CN113265070B - 一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法 - Google Patents

一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法 Download PDF

Info

Publication number
CN113265070B
CN113265070B CN202110543741.4A CN202110543741A CN113265070B CN 113265070 B CN113265070 B CN 113265070B CN 202110543741 A CN202110543741 A CN 202110543741A CN 113265070 B CN113265070 B CN 113265070B
Authority
CN
China
Prior art keywords
composite hydrogel
nano composite
gradient concentration
silver nanowire
bionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110543741.4A
Other languages
English (en)
Other versions
CN113265070A (zh
Inventor
从怀萍
李政
秦海利
陈红
姚元清
周成林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110543741.4A priority Critical patent/CN113265070B/zh
Publication of CN113265070A publication Critical patent/CN113265070A/zh
Application granted granted Critical
Publication of CN113265070B publication Critical patent/CN113265070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的制备方法,先是通过N,N'‑双(丙稀酰)胱胺改性银纳米线形成配位键形成多功能大分子交联剂。然后在重力场作用下诱导组装成梯度浓度的大分子交联中心,最后通过可聚合电解质单体形成三维网络的高度各向异性纳米复合水凝胶智能驱动器,同时,自组装梯度结构的大交联剂与聚合物弹性网络二者协同作用使得本发明制备的纳米复合水凝胶具有多重各向异性智能驱动应用潜力。

Description

一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶 驱动器的方法
技术领域
本发明涉及一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法,属于功能纳米材料领域。
背景技术
水凝胶顾名思义是聚合物分子链以水为分散介质形成的三维网络结构。由于这种特异的组分结构赋予了水凝胶具有液体水的流动性和聚合物的机械弹性,并与生物组织有着高度的生物相容性,因而被广泛应用于伤口愈合、组织工程、柔性隐形眼镜等方面。二十世纪以来,随着纳米材料科学领域的发展,纳米材料独特的尺寸和界面效应使其在光学、电子学、机械学等方面具有重大的研究潜力,使得越来越多的材料科学家投身于该领域的研究。
将纳米材料与水凝胶聚合物网络结合起来从而赋予水凝胶体系具有纳米材料的特异性能成为一种水凝胶新型设计策略。然而,传统的纳米复合水凝胶由于其纳米微粒的随机分散,从而使得所制备的纳米复合水凝胶具有各向同性结构。天然结构材料,诸如蹄筋、韧带和肌肉,具有独特的多尺度梯度次各向异性结构,从而带来了优异的性能。然而,构建具有多尺度梯度次结构的高度各向异性水凝胶材料仍是一个重大的挑战。受天然蹄筋、肌肉等由于组织的定向生长而具有高度各向异性结构的启发,本发明通过利用重力效应并结合分子链的定向生长,制备了一种梯度结构的各向异性纳米复合水凝胶材料,从而赋予了其在智能驱动领域的相关应用。
发明内容
本发明提供了一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法,以赋予该纳米复合水凝胶材料多重各向异性及智能驱动性能。
本发明重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法,首先通过银硫配位键改性银纳米线;然后在重力场作用下形成梯度浓度;最后诱导组装发生原位自由基聚合形成梯度网络结构。通过这种诱导组装,本发明纳米复合水凝胶材料具有多重各向异性及优异的智能驱动性能等。
本发明重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法,包括如下步骤:
步骤1:银纳米线的合成。首先将5.86gMw=40000的聚乙烯吡咯烷酮加入190mL的丙三醇溶液中,搅拌均匀后于微波中加热10min使聚乙烯吡咯烷酮完全溶解;然后降温到室温,倒入250mL的三颈烧瓶中,再依次向其中加入1.58g硝酸银、10mL丙三醇以及配制好的0.5mL去离子水59mg氯化钠的混合溶液,随后20min升温到210℃,同时控制搅拌速率为50rpm;待反应完成后,倒入500mL的烧杯中,加入等体积的去离子水,降温后离心两次,分散定容。
步骤1中,所得银纳米线的长度是5-10μm,直径是50-80nm。
步骤2:取步骤1获得的25mg/mL银纳米线分散液2mL于带盖小玻璃瓶中,向其中加入2mL去离子水,充分震荡,随后加入交联剂,超声3-5min使其完全吸附在银纳米线上。
步骤2中,所述交联剂为N,N'-双(丙稀酰)胱胺,添加质量为银纳米线分散液质量的0.08%-0.1%。
步骤3:向步骤2的体系中加入单体溶液和引发剂,进行1-3min超声震荡。
步骤3中,所述单体为丙烯酸钠,由1mL丙烯酸和0.5g氢氧化钠于小玻璃瓶中加入4mL去离子水搅拌制备得到;单体溶液的添加量为18%-22%,体积百分比。
步骤3中,所述引发剂为过硫酸钾,添加质量为银纳米线分散液质量的0.9%-1.2%。
步骤4:氮气保护下,将步骤3获得的混合溶液诱导组装110-130min。
步骤5:将稀释的四甲基乙二胺滴加到步骤4诱导好的体系中,在70℃快速发生原位自由基聚合,即得各向异性纳米复合水凝胶。
本发明的有益效果体现在:
本发明在制备各向异性纳米复合水凝胶时,采用重力场诱导组装形成梯度浓度的制备方法,首先是通过银硫配位键改性银纳米线;随后通过重力场诱导组装形成梯度浓度。因此,梯度浓度的形成,使得本发明纳米复合水凝胶在多重各向异性、智能驱动表现出优异的性能。
综上,本发明提供了一种全新仿生各向异性纳米复合水凝胶的制备方法。本发明方法为各向异性材料的制备提供了全新的思路与理论基础。同时,也为纳米复合水凝胶在智能驱动领域提供了重要的支持。
附图说明
图1是本发明所制备的银纳米线的扫描电子显微镜显微镜照片。从图1中可以看出本发明制备的银纳米线溶液分散均匀。
图2是本发明所制备的各向异性纳米复合水凝胶驱动器扫描电子显微镜照片。从图2中可以看出该纳米复合水凝胶驱动器梯度网络结构。
图3是本发明所制备的纳米复合水凝胶驱动器平行和垂直于梯度浓度的应力-应变曲线。从图3中可以看出本发明制备的纳米复合水凝胶驱动器在力学方面具有优异的各向异性。
图4是本发明所制备的纳米复合水凝胶智能驱动器平行和垂直于梯度浓度的电流-电压曲线。从图4中可以看出本发明制备的纳米复合水凝胶智能驱动器在电学方面具有优异的各向异性。
图5是本发明所制备的纳米复合水凝胶在水中发生各向异性的膨胀行为图。从图5中可以看出本发明制备的纳米复合水凝胶具有优异的智能驱动行为。
具体实施方式
以下实施例详细的说明了本发明。本发明所使用的试剂原料及设备均为市售产品,可通过市场购买。
不同浓度的银纳米线具有不同的电导率,在诱导组装过程中会产生不同的网络结构,对于诱导组装初始10mg/mL的银纳米线溶液浓度会产生更优异的梯度网络结构(在诱导组装前整个体系在5mL左右,所以浓度为10mg/mL),从而具有更卓越的各向异性。
实施例1:
1、首先将5.86gMw=40000的聚乙烯吡咯烷酮加入190mL的丙三醇溶液中,搅拌均匀于微波中加热10min使聚乙烯吡咯烷酮完全溶解。然后降温到室温,倒入250mL的三颈烧瓶中,再依次向其中加入1.58g的硝酸银,然后加入10mL丙三醇,配制好的0.5mL去离子水59mg氯化钠的混合溶液,随20min升温到210℃,同时控制搅拌速率为50rpm。待反应完成后,倒入500mL的烧杯中,加入等体积的去离子水,待降温后6000rpm,10min离心两次,分散定容。
2、取25mg/mL银纳米线分散液2mL于带盖小玻璃瓶中,向其中加入2mL去离子水,充分震荡,随后加入质量0.08%-0.1%银纳米线分散液的N,N'-双(丙稀酰)胱胺交联剂,进行3-5min超声使其完全吸附在银纳米线上。
3、向其中加入上述制备好的总体积18%-22%的单体溶液和质量0.9%-12%银纳米线分散液的过硫酸钾引发剂,进行1-3min超声震荡。
4、氮气保护下,将步骤3中的混合溶液诱导组装110-130min。
5、将稀释的四甲基乙二胺滴加到步骤4中诱导好的体系中,在70℃快速发生原位自由基聚合,即得各向异性纳米复合水凝胶。
实施例2:
1、首先将5.86gMw=40000的聚乙烯吡咯烷酮加入190mL的丙三醇溶液中,搅拌均匀于微波中加热10min使聚乙烯吡咯烷酮完全溶解。然后降温到室温,倒入250mL的三颈烧瓶中,再依次向其中加入1.58g的硝酸银,然后加入10mL丙三醇,配制好的0.5mL去离子水59mg氯化钠的混合溶液,随20min升温到210℃,同时控制搅拌速率为50rpm。待反应完成后,倒入500mL的烧杯中,加入等体积的去离子水,待降温后6000rpm,10min离心两次,分散定容。
2、取15mg/mL银纳米线分散液2mL于带盖小玻璃瓶中,向其中加入2mL去离子水,充分震荡,随后加入质量0.08%-0.1%银纳米线分散液的N,N'-双(丙稀酰)胱胺交联剂,进行3-5min超声使其完全吸附在银纳米线上。
3、向其中加入上述制备好的总体积18%-22%的单体溶液和质量0.9%-12%银纳米线分散液的过硫酸钾引发剂,进行1-3min超声震荡。
4、氮气保护下,将步骤3中的混合溶液诱导组装110-130min。
5、将稀释的四甲基乙二胺滴加到步骤4中诱导好的体系中,在70℃快速发生原位自由基聚合,即得各向异性纳米复合水凝胶。
实施例3:
1、首先将5.86gMw=40000的聚乙烯吡咯烷酮加入190mL的丙三醇溶液中,搅拌均匀于微波中加热10min使聚乙烯吡咯烷酮完全溶解。然后降温到室温,倒入250mL的三颈烧瓶中,再依次向其中加入1.58g的硝酸银,然后加入10mL丙三醇,配制好的0.5mL去离子水59mg氯化钠的混合溶液,随20min升温到210℃,同时控制搅拌速率为50rpm。待反应完成后,倒入500mL的烧杯中,加入等体积的去离子水,待降温后6000rpm,10min离心两次,分散定容。
2、取35mg/mL银纳米线分散液2mL于带盖小玻璃瓶中,向其中加入2mL去离子水,充分震荡,随后加入质量0.08%-0.1%银纳米线分散液的N,N'-双(丙稀酰)胱胺交联剂,进行3-5min超声使其完全吸附在银纳米线上。
3、向其中加入上述制备好的总体积18%-22%的单体溶液和质量0.9%-12%银纳米线分散液的过硫酸钾引发剂,进行1-3min超声震荡。
4、氮气保护下,将步骤3中的混合溶液诱导组装110-130min。
5、将稀释的四甲基乙二胺滴加到步骤4中诱导好的体系中,在70℃快速发生原位自由基聚合,即得各向异性纳米复合水凝胶。
本发明在制备纳米复合水凝胶智能驱动器时,采用的是重力场诱导组装形成梯度浓度,由于梯度网络结构的形成,使该纳米复合水凝胶材料具有多重各向异性和优异的智能驱动行为。同时,因为其优异的智能驱动行为,本发明制备的纳米复合水凝胶智能驱动器在多重环境智能驱动方面有着巨大的应用潜力。

Claims (1)

1.一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的制备方法,其特征在于包括如下步骤:
步骤1:合成银纳米线;
步骤2:通过N,N'-双(丙烯酰)胱胺改性银纳米线获得多功能大分子交联剂;
步骤3:在氮气保护下将电解质型单体和过硫酸盐引发剂加入至步骤2改性好的银纳米线溶液中,并在真空干燥箱抽除相关气泡;
步骤4:氮气氛围中,在重力场作用下诱导组装形成梯度浓度大分子交联剂混合体系,诱导组装110-130min;
步骤5:将稀释的催化剂滴加到步骤4诱导好的体系中,在70oC快速发生原位自由基聚合,即得各向异性纳米复合水凝胶;
步骤1合成的银纳米线的长度是5-10μm,直径是50-80nm;
步骤2中,交联剂N,N'-双(丙烯酰)胱胺的添加质量为银纳米线分散液质量的0.08%-0.1%;
步骤3中,所述电解质型单体为丙烯酸钠,添加体积为体系总体积的18%-22%;
步骤3中,所述引发剂为过硫酸钾,添加量为体系总质量的0.9%-1.2%;
步骤5中,所述催化剂为四甲基乙二胺,添加量为体系总质量的0.02%-0.05%。
CN202110543741.4A 2021-05-19 2021-05-19 一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法 Active CN113265070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110543741.4A CN113265070B (zh) 2021-05-19 2021-05-19 一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110543741.4A CN113265070B (zh) 2021-05-19 2021-05-19 一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法

Publications (2)

Publication Number Publication Date
CN113265070A CN113265070A (zh) 2021-08-17
CN113265070B true CN113265070B (zh) 2022-06-07

Family

ID=77231692

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110543741.4A Active CN113265070B (zh) 2021-05-19 2021-05-19 一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法

Country Status (1)

Country Link
CN (1) CN113265070B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964059A (zh) * 2017-11-17 2018-04-27 合肥工业大学 一种磁诱导自修复纳米复合水凝胶的制备方法
CN109847661A (zh) * 2019-01-28 2019-06-07 合肥工业大学 一种氧化石墨烯与银纳米线组装三元弹性水凝胶的制备方法
CN110551297A (zh) * 2019-08-22 2019-12-10 武汉大学 一种梯度水凝胶软驱动器的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206414B2 (en) * 2003-08-13 2015-12-08 Axcelon Biopolymers Corporation Anisotropic nanocomposite hydrogel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107964059A (zh) * 2017-11-17 2018-04-27 合肥工业大学 一种磁诱导自修复纳米复合水凝胶的制备方法
CN109847661A (zh) * 2019-01-28 2019-06-07 合肥工业大学 一种氧化石墨烯与银纳米线组装三元弹性水凝胶的制备方法
CN110551297A (zh) * 2019-08-22 2019-12-10 武汉大学 一种梯度水凝胶软驱动器的制备方法及应用

Also Published As

Publication number Publication date
CN113265070A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Fu Strong and tough hydrogels crosslinked by multi‐functional polymer colloids
Hu et al. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host–guest interactions
Liang et al. Thermosensitive poly (N-isopropylacrylamide)− clay nanocomposites with enhanced temperature response
Bhanvase et al. Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: A review
Bentz et al. Hollow polymer nanocapsules: synthesis, properties, and applications
Park et al. Mechanism of exfoliation of nanoclay particles in epoxy− clay nanocomposites
Pletneva et al. Viscoelasticity of smart fluids based on wormlike surfactant micelles and oppositely charged magnetic particles
Luan et al. Synthesis techniques, properties and applications of polymer nanocomposites
Echeverria et al. UCST-like hybrid PAAm-AA/Fe3O4 microgels. Effect of Fe3O4 nanoparticles on morphology, thermosensitivity and elasticity
CN107635655B (zh) 聚(乙二醇)甲基丙烯酸酯微凝胶、制备方法和用途
JP5531232B2 (ja) ポリマー被覆無機物微粒子とその製造方法
Mahdavinia et al. Semi‐IPN carrageenan‐based nanocomposite hydrogels: synthesis and swelling behavior
CN102321255A (zh) 一种离子型纳米复合水凝胶及其制备方法
Lin et al. First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays
CN106916587A (zh) 油溶性碳量子点(OCDs)、PMMA@OOCDs、其制备方法及其应用
CN109666252A (zh) 一种具有磁响应性的高强度双网络水凝胶及其制备方法
CN113999476A (zh) 一种双重刺激响应性导电复合水凝胶及其制备方法和应用
Zhang et al. Enhancement of mechanical property and absorption capability of hydrophobically associated polyacrylamide hydrogels by adding cellulose nanofiber
Sharma et al. Conducting polymer hydrogels and their applications
JP6991490B2 (ja) ポリ(エチレングリコール)メタクリレートミクロゲル、調製方法および使用
Silva et al. Investigation of the adsorption of amphipathic macroraft agents onto montmorillonite clay
Janovák et al. Swelling properties of copolymer hydrogels in the presence of montmorillonite and alkylammonium montmorillonite
CN113265070B (zh) 一种重力场诱导梯度浓度构筑仿生各向异性纳米复合水凝胶驱动器的方法
Li et al. Silica-based Janus nanosheets for self-healing nanocomposite hydrogels
Wang et al. Advances in organic–inorganic hybrid latex particles via in situ emulsion polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant