGGAGTTGTTAATTTACAGAGTCATATTCGTTCTGACGTCGCAATGGCGAAAATGTTCGAAGAATGGGTTAGATCAGACTCCAGATTCGAAATTGTGGTACCAAGAAACTTTTCTCTTGTTTGTTTTAGATTAAAGCCTGACGTTTCGAGTTTAGATGTAGAAGAAGTGAATAAGAAACTTTTGGATATGCTTAACTCGACGGGACGAGTTTATATGACTCATACTATTGTGGGAGGCATATACATGCTAAGACTGGCTGTTGGCTCATCGCTAACTGAAGAACATCATGTACGCCGTGTTTGGGATTTGATTCAAAAATTAACCGATGATTTGCTCAAAGAAGCTTGA(SEQ ID NO:2)。
in a second aspect of the present invention, there is provided a vector comprising the above gene.
Preferably, the vector further comprises genes encoding secoStrychnos synthsase (SLS), strictosidine Synthsase (STR), strictosidine beta-D type glucosidase (SGD), nitrate transporter NPF2.9, and yohimbine alkaloid synthase HYS, respectively.
The secoStrychnos nux-vomica glycoside synthase (SLS) may be a polypeptide (CrSLS, or SLS 1) having an amino acid sequence of SEQ ID NO. 3, or a polypeptide having 90% or more, preferably 95% or more, preferably 96% or more, preferably 97% or more, preferably 98% or more, more preferably 99% or more homology with SEQ ID NO. 3.
Wherein, the amino acid sequence of SEQ ID NO. 3 is:
MEMDMDTIRKAIAATIFALVMAWAWRVLDWAWFTPKRIEKRLRQQGFRGNPYRFLVGDVKESGKMHQEALSKPMEFNNDIVPRLMPHINHTINTYGRNSFTWMGRIPRIHVMEPELIKEVLTHSSKYQKNFDVHNPLVKFLLTGVGSFEGAKWSKHRRIISPAFTLEKLKSMLPAFAICYHDMLTKWEKIAEKQGSHEVDIFPTFDVLTSDVISKVAFGSTYEEGGKIFRLLKELMDLTIDCMRDVYIPGWSYLPTKRNKRMKEINKEITDMLRFIINKRMKALKAGEPGEDDLLGVLLESNIQEIQKQGNKKDGGMSINDVIEECKLFYFAGQETTGVLLTWTTILLSKHPEWQERAREEVLQAFGKNKPEFERLNHLKYVSMILYEVLRLYPPVIDLTKIVHEDTKLGPYTIPAGTQVMLPTVMLHREKSIWGEDATEFNPMRFADGVANATKNNVTYLPFSWGPRVCLGQNFALLQAKLGLAMILQRFTFDVAPSYVHAPFTILTVQPQFGSHVIYKKLES(SEQ ID NO:3)。
preferably, the gene (SLS gene or SLS1 gene for short) encoding the above-mentioned polypeptide of SEQ ID NO. 3 (CrSLS or SLS 1) may be the nucleotide sequence shown in SEQ ID NO. 4, or a polynucleotide having homology of 90% or more, preferably 95% or more, preferably 96% or more, preferably 97% or more, preferably 98% or more, more preferably 99% or more with SEQ ID NO. 4.
Wherein, the nucleotide sequence of SEQ ID NO. 4 is:
ATGGAGATGGATATGGATACCATTAGAAAGGCAATTGCTGCCACTATTTTTGCATTGGTAATGGCTTGGGCATGGAGAGTGTTGGATTGGGCATGGTTTACTCCTAAGAGGATCGAGAAACGTCTAAGGCAGCAAGGTTTTAGAGGAAATCCTTATAGATTCTTGGTTGGAGATGTTAAGGAGAGTGGAAAAATGCATCAAGAAGCCTTGTCTAAACCCATGGAGTTCAACAATGATATTGTTCCTCGCCTCATGCCACATATTAACCACACTATCAATACTTACGGTAGGAATTCCTTTACATGGATGGGAAGGATTCCAAGAATTCATGTTATGGAACCTGAACTTATTAAGGAAGTATTGACCCACTCAAGCAAATACCAAAAGAACTTTGATGTTCACAATCCCCTTGTTAAGTTCCTTCTCACCGGAGTTGGAAGCTTTGAGGGTGCAAAATGGTCAAAACACAGAAGAATTATTTCCCCTGCCTTCACTCTTGAGAAACTAAAGTCAATGCTGCCAGCTTTTGCCATATGCTACCATGACATGTTGACCAAATGGGAGAAAATAGCTGAAAAACAAGGATCCCATGAAGTTGATATCTTTCCCACGTTTGATGTTTTAACAAGTGATGTGATTTCAAAGGTTGCATTTGGTAGCACATATGAAGAAGGAGGCAAAATCTTCAGACTATTGAAAGAACTCATGGATCTCACAATTGACTGCATGAGAGATGTCTACATTCCAGGATGGAGCTACTTGCCAACCAAGAGGAACAAGAGGATGAAAGAAATTAACAAAGAGATCACAGATATGCTAAGGTTCATCATCAACAAGAGAATGAAGGCTTTGAAGGCTGGAGAGCCAGGTGAGGATGACTTGCTGGGAGTATTGTTGGAATCAAACATTCAAGAAATTCAAAAGCAAGGAAACAAGAAGGATGGTGGAATGTCAATCAATGATGTAATTGAGGAGTGCAAATTGTTCTACTTTGCTGGTCAAGAAACTACTGGAGTTTTACTGACATGGACCACCATCTTATTGAGCAAGCACCCTGAGTGGCAAGAGCGAGCTAGAGAAGAAGTTCTCCAAGCCTTTGGCAAGAATAAACCTGAATTTGAACGCTTAAATCACCTCAAATATGTGTCTATGATCTTGTACGAGGTTCTAAGGTTGTACCCACCAGTGATTGATCTAACCAAGATTGTCCACGAGGACACAAAGTTAGGTCCGTACACAATTCCTGCAGGAACACAAGTGATGTTGCCAACAGTAATGCTTCACAGAGAGAAGAGCATTTGGGGAGAAGATGCAACAGAATTCAACCCAATGAGATTTGCTGATGGAGTTGCCAATGCAACCAAGAACAATGTCACATATTTGCCATTCAGTTGGGGACCTAGGGTTTGTCTTGGCCAAAACTTTGCACTTCTGCAAGCAAAATTAGGATTGGCAATGATTTTACAACGCTTCACGTTTGATGTTGCTCCATCCTATGTTCATGCTCCTTTTACCATTCTCACAGTTCAACCCCAGTTTGGTTCTCATGTCATCTACAAGAAGCTTGAGAGCTAG(SEQ ID NO:4)。
the strictosidine beta-D type glucosidase (SGD) is a polypeptide having an amino acid sequence of SEQ ID NO. 5 (CrSGD) or a polypeptide having 90% or more, preferably 95% or more, preferably 96% or more, preferably 97% or more, preferably 98% or more, more preferably 99% or more homology with SEQ ID NO. 5.
Wherein, the amino acid sequence of SEQ ID NO. 5 is:
MGSKDDQSLVVAISPAAEPNGNHSVPIPFAYPSIPIQPRKHNKPIVHRRDFPSDFILGAGGSAYQCEGAYNEGNRGPSIWDTFTNRYPAKIADGSNGNQAINSYNLYKEDIKIMKQTGLESYRFSISWSRVLPGGNLSGGVNKDGVKFYHDFIDELLANGIKPFATLFHWDLPQALEDEYGGFLSDRIVEDFTEYAEFCFWEFGDKVKFWTTFNEPHTYVASGYATGEFAPGRGGADGKGNPGKEPYIATHNLLLSHKAAVEVYRKNFQKCQGGEIGIVLNSMWMEPLNETKEDIDARERGLDFMLGWFIEPLTTGEYPKSMRALVGSRLPEFSTEDSEKLTGCYDFIGMNYYTTTYVSNADKIPDTPGYETDARINKNIFVKKVDGKEVRIGEPCYGGWQHVVPSGLYNLLVYTKEKYHVPVIYVSECGVVEENRTNILLTEGKTNILLTEARHDKLRVDFLQSHLASVRDAIDDGVNVKGFFVWSFFDNFEWNLGYICRYGIIHVDYKTFQRYPKDSAIWYKNFISEGFVTNTAKKRFREEDKLVELVKKQKY(SEQ ID NO:5)。
the gene encoding SEQ ID NO. 5 is a nucleotide sequence shown in SEQ ID NO. 6, or a polynucleotide having 90% or more, preferably 95% or more, preferably 96% or more, preferably 97% or more, preferably 98% or more, more preferably 99% or more homology with SEQ ID NO. 6.
Wherein, the nucleotide sequence of SEQ ID NO. 6 is:
ATGGGATCTAAAGATGATCAGTCCCTTGTTGTTGCCATTTCTCCAGCTGCTGAACCAAATGGAAATCATTCTGTCCCCATCCCATTCGCCTACCCCAGTATCCCCATTCAACCTAGAAAGCACAACAAGCCCATCGTTCATCGTCGAGATTTCCCCTCAGATTTCATCTTGGGTGCCGGAGGATCTGCTTATCAGTGTGAGGGTGCATATAATGAAGGCAACCGCGGTCCCAGTATATGGGATACTTTCACAAACCGATATCCAGCCAAAATAGCTGATGGATCTAATGGCAATCAAGCCATCAATTCTTACAATTTGTACAAGGAAGATATCAAGATTATGAAGCAAACAGGCTTGGAATCATATAGGTTTTCAATTTCATGGTCAAGAGTATTGCCAGGTGGAAATCTATCCGGTGGAGTGAATAAAGATGGTGTCAAGTTCTATCATGACTTTATAGATGAGCTTCTAGCCAATGGCATCAAACCCTTTGCAACTCTCTTCCACTGGGATCTTCCCCAAGCTCTTGAAGACGAGTATGGAGGCTTCTTGAGTGATCGAATTGTGGAAGATTTTACGGAGTATGCAGAATTTTGCTTTTGGGAATTCGGTGACAAAGTAAAATTTTGGACGACTTTCAATGAACCACATACTTATGTTGCAAGTGGATATGCCACTGGTGAATTTGCACCAGGAAGAGGTGGTGCAGATGGCAAGGGGAACCCTGGCAAAGAACCCTATATAGCGACACATAATTTACTTCtTTCTCACAAAGCTGCTGTGGAAGTATATAGGAAAAATTTTCAGAAATGTCAAGGAGGTGAAATTGGAATTGTACTTAATTCAATGTGGATGGAGCCTCTCAATGAAACCAAAGAaGATATTGATGCTCGGGAAAGGGGTCTTGATTTCATGCTCGGATGGTTCATAGAGCCATTAACAACGGGTGAATACCCAAAATCCATGAGAGCTCTTGTAGGAAGCCGTCTTCCAGAATTTTCAACAGAAGATTCCGAAAAATTAACAGGATGCTATGATTTTATCGGAATGAATTATTATACAACTACTTATGTTTCTAATGCAGACAAAATTCCCGATACTCCGGGTTACGAAACAGATGCTCGAATTAATAAGAATATTTTTGTCAAAAAAGTTGATGGGAAGGAAGTGCGCATTGGTGAACCGTGCTATGGGGGATGGCAGCATGTTGTTCCATCTGGACTCTACAATCTCTTGGTTTACACTAAGGAGAAATACCATGTTCCAGTGATTTATGTCTCAGAATGTGGTGTGGTTGAGGAAAATAGAACCAACATATTACTTACAGAAGGTAAAACCAACATATTACTTACAGAAGCTCGTCACGATAAACTCAGGGTTGATTTTCTACAAAGTCATCTCGCTAGCGTGCGAGATGCTATTGATGATGGTGTGAATGTAAAAGGATTCTTTGTTTGGTCATTCTTCGACAACTTCGAATGGAATTTGGGATATATATGCCGTTATGGAATTATCCATGTTGATTATAAAACTTTTCAAAGATATCCAAAGGATTCTGCCATATGGTACAAGAATTTCATTAGTGAAGGATTTGTTACGAATACAGCTAAAAAGAGATTCCGAGAAGAAGATAAACTAGTTGAGTTAGTCAAGAAGCAAAAATACTAA(SEQ ID NO:6)。
the amino acid sequence of the isocoumarin Synthetase (STR) can be GenBank accession number CAA43936, and the coding gene can be GenBank accession number X61932.
The amino acid sequence of the nitrate transporter NPF2.9 can be GenBank accession number AQM73449, and the coding gene can be GenBank accession number KX372303.
The amino acid sequence of the homoyohimbine alkaloid synthase HYS can be GenBank accession No. ANQ45225, and the coding gene can be GenBank accession No. KU865325.
As a preferred embodiment, in the above vector, TDC, SLS, STR, SGD, NPF2.9 and the genes (or biological elements) encoding HYS are fused via a fusion protein linker (linker), for example, two to two. In this case, these genes linked to each other are referred to as fusion genes.
Preferably, the above-mentioned fusion protein linker (linker) may be a self-cleavable 2A peptide or self-cleaving polypeptide 2A (self-cleaving 2A peptide, 2A), which may be selected from P2A, E2A, T2A, F2A, but is not limited thereto.
In one embodiment, the vector is preferably an Agrobacterium expression vector, such as Agrobacterium binary expression vector pCambia2301.
In a third aspect of the present invention, there is provided an Agrobacterium transformed with the above-mentioned vector.
In a third aspect, the invention provides the use of an agrobacterium as described above for producing ajmaline by infecting a crop suitable for expression of ajmaline with an agrobacterium as described above, and producing ajmaline using the crop as a biosynthetic system.
Preferably, the crop is tobacco.
For example, tobacco can be infested with the Agrobacterium described above, followed by feeding tryptophan and loganin, harvesting the tobacco lamina and extracting the ajmaline.
The invention takes tobacco as a mode chassis system for the first time, takes TDC, SLS, STR, NPF2.9, SGD and HYS as biological elements, constructs different fusion genes, realizes the heterologous biosynthesis of the ajmaline, provides a new synthetic biology approach for the production of the ajmaline, and has development and application potentials.
Drawings
FIG. 1 shows HPLC-MS detection of oxymorphone and precursors from infested tobacco. Wherein tryptamine is tryptamine, secologanin is secoStrychnos nux-vomica glycoside, stricotosine is isocoumarin, cathenamine is a precursor of ajmaline (CAS No.74924-23-5, also a precursor of tetrahydropicatine), and Ajmalicine is ajmaline; standard is total ion flow graph (TIC) of tryptamine, seco-Strychnos secologanin, ajmalicine; the Control was tobacco infected with the blank plasmid pCambia2301 (EV).
FIG. 2 shows the detection of the content of the ajmaline in infected tobacco, the left graph is a TIC graph, and the right graph D is a bar graph. Wherein A shows a TIC chart of a standard product, and ajm is ajmaline; tha is tetrahydropicatine; b shows a TIC plot of the generation of ajmaline in tobacco lamina by the NT01 combination (TDC + SLS + STR + NPF2.9+ SGD + HYS); c shows a TIC plot of the production of ajmaline in an in vitro reaction of combined NT 01; right panel D shows the determination of the amount of ajmaline in tobacco lamina for combination EV and NT 01. NT01 is the combination of TDC, SLS1, STR, NPF2.9, SGD, HYS isolated genes, EV is the infection of blank plasmid pCambia2301.
FIG. 3 shows the detection of the content of oxymorphone in tobacco leaves infected with the isolated and fused genes. The left graph is a TIC graph and the right graph D is a bar graph. Wherein, A shows a TIC chart of a standard product, and ajm is ajmaline; tha is tetrahydropicatine; b shows a TIC graph of the generation of ajmaline in tobacco lamina by NT01 combinations (combinations of TDC, SLS1, STR, NPF2.9, SGD, HYS isolated genes); c shows a TIC graph of the generation of the ajmaline in the tobacco leaves by the NT02 fusion gene combination (the combination of TDC-P2A-SLS1+ STR-T2A-NPF2.9+ SGD-F2A-HYS fusion genes); the right panel D shows the determination of the content of oxymorphone in tobacco leaves for the isolated gene combination NT01 and the fusion gene combination NT 02.
Detailed Description
The invention takes tobacco as a mode chassis system, key genes TDC, SLS, STR, NPF2.9, SGD and HYS obtained by cloning in catharanthus roseus are taken as biological elements to construct an agrobacterium expression vector, and the tobacco transient expression system is used for heterologous expression in the tobacco. Meanwhile, different fusion genes are constructed from the obtained key genes based on a synthetic biology strategy, so that the content of the ajmaline in the tobacco is further improved, and the biosynthesis of the ajmaline in the tobacco is realized for the first time.
Since the newly discovered Tryptophan Decarboxylase (TDC) is derived from Vinca rosea (C)Catharanthus roseus), sometimes referred to herein as CrTDC for SEQ ID No. 1 and its encoding gene, SEQ ID No. 2, is referred to as the TDC gene or CrTDC gene, while the gene fragment in the vector plasmid is referred to as the biological element TDC. Similarly, the newly discovered secologlycoside synthetase SEQ ID NO 3 is sometimes referred to as CrSLS or SLS1 for short, and its encoding gene SEQ ID NO 4 is referred to as SLS1 gene or CrSLS gene, while the gene fragment in the vector plasmid is referred to as the biological element SLS or SLS1. The newly discovered isochronin beta-D type glucosidase SEQ ID NO:5 is sometimes abbreviated as CrSGD, and its encoding gene SEQ ID NO:6 is referred to as SGD gene or Cr SGD gene, while the gene fragment in the vector plasmid is referred to as biological element SGD.
By analogy, the coding gene (GenBank accession number: X61932) of the strictosidine synthase STR (GenBank accession number: CAA 43936) can be called STR gene, and the gene fragment in the vector plasmid can be called biological element STR; the gene encoding the nitrate transporter NPF2.9 (GenBank accession No.: AQM 73449) (GenBank accession No.: KX 372303) can be referred to as NPF2.9 gene, and the gene fragment in the vector plasmid can be referred to as the biological element NPF2.9; the gene encoding the heteroyohimbine alkaloid synthase HYS (GenBank accession No.: ANQ 45225) (GenBank accession No.: KU 865325) may be referred to as the HYS gene, and a fragment of this gene in the vector plasmid may be referred to as the biological element HYS.
In the vector plasmids of the invention, self-cleaving polypeptide 2A is used to ligate biological elements TDC, SLS, STR, NPF2.9, SGD and HYS, achieving the goal of expressing these polycistrons on a single vector. The 2A peptide has a short structure, has good expression balance of upstream and downstream genes, and can realize 'simultaneous transcription and translation'. The more popular self-cleavable linkers are capable of performing a cleavage process by themselves, independent of protease, resulting in cleavage of both domains. These self-cleaving linkers are typically self-cleaving in the sequence NPG ↓ P, usually as 2A short peptides. The 2A peptide was originally found in Foot and Mouth Disease Virus (FMDV), a small "self-cleaving" peptide identified therefrom, having an average length of 18-22 amino acids. 2A short peptides are typically derived from the protein sequence of a virus, for example P2A denotes a peptide derived from porcine teschovirus-1; E2A represents a virus derived from equine rhinitis virus (equine rhinitis A virus); F2A is derived from foot-and-Mouth Disease Virus (foot and foot Disease Virus); T2A is derived from the virus of the poina fusca. Due to different self-cleavage efficiency, 2A short peptides have certain difference.
In this context, sometimes for the sake of descriptive simplicity, the names of proteins such as the CrTDC protein are mixed with the names of the genes (DNA) encoding them, and the person skilled in the art will understand that they represent different substances in different descriptive contexts. For example, for CrTDC (gene), when used to describe tryptophan decarboxylase function or class, refers to a protein; when described as a gene, reference is made to the gene encoding the tryptophan decarboxylase, and so on, as will be readily understood by those skilled in the art.
The invention has clear sequences of tryptophan decarboxylase CrTDC, secoStrychnos nux-vomica glycoside synthetase CrSLS (SLS 1) and isochinacoside beta-D type glucosidase CrSGD which are newly found in catharanthus roseus, so that the encoding genes, an expression cassette and a plasmid containing the genes and a transformant containing the plasmid can be easily obtained by a person skilled in the art. These genes, expression cassettes, plasmids, and transformants can be obtained by genetic engineering construction means well known to those skilled in the art.
The present invention will be described in further detail with reference to specific examples. It should be understood that the following examples are illustrative only and are not intended to limit the scope of the present invention.
In the examples herein, reference is made to the amounts, concentrations and concentrations of various substances, wherein the percentages refer to mass percentages unless otherwise indicated.
In the examples, if no specific description is made about the operation temperature, the temperature is usually room temperature (15 to 30 ℃).
Examples
Materials and methods
The whole gene synthesis, primer synthesis and sequencing in the examples were performed by Shanghai Sangni Biotech Co., ltd.
The molecular biological experiments in the examples include plasmid construction, digestion, ligation, competent cell preparation, transformation, culture medium preparation, and the like, and are mainly performed with reference to "molecular cloning experimental manual" (third edition), sambrook, d.w. rasel (american), translation of huang peitang et al, scientific press, beijing, 2002). The specific experimental conditions can be determined by simple experiments if necessary.
The PCR amplification experiments were performed according to the reaction conditions or kit instructions provided by the supplier of the plasmid or DNA template. If necessary, it can be adjusted by simple experiments.
LB culture medium: 10g/L tryptone, 5g/L yeast extract, 10g/L sodium chloride, pH 7.0.
HPLC-MS detection conditions of the ajmaline and the precursor:
target metabonomics detection was performed using the Agilent 1260Infinity HPLC-MS system. The chromatographic column is an Agilent C18 column (chromatographic column: 3.5um,4.0 multiplied by 100 mm); the mobile phases were 0.1% aqueous formic acid (a) and chromatographically pure acetonitrile (B), separated according to the following gradient: 0-2min,5% by weight B;22min,40% by weight B;25min,60% by weight B;28min,95% by weight B;35min,5% B, flow rate 0.8mL/min, column equilibration 5min. The total analysis time was 40min. The mass spectrum is a single quadrupole mass spectrum and is carried out according to the default parameters of an Agilent manufacturer.
Example 1 extraction and reverse transcription of Total RNA
The vinca leaf is ground into powder by liquid nitrogen, 100mg of the ground powder is taken out of a centrifuge tube with 1.5mL of RNA free, and then RNA extraction is carried out according to the instruction of the RNA extraction kit of the holotype gold. The extracted RNA is directly reverse transcribed to produce cDNA.
Mu.g of RNA is taken and reverse transcription is carried out by utilizing a full-type gold reverse transcription kit to produce cDNA.
Example 2 cloning of genes
2.1 cloning of the target Gene
Using Catharanthus roseus cDNA obtained by reverse transcription as a template, amplification was carried out using the primers shown in Table 1 as follows
Figure BDA0002384116540000102
Fastpfu Flyb. Mu.l, dNTP (2.5 mM) 4. Mu.L, each 2. Mu.L of primers (10. Mu.M), cDNA 1. Mu.L,
Figure BDA0002384116540000103
fastpfu Fly DNA polymerase 1. Mu.L, supplemented with ddH 2 O to a final volume of 50. Mu.L. PCR reaction procedure: pre-denaturation at 98 ℃ for 30s, denaturation at 98 ℃ for 10s, annealing at 58 ℃ for 30s, extension at 72 ℃ for 1min30s,35 cycles, final extension at 72 ℃ for 5min, and storage at 16 ℃. The PCR product was purified using the Agarose Gel Fragment Recovery Kit Ver.2.0 from Axygen. TDC, SLS, STR, NPF2.9, SGD and HYS gene fragments are respectively obtained.
TABLE 1 primers for Gene amplification
Figure BDA0002384116540000101
Figure BDA0002384116540000111
Wherein, F is a forward primer; r is a reverse primer.
2.2 cloning of fusion genes
Using the plasmid containing the target gene obtained in step 2.1 as a template, the amplification of the fusion gene was carried out using the primers shown in Table 2 in the following system
Figure BDA0002384116540000112
Fastpfu Flyb. Mu.l, dNTP (2.5 mM) 4. Mu.L, each 2. Mu.L of primers (10. Mu.M), cDNA 1. Mu.L,
Figure BDA0002384116540000113
fastpfu Fly DNA polymerase 1. Mu.L,supplemented ddH 2 O to a final volume of 50. Mu.L. PCR reaction procedure: pre-denaturation at 98 ℃ for 30s, denaturation at 98 ℃ for 10s, annealing at 58 ℃ for 30s, extension at 72 ℃ for 1min for 30s,35 cycles, final extension at 72 ℃ for 5min, and storage at 16 ℃. The PCR product was purified using the Agarose Gel Fragment Recovery Kit Ver.2.0 from Axygen. TDC, SLS1, STR, NPF2.9, SGD and HYS gene fragments with fusion protein joint 2A peptide genes are respectively obtained.
TABLE 2 primers for amplification of fusion genes
Figure BDA0002384116540000114
Figure BDA0002384116540000121
Wherein, F is a forward primer; r is a reverse primer.
2.3 construction of Agrobacterium expression vectors
The agrobacterium binary expression vector pCambia2301 (Invitrogen company) is subjected to enzyme digestion for 12h at 37 ℃ by using appropriate restriction enzymes BamHI and SalI, an enzyme digestion product is purified by using a gel recovery kit (Axygen company), and the purified fragment in the step 2.2 and the enzyme digestion vector are subjected to homologous recombination by using a homologous recombinase according to the operation of a specification to obtain an expression vector.
Example 3 Agrobacterium competent transformation
1 mu g of expression vector with correct sequencing and GV3101 competent cells are taken to be incubated on ice for 30 minutes, quickly frozen by liquid nitrogen for 5min, thermally shocked at 37 ℃ for 5min, placed on ice for 5min, added with 1mL of LB culture medium and placed on a shaking table at 28 ℃ for resuscitation for 4 hours. The whole cells were plated on kanamycin-resistant and rifamycin-resistant LB plates and cultured in 28 ℃ incubator for 2-4 days.
Example 4 Agrobacterium infection
Single colonies were picked from kanamycin and rifamycin resistant medium plates and cultured in LB (Kan + Rif) tubes for 48h to OD 600 Is more than or equal to 2.0. Incubate overnight (12 h) at 28 ℃. After the cells were collected, MMA buffer (10 mM MES, 10mM MgC) was usedl 2 And 100 μ M acetosyringone) for 3h, and then injecting tobacco with a needle-less syringe. Feeding substrates (100 mg/mL tryptophan and 100mg/mL Loganin) 4 days after infecting tobacco, and collecting tobacco leaves 1 day later for target metabonomics analysis.
Example 5 Metabonomics analysis
5.1 newly discovered enzymes and genes of Catharanthus roseus origin related to the synthesis of monoterpene indole alkaloids
Through gene sequencing, three new genes are discovered, namely a tryptophan decarboxylase gene, wherein the nucleotide sequence of the tryptophan decarboxylase gene is SEQ ID NO. 2, and the amino acid sequence of the coded tryptophan decarboxylase CrTDC is SEQ ID NO. 1; the nucleotide sequence of the seco-strychnos nux-vomica glycoside synthetase gene is SEQ ID NO. 4, and the amino acid sequence of the encoded seco-strychnos glycoside synthetase CrSLS (or SLS 1) is SEQ ID NO. 3; the nucleotide sequence of the isocorynin beta-D type glucosidase gene is SEQ ID NO. 6, and the amino acid sequence of the coded isocorynin beta-D type glucosidase CrSGD is SEQ ID NO. 5.
5.2 synthetic biology System for Ammonidine in tobacco
FIG. 1 shows a graph of the detection of timoloid and precursors in infested tobacco, reflecting the function of different enzymes in the biosynthesis of timoloid. Wherein tryptamine is tryptamine, secologanin is secoStrychnos nux-vomitoxin, stricotisidine is isocoumarin, cathenamine is a precursor of ajmaline (CAS No.74924-23-5, also a precursor of tetrahydropicatine), and Ajmalicine is ajmaline. Standard is the HPLC retention time of tryptamine, secologanin, ajmalicine. Control was tobacco infected with the empty vector pCambia2301 (EV).
As can be seen from FIG. 1, only tryptamine was expressed when only tryptophan decarboxylase TDC was cloned in tobacco; when only the seconux vomica glycoside synthetase SLS1 is cloned, only the seconux vomica glycoside is expressed; when TDC + SLS1+ STR is cloned, tryptamine, seconux vomica glycoside and strictosidine can be expressed, but cathenamine and ajmalicine are not expressed; when TDC + SLS1+ STR + SGD is cloned, tryptamine, strictosidine and cathenamine can be expressed, but no ajmaline is expressed; after cloning TDC + SLS1+ STR + SGD + HYS, the ajmaline and its precursor compound can be expressed, and a complete biosynthesis system is formed.
5.3 content detection of Amazone in infected tobacco
FIG. 2 shows the detection of the content of the ajmaline in infected tobacco, the left graph is a TIC graph, and the right graph D is a bar graph. Wherein, A shows a TIC chart of a standard product, and ajm is ajmaline; tha is tetrahydropicatine; b shows a TIC plot of the generation of ajmaline in tobacco lamina by the NT01 combination (TDC + SLS1+ STR + NPF2.9+ SGD + HYS); c shows a TIC graph of the in vitro biochemical reaction of NT01 to form the ajmaline; d shows the content determination of control and NT01 in tobacco lamina. The combination of NT01 produced ajmalicine, but infection of tobacco with only the empty plasmid pCambia2301 (EV) did not.
5.4 detection of content of ajmaline in tobacco leaf infected by fusion gene
FIG. 3 shows the detection of the content of the oxymorphone in tobacco leaves infected with the fusion gene. The left graph is a TIC graph and the right graph D is a bar graph. Wherein A shows a TIC chart of a standard product, and ajm is ajmaline; tha is tetrahydropicatine; b shows a TIC graph of the generation of ajmaline in tobacco lamina by NT01 combinations (combinations of TDC, SLS1, STR, NPF2.9, SGD, HYS isolated genes); c shows a TIC graph of the generation of the ajmaline in the tobacco leaves by the NT02 fusion gene combination (the combination of TDC-P2A-SLS1+ STR-T2A-NPF2.9+ SGD-F2A-HYS fusion genes); the right panel D shows the determination of the amount of ajmaline in tobacco lamina for combination NT01 and NT 02. The content of the oxymorphone generated in tobacco infected by the fusion gene combination NT02 is higher than that generated by the separation gene combination NT 01.
The experimental results show that TDC, SLS, STR, NPF2.9, SGD and HYS are used as biological elements, 2A peptide is used as a fusion protein joint linker to construct a fusion gene, and a tobacco system is used as a biosynthesis system, so that high-content oxymorphone can be generated.
It should also be noted that the listing or discussion of a prior-published document in this specification should not be taken as an admission that the document is prior art or common general knowledge.
Reference to the literature
1.Farhi,M.,Marhevka,E.,Ben-Ari,J.,Algamas-Dimantov,A.,Liang,Z.,Zeevi,V.,Edelbaum,O.,Spitzer-Rimon,B.,Abeliovich,H.,and Schwartz,B.(2011).Generation of the potent anti-malarial drug artemisinin in tobacco.Nat Biotechnol 29,1072.
2.Fuentes,P.,Zhou,F.,Erban,A.,Karcher,D.,Kopka,J.,and Bock,R.(2016).A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.eLife 5,e13664.
3.Li,J.,Mutanda,I.,Wang,K.,Yang,L.,Wang,J.,and Wang,Y.(2019).Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in nicotiana benthamiana.Nat Commun 10,4850.
4.Malhotra,K.,Subramaniyan,M.,Rawat,K.,Kalamuddin,M.,Qureshi,M.I.,Malhotra,P.,Mohmmed,A.,Cornish,K.,Daniell,H.,and Kumar,S.(2016).Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells.Mol Plant 9,1464-1477.
5.Miettinen,K.,Dong,L.,Navrot,N.,Schneider,T.,Burlat,V.,Pollier,J.,Woittiez,L.,Der Krol,S.V.,Lugan,R.,and Ilc,T.(2014).The seco-iridoid pathway from catharanthus roseus.Nat Commun 5,3606-3606.
6.Paddon,C.J.,Westfall,P.J.,Pitera,D.J.,Benjamin,K.,Fisher,K.,McPhee,D.,Leavell,M.,Tai,A.,Main,A.,and Eng,D.(2013).High-level semi-synthetic production of the potent antimalarial artemisinin.Nature 496,528.
7.Reed,J.,Stephenson,M.J.,Miettinen,K.,Brouwer,B.,Leveau,A.,Brett,P.,Goss,R.J.,Goossens,A.,O’Connell,M.A.,and Osbourn,A.(2017).A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules.Metab Eng 42,185-193.
8.Stavrinides,A.,Tatsis,E.C.,Caputi,L.,Foureau,E.,Stevenson,C.E.M.,Lawson,D.M.,Courdavault,V.,and O'Connor,S.E.(2016).Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity.Nat Commun 7.
9.Stavrinides,A.,Tatsis,E.C.,Foureau,E.,Caputi,L.,Kellner,F.,Courdavault,V.,and O'Connor,S.E.(2015).Unlocking the diversity of alkaloids in catharanthus roseus:Nuclear localization suggests metabolic channeling in secondary metabolism.Chem Biol 22,336-341.
Sequence listing
<110> Shanghai Life science research institute of Chinese academy of sciences
<120> tobacco system for producing ajmaline
<130> SHPI2010065
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 500
<212> PRT
<213> Catharanthus roseus
<400> 1
Met Gly Ser Ile Asp Ser Thr Asn Val Ala Met Ser Asn Ser Pro Val
1 5 10 15
Gly Glu Phe Lys Pro Leu Glu Ala Glu Glu Phe Arg Lys Gln Ala His
20 25 30
Arg Met Val Asp Phe Ile Ala Asp Tyr Tyr Lys Asn Val Glu Thr Tyr
35 40 45
Pro Val Leu Ser Glu Val Glu Pro Gly Tyr Leu Arg Lys Arg Ile Pro
50 55 60
Glu Thr Ala Pro Tyr Leu Pro Glu Ser Leu Asp Asp Ile Met Lys Asp
65 70 75 80
Ile Gln Lys Asp Ile Ile Pro Gly Met Thr Asn Trp Met Ser Pro Asn
85 90 95
Phe Tyr Ala Phe Phe Pro Ala Thr Val Ser Ser Ala Ala Phe Leu Gly
100 105 110
Glu Met Leu Ser Thr Ala Leu Asn Ser Val Gly Phe Thr Trp Val Ser
115 120 125
Ser Pro Ala Ala Thr Glu Leu Glu Met Ile Val Met Asp Trp Leu Ala
130 135 140
Gln Ile Leu Lys Leu Pro Lys Ser Phe Met Phe Ser Gly Thr Gly Gly
145 150 155 160
Gly Val Ile Gln Asn Thr Thr Ser Glu Ser Ile Leu Cys Thr Ile Ile
165 170 175
Ala Ala Arg Glu Arg Ala Leu Glu Lys Leu Gly Pro Asp Ser Ile Gly
180 185 190
Lys Leu Val Cys Tyr Gly Ser Asp Gln Thr His Thr Met Phe Pro Lys
195 200 205
Thr Cys Lys Leu Ala Gly Ile Phe Pro Asn Asn Ile Arg Leu Ile Pro
210 215 220
Thr Thr Val Glu Thr Asp Phe Gly Ile Ser Pro Gln Val Leu Arg Lys
225 230 235 240
Met Val Glu Asp Asp Val Ala Ala Gly Tyr Val Pro Leu Phe Leu Cys
245 250 255
Ala Thr Leu Gly Thr Thr Ser Thr Thr Ala Thr Asp Pro Val Asp Ser
260 265 270
Leu Ser Glu Ile Ala Asn Glu Phe Gly Ile Trp Ile His Val Asp Ala
275 280 285
Ala Tyr Ala Gly Ser Ala Cys Ile Cys Pro Glu Phe Arg His Tyr Leu
290 295 300
Asp Gly Ile Glu Arg Val Asp Ser Leu Ser Leu Ser Pro His Lys Trp
305 310 315 320
Leu Leu Ala Tyr Leu Asp Cys Thr Cys Leu Trp Val Lys Gln Pro His
325 330 335
Leu Leu Leu Arg Ala Leu Thr Thr Asn Pro Glu Tyr Leu Lys Asn Lys
340 345 350
Gln Ser Asp Leu Asp Lys Val Val Asp Phe Lys Asn Trp Gln Ile Ala
355 360 365
Thr Gly Arg Lys Phe Arg Ser Leu Lys Leu Trp Leu Ile Leu Arg Ser
370 375 380
Tyr Gly Val Val Asn Leu Gln Ser His Ile Arg Ser Asp Val Ala Met
385 390 395 400
Ala Lys Met Phe Glu Glu Trp Val Arg Ser Asp Ser Arg Phe Glu Ile
405 410 415
Val Val Pro Arg Asn Phe Ser Leu Val Cys Phe Arg Leu Lys Pro Asp
420 425 430
Val Ser Ser Leu Asp Val Glu Glu Val Asn Lys Lys Leu Leu Asp Met
435 440 445
Leu Asn Ser Thr Gly Arg Val Tyr Met Thr His Thr Ile Val Gly Gly
450 455 460
Ile Tyr Met Leu Arg Leu Ala Val Gly Ser Ser Leu Thr Glu Glu His
465 470 475 480
His Val Arg Arg Val Trp Asp Leu Ile Gln Lys Leu Thr Asp Asp Leu
485 490 495
Leu Lys Glu Ala
500
<210> 2
<211> 1503
<212> DNA
<213> Catharanthus roseus
<400> 2
atgggcagca ttgattcaac aaatgtagcc atgtccaatt ctccagttgg agaatttaag 60
ccacttgaag ctgaggaatt ccgaaaacaa gcccatcgta tggtagattt catagccgat 120
tattacaaaa atgtggaaac atatccggtc cttagcgaag tcgaacctgg atatctccga 180
aaacgtatcc ccgaaaccgc tccttacctc cccgaatcac tcgacgacat catgaaagat 240
attcagaagg atattatccc aggaatgaca aattggatga gccctaattt ttatgcattt 300
tttcctgcca ctgttagttc agctgccttt ttaggagaaa tgttgtctac tgccctaaat 360
tcagtaggct ttacttgggt ttcttcacca gccgccaccg aattagaaat gattgttatg 420
gattggttgg ctcagatcct taaactcccc aaatctttca tgttttcagg tacgggtggc 480
ggcgtcatcc aaaacaccac tagtgagtcc attctttgta caatcattgc cgcccgggaa 540
agggccctgg agaagctcgg tcccgatagt attggaaaac ttgtctgtta cggatcagat 600
caaacccata ccatgttccc aaaaacttgc aaattggcgg gaattttccc gaataatatt 660
aggttaatac ctacaaccgt cgaaacggat ttcggcatct cacctcaagt tctacgaaaa 720
atggtcgagg atgacgtggc ggccggatat gtaccgctgt tcttatgcgc taccctgggt 780
accacctcga ccacggctac cgatcctgtg gactcacttt ctgaaatcgc taacgagttt 840
ggtatttgga tccacgtgga tgcggcttat gcgggcagcg cctgtatatg tcccgagttc 900
agacattact tggatggaat cgagcgagtt gactcactga gtctgagtcc acacaaatgg 960
ctactcgctt acttagattg cacttgcttg tgggtcaagc aaccacattt gttactaagg 1020
gcactcacta cgaatcctga gtatttaaaa aataaacaga gtgatttaga caaagttgtg 1080
gacttcaaaa attggcaaat cgcaacggga cgaaaatttc ggtcgcttaa actttggctc 1140
attttacgta gctatggagt tgttaattta cagagtcata ttcgttctga cgtcgcaatg 1200
gcgaaaatgt tcgaagaatg ggttagatca gactccagat tcgaaattgt ggtaccaaga 1260
aacttttctc ttgtttgttt tagattaaag cctgacgttt cgagtttaga tgtagaagaa 1320
gtgaataaga aacttttgga tatgcttaac tcgacgggac gagtttatat gactcatact 1380
attgtgggag gcatatacat gctaagactg gctgttggct catcgctaac tgaagaacat 1440
catgtacgcc gtgtttggga tttgattcaa aaattaaccg atgatttgct caaagaagct 1500
tga 1503
<210> 3
<211> 524
<212> PRT
<213> Catharanthus roseus
<400> 3
Met Glu Met Asp Met Asp Thr Ile Arg Lys Ala Ile Ala Ala Thr Ile
1 5 10 15
Phe Ala Leu Val Met Ala Trp Ala Trp Arg Val Leu Asp Trp Ala Trp
20 25 30
Phe Thr Pro Lys Arg Ile Glu Lys Arg Leu Arg Gln Gln Gly Phe Arg
35 40 45
Gly Asn Pro Tyr Arg Phe Leu Val Gly Asp Val Lys Glu Ser Gly Lys
50 55 60
Met His Gln Glu Ala Leu Ser Lys Pro Met Glu Phe Asn Asn Asp Ile
65 70 75 80
Val Pro Arg Leu Met Pro His Ile Asn His Thr Ile Asn Thr Tyr Gly
85 90 95
Arg Asn Ser Phe Thr Trp Met Gly Arg Ile Pro Arg Ile His Val Met
100 105 110
Glu Pro Glu Leu Ile Lys Glu Val Leu Thr His Ser Ser Lys Tyr Gln
115 120 125
Lys Asn Phe Asp Val His Asn Pro Leu Val Lys Phe Leu Leu Thr Gly
130 135 140
Val Gly Ser Phe Glu Gly Ala Lys Trp Ser Lys His Arg Arg Ile Ile
145 150 155 160
Ser Pro Ala Phe Thr Leu Glu Lys Leu Lys Ser Met Leu Pro Ala Phe
165 170 175
Ala Ile Cys Tyr His Asp Met Leu Thr Lys Trp Glu Lys Ile Ala Glu
180 185 190
Lys Gln Gly Ser His Glu Val Asp Ile Phe Pro Thr Phe Asp Val Leu
195 200 205
Thr Ser Asp Val Ile Ser Lys Val Ala Phe Gly Ser Thr Tyr Glu Glu
210 215 220
Gly Gly Lys Ile Phe Arg Leu Leu Lys Glu Leu Met Asp Leu Thr Ile
225 230 235 240
Asp Cys Met Arg Asp Val Tyr Ile Pro Gly Trp Ser Tyr Leu Pro Thr
245 250 255
Lys Arg Asn Lys Arg Met Lys Glu Ile Asn Lys Glu Ile Thr Asp Met
260 265 270
Leu Arg Phe Ile Ile Asn Lys Arg Met Lys Ala Leu Lys Ala Gly Glu
275 280 285
Pro Gly Glu Asp Asp Leu Leu Gly Val Leu Leu Glu Ser Asn Ile Gln
290 295 300
Glu Ile Gln Lys Gln Gly Asn Lys Lys Asp Gly Gly Met Ser Ile Asn
305 310 315 320
Asp Val Ile Glu Glu Cys Lys Leu Phe Tyr Phe Ala Gly Gln Glu Thr
325 330 335
Thr Gly Val Leu Leu Thr Trp Thr Thr Ile Leu Leu Ser Lys His Pro
340 345 350
Glu Trp Gln Glu Arg Ala Arg Glu Glu Val Leu Gln Ala Phe Gly Lys
355 360 365
Asn Lys Pro Glu Phe Glu Arg Leu Asn His Leu Lys Tyr Val Ser Met
370 375 380
Ile Leu Tyr Glu Val Leu Arg Leu Tyr Pro Pro Val Ile Asp Leu Thr
385 390 395 400
Lys Ile Val His Glu Asp Thr Lys Leu Gly Pro Tyr Thr Ile Pro Ala
405 410 415
Gly Thr Gln Val Met Leu Pro Thr Val Met Leu His Arg Glu Lys Ser
420 425 430
Ile Trp Gly Glu Asp Ala Thr Glu Phe Asn Pro Met Arg Phe Ala Asp
435 440 445
Gly Val Ala Asn Ala Thr Lys Asn Asn Val Thr Tyr Leu Pro Phe Ser
450 455 460
Trp Gly Pro Arg Val Cys Leu Gly Gln Asn Phe Ala Leu Leu Gln Ala
465 470 475 480
Lys Leu Gly Leu Ala Met Ile Leu Gln Arg Phe Thr Phe Asp Val Ala
485 490 495
Pro Ser Tyr Val His Ala Pro Phe Thr Ile Leu Thr Val Gln Pro Gln
500 505 510
Phe Gly Ser His Val Ile Tyr Lys Lys Leu Glu Ser
515 520
<210> 4
<211> 1575
<212> DNA
<213> Catharanthus roseus
<400> 4
atggagatgg atatggatac cattagaaag gcaattgctg ccactatttt tgcattggta 60
atggcttggg catggagagt gttggattgg gcatggttta ctcctaagag gatcgagaaa 120
cgtctaaggc agcaaggttt tagaggaaat ccttatagat tcttggttgg agatgttaag 180
gagagtggaa aaatgcatca agaagccttg tctaaaccca tggagttcaa caatgatatt 240
gttcctcgcc tcatgccaca tattaaccac actatcaata cttacggtag gaattccttt 300
acatggatgg gaaggattcc aagaattcat gttatggaac ctgaacttat taaggaagta 360
ttgacccact caagcaaata ccaaaagaac tttgatgttc acaatcccct tgttaagttc 420
cttctcaccg gagttggaag ctttgagggt gcaaaatggt caaaacacag aagaattatt 480
tcccctgcct tcactcttga gaaactaaag tcaatgctgc cagcttttgc catatgctac 540
catgacatgt tgaccaaatg ggagaaaata gctgaaaaac aaggatccca tgaagttgat 600
atctttccca cgtttgatgt tttaacaagt gatgtgattt caaaggttgc atttggtagc 660
acatatgaag aaggaggcaa aatcttcaga ctattgaaag aactcatgga tctcacaatt 720
gactgcatga gagatgtcta cattccagga tggagctact tgccaaccaa gaggaacaag 780
aggatgaaag aaattaacaa agagatcaca gatatgctaa ggttcatcat caacaagaga 840
atgaaggctt tgaaggctgg agagccaggt gaggatgact tgctgggagt attgttggaa 900
tcaaacattc aagaaattca aaagcaagga aacaagaagg atggtggaat gtcaatcaat 960
gatgtaattg aggagtgcaa attgttctac tttgctggtc aagaaactac tggagtttta 1020
ctgacatgga ccaccatctt attgagcaag caccctgagt ggcaagagcg agctagagaa 1080
gaagttctcc aagcctttgg caagaataaa cctgaatttg aacgcttaaa tcacctcaaa 1140
tatgtgtcta tgatcttgta cgaggttcta aggttgtacc caccagtgat tgatctaacc 1200
aagattgtcc acgaggacac aaagttaggt ccgtacacaa ttcctgcagg aacacaagtg 1260
atgttgccaa cagtaatgct tcacagagag aagagcattt ggggagaaga tgcaacagaa 1320
ttcaacccaa tgagatttgc tgatggagtt gccaatgcaa ccaagaacaa tgtcacatat 1380
ttgccattca gttggggacc tagggtttgt cttggccaaa actttgcact tctgcaagca 1440
aaattaggat tggcaatgat tttacaacgc ttcacgtttg atgttgctcc atcctatgtt 1500
catgctcctt ttaccattct cacagttcaa ccccagtttg gttctcatgt catctacaag 1560
aagcttgaga gctag 1575
<210> 5
<211> 555
<212> PRT
<213> Catharanthus roseus
<400> 5
Met Gly Ser Lys Asp Asp Gln Ser Leu Val Val Ala Ile Ser Pro Ala
1 5 10 15
Ala Glu Pro Asn Gly Asn His Ser Val Pro Ile Pro Phe Ala Tyr Pro
20 25 30
Ser Ile Pro Ile Gln Pro Arg Lys His Asn Lys Pro Ile Val His Arg
35 40 45
Arg Asp Phe Pro Ser Asp Phe Ile Leu Gly Ala Gly Gly Ser Ala Tyr
50 55 60
Gln Cys Glu Gly Ala Tyr Asn Glu Gly Asn Arg Gly Pro Ser Ile Trp
65 70 75 80
Asp Thr Phe Thr Asn Arg Tyr Pro Ala Lys Ile Ala Asp Gly Ser Asn
85 90 95
Gly Asn Gln Ala Ile Asn Ser Tyr Asn Leu Tyr Lys Glu Asp Ile Lys
100 105 110
Ile Met Lys Gln Thr Gly Leu Glu Ser Tyr Arg Phe Ser Ile Ser Trp
115 120 125
Ser Arg Val Leu Pro Gly Gly Asn Leu Ser Gly Gly Val Asn Lys Asp
130 135 140
Gly Val Lys Phe Tyr His Asp Phe Ile Asp Glu Leu Leu Ala Asn Gly
145 150 155 160
Ile Lys Pro Phe Ala Thr Leu Phe His Trp Asp Leu Pro Gln Ala Leu
165 170 175
Glu Asp Glu Tyr Gly Gly Phe Leu Ser Asp Arg Ile Val Glu Asp Phe
180 185 190
Thr Glu Tyr Ala Glu Phe Cys Phe Trp Glu Phe Gly Asp Lys Val Lys
195 200 205
Phe Trp Thr Thr Phe Asn Glu Pro His Thr Tyr Val Ala Ser Gly Tyr
210 215 220
Ala Thr Gly Glu Phe Ala Pro Gly Arg Gly Gly Ala Asp Gly Lys Gly
225 230 235 240
Asn Pro Gly Lys Glu Pro Tyr Ile Ala Thr His Asn Leu Leu Leu Ser
245 250 255
His Lys Ala Ala Val Glu Val Tyr Arg Lys Asn Phe Gln Lys Cys Gln
260 265 270
Gly Gly Glu Ile Gly Ile Val Leu Asn Ser Met Trp Met Glu Pro Leu
275 280 285
Asn Glu Thr Lys Glu Asp Ile Asp Ala Arg Glu Arg Gly Leu Asp Phe
290 295 300
Met Leu Gly Trp Phe Ile Glu Pro Leu Thr Thr Gly Glu Tyr Pro Lys
305 310 315 320
Ser Met Arg Ala Leu Val Gly Ser Arg Leu Pro Glu Phe Ser Thr Glu
325 330 335
Asp Ser Glu Lys Leu Thr Gly Cys Tyr Asp Phe Ile Gly Met Asn Tyr
340 345 350
Tyr Thr Thr Thr Tyr Val Ser Asn Ala Asp Lys Ile Pro Asp Thr Pro
355 360 365
Gly Tyr Glu Thr Asp Ala Arg Ile Asn Lys Asn Ile Phe Val Lys Lys
370 375 380
Val Asp Gly Lys Glu Val Arg Ile Gly Glu Pro Cys Tyr Gly Gly Trp
385 390 395 400
Gln His Val Val Pro Ser Gly Leu Tyr Asn Leu Leu Val Tyr Thr Lys
405 410 415
Glu Lys Tyr His Val Pro Val Ile Tyr Val Ser Glu Cys Gly Val Val
420 425 430
Glu Glu Asn Arg Thr Asn Ile Leu Leu Thr Glu Gly Lys Thr Asn Ile
435 440 445
Leu Leu Thr Glu Ala Arg His Asp Lys Leu Arg Val Asp Phe Leu Gln
450 455 460
Ser His Leu Ala Ser Val Arg Asp Ala Ile Asp Asp Gly Val Asn Val
465 470 475 480
Lys Gly Phe Phe Val Trp Ser Phe Phe Asp Asn Phe Glu Trp Asn Leu
485 490 495
Gly Tyr Ile Cys Arg Tyr Gly Ile Ile His Val Asp Tyr Lys Thr Phe
500 505 510
Gln Arg Tyr Pro Lys Asp Ser Ala Ile Trp Tyr Lys Asn Phe Ile Ser
515 520 525
Glu Gly Phe Val Thr Asn Thr Ala Lys Lys Arg Phe Arg Glu Glu Asp
530 535 540
Lys Leu Val Glu Leu Val Lys Lys Gln Lys Tyr
545 550 555
<210> 6
<211> 1668
<212> DNA
<213> Catharanthus roseus
<400> 6
atgggatcta aagatgatca gtcccttgtt gttgccattt ctccagctgc tgaaccaaat 60
ggaaatcatt ctgtccccat cccattcgcc taccccagta tccccattca acctagaaag 120
cacaacaagc ccatcgttca tcgtcgagat ttcccctcag atttcatctt gggtgccgga 180
ggatctgctt atcagtgtga gggtgcatat aatgaaggca accgcggtcc cagtatatgg 240
gatactttca caaaccgata tccagccaaa atagctgatg gatctaatgg caatcaagcc 300
atcaattctt acaatttgta caaggaagat atcaagatta tgaagcaaac aggcttggaa 360
tcatataggt tttcaatttc atggtcaaga gtattgccag gtggaaatct atccggtgga 420
gtgaataaag atggtgtcaa gttctatcat gactttatag atgagcttct agccaatggc 480
atcaaaccct ttgcaactct cttccactgg gatcttcccc aagctcttga agacgagtat 540
ggaggcttct tgagtgatcg aattgtggaa gattttacgg agtatgcaga attttgcttt 600
tgggaattcg gtgacaaagt aaaattttgg acgactttca atgaaccaca tacttatgtt 660
gcaagtggat atgccactgg tgaatttgca ccaggaagag gtggtgcaga tggcaagggg 720
aaccctggca aagaacccta tatagcgaca cataatttac ttctttctca caaagctgct 780
gtggaagtat ataggaaaaa ttttcagaaa tgtcaaggag gtgaaattgg aattgtactt 840
aattcaatgt ggatggagcc tctcaatgaa accaaagaag atattgatgc tcgggaaagg 900
ggtcttgatt tcatgctcgg atggttcata gagccattaa caacgggtga atacccaaaa 960
tccatgagag ctcttgtagg aagccgtctt ccagaatttt caacagaaga ttccgaaaaa 1020
ttaacaggat gctatgattt tatcggaatg aattattata caactactta tgtttctaat 1080
gcagacaaaa ttcccgatac tccgggttac gaaacagatg ctcgaattaa taagaatatt 1140
tttgtcaaaa aagttgatgg gaaggaagtg cgcattggtg aaccgtgcta tgggggatgg 1200
cagcatgttg ttccatctgg actctacaat ctcttggttt acactaagga gaaataccat 1260
gttccagtga tttatgtctc agaatgtggt gtggttgagg aaaatagaac caacatatta 1320
cttacagaag gtaaaaccaa catattactt acagaagctc gtcacgataa actcagggtt 1380
gattttctac aaagtcatct cgctagcgtg cgagatgcta ttgatgatgg tgtgaatgta 1440
aaaggattct ttgtttggtc attcttcgac aacttcgaat ggaatttggg atatatatgc 1500
cgttatggaa ttatccatgt tgattataaa acttttcaaa gatatccaaa ggattctgcc 1560
atatggtaca agaatttcat tagtgaagga tttgttacga atacagctaa aaagagattc 1620
cgagaagaag ataaactagt tgagttagtc aagaagcaaa aatactaa 1668

Claims (5)

1. A vector, which is characterized by comprising a gene SEQ ID NO. 2 encoding tryptophan decarboxylase TDC, a gene SEQ ID NO. 4 encoding seco-strychnine synthase SLS, a gene GenBank accession number X61932 encoding isochrub-glycoside synthase STR, a gene SEQ ID NO. 5 encoding isochrub-glycoside beta-D type glucosidase SGD, a gene GenBank accession number KX372303 encoding nitrate transporter NPF2.9, and a gene GenBank accession number KU865325 encoding isochrub alkaloid synthase HYS.
2. The vector of claim 1, wherein the genes encoding TDC, SLS, STR, SGD, NPF2.9 and HYS are fused via self-cleaving polypeptide 2A.
3. The vector of claim 1, which is an agrobacterium expression vector.
4. An Agrobacterium transformed with the vector of any one of claims 1-3.
5. Use of an Agrobacterium according to claim 4 for the production of ajmaline, wherein the Agrobacterium is used to infect tobacco, as defined in claim 4, and the tobacco is used as a biosynthetic system for the production of ajmaline.
CN202010092362.3A 2020-02-14 2020-02-14 Tobacco system for producing ajmaline Active CN113265388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010092362.3A CN113265388B (en) 2020-02-14 2020-02-14 Tobacco system for producing ajmaline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010092362.3A CN113265388B (en) 2020-02-14 2020-02-14 Tobacco system for producing ajmaline

Publications (2)

Publication Number Publication Date
CN113265388A CN113265388A (en) 2021-08-17
CN113265388B true CN113265388B (en) 2023-02-03

Family

ID=77227259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010092362.3A Active CN113265388B (en) 2020-02-14 2020-02-14 Tobacco system for producing ajmaline

Country Status (1)

Country Link
CN (1) CN113265388B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2361678A1 (en) * 1999-02-05 2000-08-10 Rijksuniversiteit Leiden Method of modulating metabolite biosynthesis in recombinant cells
CN100494387C (en) * 2005-12-29 2009-06-03 上海交通大学 Method for increasing catharanthus roseus hairy root terpenes indole alkaloid content
CN101012462B (en) * 2006-11-14 2010-05-12 西南大学 Davilpepper tryptophan decarboxylase protein coded sequence
CN101250543B (en) * 2008-04-08 2010-06-02 上海师范大学 Japan snakeroot strictosidine synthase gene and its coding protein and application

Also Published As

Publication number Publication date
CN113265388A (en) 2021-08-17

Similar Documents

Publication Publication Date Title
CN113755354B (en) Recombinant saccharomyces cerevisiae for producing gastrodin by utilizing glucose and application thereof
CN113234740B (en) Aquilaria sinensis terpene synthase
CN112501095B (en) Construction method and application of recombinant escherichia coli for synthesizing 3-fucose
US20230039694A1 (en) Hyoscyamine aldehyde reductase and uses thereof
CN112175848B (en) Yeast strain for producing patchouli alcohol and construction method and application thereof
WO2019165551A1 (en) Alkaloid biosynthesis facilitating proteins and methods of use
JPH0376580A (en) Escherichia coli manifestation vector and production of antiviral protein using the same
CN111073822B (en) Saccharomyces cerevisiae engineering bacterium for producing dihydroartemisinic acid and construction method and application thereof
CN115851810A (en) Engineering strain for de novo synthesis of naringenin by saccharomyces cerevisiae and construction method and application thereof
CN111154790A (en) Oxidosqualene cyclase gene GpOSC1 and encoding product and application thereof
CN111826355A (en) Scopolia acutangula P450 enzyme and application thereof in preparation of tropinone
CN113265388B (en) Tobacco system for producing ajmaline
US20110092424A1 (en) Production of glucagon like peptide 2 and analogs
CN115992109A (en) Gelidine glycosyltransferase protein, and coding gene and application thereof
CN114277024B (en) Novel triterpene synthase and application thereof
KR102472270B1 (en) Development of novel methanotroph that co-assimilate methane and xylose, and producing shinorine using itself
CN114214339A (en) Hemp THCSAS2 gene, terpene phenolic acid oxidative cyclase as coded product thereof and application of terpene phenolic acid oxidative cyclase
CN109486849B (en) CPR and CYP9A12 double-gene co-expression recombinant vector and preparation method and application thereof
CN112574286A (en) Polypeptide and application thereof
KR101993844B1 (en) Method for production of EGF, hGH fused with advanced TAT peptide and cosmetic composition thereof
KR101666934B1 (en) TAT EGF 4 hGH Method for production of EGF thymosin4 hGH fused with advanced TAT peptide and cosmetic composition thereof
CN113755458B (en) CYP82AR2 protein involved in shikonin and/or acarnine biosynthesis, and encoding gene and application thereof
US11427842B2 (en) Method and means for manufacturing terpene indole alkaloids
WO2024099089A1 (en) Genetically engineered strain for producing pseudouridine, construction method therefor and use thereof
WO2019113710A1 (en) Benzylisoquinoline uptake permeases and methods of using

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant