CN113260044A - CSI fingerprint positioning method, device and equipment based on double-layer dictionary learning - Google Patents

CSI fingerprint positioning method, device and equipment based on double-layer dictionary learning Download PDF

Info

Publication number
CN113260044A
CN113260044A CN202110390650.1A CN202110390650A CN113260044A CN 113260044 A CN113260044 A CN 113260044A CN 202110390650 A CN202110390650 A CN 202110390650A CN 113260044 A CN113260044 A CN 113260044A
Authority
CN
China
Prior art keywords
learning model
dictionary learning
csi
dictionary
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110390650.1A
Other languages
Chinese (zh)
Other versions
CN113260044B (en
Inventor
刘雯
邓中亮
王旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN202110390650.1A priority Critical patent/CN113260044B/en
Publication of CN113260044A publication Critical patent/CN113260044A/en
Application granted granted Critical
Publication of CN113260044B publication Critical patent/CN113260044B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Image Analysis (AREA)

Abstract

The embodiment of the invention provides a CSI fingerprint positioning method, a device and equipment based on double-layer dictionary learning, wherein when an instruction for positioning a target is obtained, channel state information of the target is collected and used as CSI data of the target channel state information; acquiring a first sparse code and a region label of the target CSI data based on a first dictionary learning model obtained through pre-training; acquiring a second sparse code of the first sparse code based on a second dictionary learning model obtained by pre-training and the region label, and acquiring a position label of the second sparse code as a position label of the target by using a classifier in the second dictionary learning model; the classifier is used for classifying according to the difference of the position labels of the sparse coding. The scheme can improve the positioning accuracy and reduce the storage pressure and the data processing complexity.

Description

基于双层字典学习的CSI指纹定位方法、装置及设备Method, Apparatus and Equipment for CSI Fingerprint Positioning Based on Double-layer Dictionary Learning

技术领域technical field

本发明涉及指纹定位技术领域,特别是涉及一种基于双层字典学习的CSI指纹定位方法、装置及设备。The present invention relates to the technical field of fingerprint positioning, in particular to a CSI fingerprint positioning method, device and equipment based on double-layer dictionary learning.

背景技术Background technique

在无线通信中,指纹定位方法具有不需要改变设备硬件即可定位的特点,因而被广泛应用。在具体应用中,信道状态信息(Channel State Information,CSI)指纹定位方法,依据室内环境复杂,信号反射和折射在不同位置形成不同的信号强度信息的原理,建立某区域内各参考节点(Reference Point,RP)的位置标签,与该参考节点的信道状态信息所表明的信号特征之间的映射关系,从而将该区域内的位置标签和信号特征一一对应存储,得到位置指纹数据库。这样,在对目标如某一终端进行定位时,可以获取目标的信道状态信息,从位置指纹数据库中确定与目标的信道状态信息匹配的位置标签,作为目标在该区域的位置标签,实现对目标的定位。In wireless communication, the fingerprint positioning method is widely used because it can be positioned without changing the hardware of the device. In specific applications, the Channel State Information (CSI) fingerprint positioning method is based on the principle that the indoor environment is complex, and the signal reflection and refraction form different signal strength information at different positions. , RP), and the mapping relationship between the signal features indicated by the channel state information of the reference node, so that the position labels and signal features in the area are stored in a one-to-one correspondence to obtain a location fingerprint database. In this way, when locating a target such as a certain terminal, the channel state information of the target can be obtained, and the location label matching the channel state information of the target can be determined from the location fingerprint database as the location label of the target in this area, so as to realize the detection of the target. positioning.

但是,为了映射更丰富的场景信息,信道状态信息往往包含相对多的信道特征。因此,信道状态信息容易受噪声、多径以及人员移动等影响,产生较大波动,导致位置指纹数据库中的信道状态信息和定位时获取的信道状态信息之间存在明显差异,影响匹配效果,造成定位准确度降低的问题。并且,信道状态信息维度较高,因此,用传统方法构建的位置指纹数据库规模庞大,导致存储压力和数据处理复杂度较大的问题。However, in order to map richer scene information, the channel state information often contains relatively many channel features. Therefore, the channel state information is easily affected by noise, multipath, and personnel movement, etc., resulting in large fluctuations, resulting in significant differences between the channel state information in the location fingerprint database and the channel state information obtained during positioning, affecting the matching effect and causing The problem of reduced positioning accuracy. Moreover, the dimension of channel state information is relatively high. Therefore, the location fingerprint database constructed by the traditional method is large in scale, which leads to the problems of storage pressure and data processing complexity.

发明内容SUMMARY OF THE INVENTION

本发明实施例的目的在于提供一种基于双层字典学习的CSI指纹定位方法、装置及设备,以实现兼顾提高定位准确度,以及降低存储压力和数据处理复杂度的效果。具体技术方案如下:The purpose of the embodiments of the present invention is to provide a CSI fingerprint positioning method, device and device based on double-layer dictionary learning, so as to achieve the effects of improving positioning accuracy and reducing storage pressure and data processing complexity. The specific technical solutions are as follows:

第一方面,本发明实施例提供一种基于双层字典学习的CSI指纹定位方法,所述方法包括:In a first aspect, an embodiment of the present invention provides a CSI fingerprint positioning method based on double-layer dictionary learning, and the method includes:

在获取到对目标进行定位的指令时,采集所述目标的信道状态信息,作为目标信道状态信息CSI数据;When the instruction to locate the target is obtained, the channel state information of the target is collected as the target channel state information CSI data;

基于预先训练得到的第一字典学习模型,获取所述目标CSI数据的第一稀疏编码以及区域标签;其中,所述第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型;Based on the first dictionary learning model obtained by pre-training, the first sparse coding and the region label of the target CSI data are obtained; wherein, the first dictionary learning model is used to perform the analysis of the region to which the CSI data belongs based on the principle of minimizing the reconstruction error. Discriminate, and is a sparse coding model trained by using multiple sample CSI data and the position label of each sample CSI data;

基于预先训练得到的第二字典学习模型和所述区域标签,获取所述第一稀疏编码的第二稀疏编码,并利用所述第二字典学习模型中的分类器,获取所述第二稀疏编码的位置标签,作为所述目标的位置标签;Obtain the second sparse code of the first sparse code based on the pre-trained second dictionary learning model and the region label, and use the classifier in the second dictionary learning model to obtain the second sparse code The location label of , as the location label of the target;

其中,所述第二字典学习模型用于基于字典原子局部约束项增强所述第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;所述分类器用于按照稀疏编码的位置标签的不同进行分类。Wherein, the second dictionary learning model is used to enhance the discrimination degree of the second sparse coding based on dictionary atomic local constraints, and uses the first sparse coding of multiple sample CSI data and the position label of each sample CSI data The sparse coding model obtained by training; the classifier is used to classify according to the difference of the sparsely coded position labels.

第二方面,本发明实施例提供一种基于双层字典学习的CSI指纹定位装置,所述装置包括:In a second aspect, an embodiment of the present invention provides a CSI fingerprint positioning device based on double-layer dictionary learning, the device comprising:

信息采集模块,用于在获取到对目标进行定位的指令时,采集所述目标的信道状态信息,作为目标信道状态信息CSI数据;an information collection module, configured to collect the channel state information of the target as the target channel state information CSI data when the instruction to locate the target is obtained;

第一编码模块,用于基于预先训练得到的第一字典学习模型,获取所述目标CSI数据的第一稀疏编码以及区域标签;其中,所述第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型;a first coding module, configured to obtain the first sparse coding and the region label of the target CSI data based on the first dictionary learning model obtained by pre-training; wherein, the first dictionary learning model is used to minimize the reconstruction error based on In principle, the region to which the CSI data belongs is discriminated, and it is a sparse coding model trained by using multiple sample CSI data and the position label of each sample CSI data;

第二编码模块,用于基于预先训练得到的第二字典学习模型和所述区域标签,获取所述第一稀疏编码的第二稀疏编码,并利用所述第二字典学习模型中的分类器,获取所述第二稀疏编码的位置标签,作为所述目标的位置标签;The second encoding module is configured to obtain the second sparse encoding of the first sparse encoding based on the second dictionary learning model obtained by pre-training and the region label, and use the classifier in the second dictionary learning model, obtaining the position label of the second sparse encoding as the position label of the target;

其中,所述第二字典学习模型用于基于字典原子局部约束项增强所述第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;所述分类器用于按照稀疏编码的位置标签的不同进行分类。Wherein, the second dictionary learning model is used to enhance the discrimination degree of the second sparse coding based on dictionary atomic local constraints, and uses the first sparse coding of multiple sample CSI data and the position label of each sample CSI data The sparse coding model obtained by training; the classifier is used to classify according to the difference of the sparsely coded position labels.

第三方面,本发明实施例提供一种电子设备,该电子设备包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现上述第一方面提供基于双层字典学习的CSI指纹定位方法步骤。In a third aspect, an embodiment of the present invention provides an electronic device, the electronic device includes a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus; The processor is used for storing the computer program; when the processor is used for executing the program stored in the memory, the above-mentioned first aspect provides the steps of the CSI fingerprint positioning method based on double-layer dictionary learning.

本发明实施例有益效果:Beneficial effects of the embodiment of the present invention:

本发明实施例提供的方案中,基于预先训练得到的第一字典学习模型,获取目标CSI数据的第一稀疏编码以及区域标签,基于预先训练得到的第二字典学习模型和区域标签,获取第一稀疏编码的第二稀疏编码。因此,可以通过字典学习模型对目标CSI数据进行稀疏编码,实现对高纬度的目标CSI数据的简洁表达与深层特征提取,从而在对目标CSI数据降噪的并且,降低存储压力和数据处理复杂度。并且,通过两层字典学习模型:第一字典学习模型和第二字典学习模型,分别获取区域标签和增强区分度的第二稀疏编码,保证不同定位区域的稀疏编码具有高区分度,以及不同指纹点也就是不同位置标签的稀疏编码具有高区分度,从而提高定位的准确度。并且,基于第二稀疏编码,利用预先训练得到的分类器,获取第二稀疏编码的位置标签,作为目标的位置标签;其中,分类器用于按照稀疏编码的位置标签的不同进行分类。因此,可以将指纹定位中的匹配过程简化为对第二字典学习模型的输出进行分类即可,可以降低匹配过程,也就是数据处理的复杂度。可见,本方案可以兼顾提高定位准确度,以及降低存储压力和数据处理复杂度。In the solution provided by the embodiment of the present invention, the first sparse coding and the region label of the target CSI data are obtained based on the first dictionary learning model obtained by pre-training, and the first dictionary learning model and the region label obtained by pre-training are obtained. The second sparse coding of sparse coding. Therefore, the target CSI data can be sparsely encoded by the dictionary learning model, so as to realize the concise expression and deep feature extraction of high-latitude target CSI data, thereby reducing the noise of the target CSI data and reducing the storage pressure and data processing complexity. . Moreover, through the two-layer dictionary learning model: the first dictionary learning model and the second dictionary learning model, the region labels and the second sparse coding to enhance the discrimination are obtained respectively, so as to ensure that the sparse coding of different positioning regions has high discrimination and different fingerprints. The sparse coding of points, that is, labels of different positions, has a high degree of discrimination, thereby improving the accuracy of localization. And, based on the second sparse coding, the pre-trained classifier is used to obtain the position label of the second sparse coding as the position label of the target; wherein, the classifier is used to classify according to the difference of the sparsely coded position labels. Therefore, the matching process in fingerprint positioning can be simplified to classify the output of the second dictionary learning model, which can reduce the matching process, that is, the complexity of data processing. It can be seen that this solution can improve the positioning accuracy and reduce the storage pressure and data processing complexity.

当然,实施本发明的任一产品或方法并不一定需要并且达到以上所述的所有优点。Of course, not all of the advantages described above are required and achieved to implement any product or method of the present invention.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other embodiments can also be obtained according to these drawings without creative efforts.

图1为本发明一实施例提供的一种基于双层字典学习的CSI指纹定位方法的流程示意图;FIG. 1 is a schematic flowchart of a CSI fingerprint positioning method based on double-layer dictionary learning according to an embodiment of the present invention;

图2为本发明一实施例提供的一种基于双层字典学习的CSI指纹定位方法的应用场景示例图;2 is an example diagram of an application scenario of a CSI fingerprint positioning method based on double-layer dictionary learning provided by an embodiment of the present invention;

图3为本发明一实施例提供的一种基于双层字典学习的CSI指纹定位方法中,字典学习模型的训练过程示例图;3 is an example diagram of a training process of a dictionary learning model in a CSI fingerprint positioning method based on double-layer dictionary learning provided by an embodiment of the present invention;

图4为本发明一实施例提供的一种基于双层字典学习的CSI指纹定位装置的结构示意图;4 is a schematic structural diagram of a CSI fingerprint positioning device based on double-layer dictionary learning provided by an embodiment of the present invention;

图5为本发明一实施例提供的电子设备的结构示意图。FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art based on the present application fall within the protection scope of the present invention.

正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)是无线通信中一种带宽受限的数字多载波调制方式,已经成为应用最广的多载波调制技术。而在Wi-Fi网络中,OFDM将信号分成具有不同频率的多个正交子信道,其中信道状态信息反映了发送器和接收器之间通信链路的特征,包括距离、散射、衰落等对信号的影响。频道状态信息可以表示为:

Figure BDA0003016584010000041
其中,
Figure BDA0003016584010000042
Figure BDA0003016584010000043
分别代表发射和接受信号向量,而向量
Figure BDA0003016584010000044
表示加性高斯白噪声,H矩阵就表示信道状态信息,它是每个子载波信道信息的集合,可以利用
Figure BDA0003016584010000045
Figure BDA0003016584010000046
估计得到。其中H=[H1,H2,...,Hn]T,N为子载波数,Hi以复数形式出现:Hi=|Hi|exp{j∠Hi}。其中,|Hi|和∠Hi分别是子载波i的幅度相应和相位相应。由于衰落效应和频率偏移,CSI数据的相位与幅度相比略显嘈杂,因此,利用CSI数据的幅度信息可以降低噪声。Orthogonal Frequency Division Multiplexing (OFDM) is a bandwidth-limited digital multi-carrier modulation method in wireless communication, and has become the most widely used multi-carrier modulation technology. In Wi-Fi networks, OFDM divides the signal into multiple orthogonal sub-channels with different frequencies, where the channel state information reflects the characteristics of the communication link between the transmitter and receiver, including distance, scattering, fading, etc. influence of the signal. Channel status information can be represented as:
Figure BDA0003016584010000041
in,
Figure BDA0003016584010000042
and
Figure BDA0003016584010000043
represent the transmit and receive signal vectors, respectively, while the vector
Figure BDA0003016584010000044
Represents additive white Gaussian noise, and the H matrix represents the channel state information, which is a collection of channel information for each subcarrier, which can be used
Figure BDA0003016584010000045
and
Figure BDA0003016584010000046
estimated. Wherein H = [ H 1 , H 2 , . Among them, |H i | and ∠H i are the amplitude response and phase response of subcarrier i, respectively. Due to the fading effect and frequency offset, the phase of the CSI data is slightly noisy compared to the amplitude, therefore, the noise can be reduced by utilizing the amplitude information of the CSI data.

字典学习也称为稀疏表示,它通过学习一组原子并组合构成字典,使得给定的信号可以很好地利用稀疏表示,并能够通过字典矩阵中的几个原子的线性组合来重构。稀疏编码是指原始信号y基于一个字典D得到稀疏信号x的过程,通常表述为以下约束优化目标:Dictionary learning is also known as sparse representation. It learns a set of atoms and combines them to form a dictionary, so that a given signal can make good use of sparse representation and can be reconstructed by a linear combination of several atoms in the dictionary matrix. Sparse coding refers to the process of obtaining the sparse signal x from the original signal y based on a dictionary D, which is usually expressed as the following constraint optimization objective:

Figure BDA0003016584010000047
Figure BDA0003016584010000047

其中,等式约束y=Dx对于该优化问题来说过于严格,因此,可以用一个较小的阈值来放松该优化问题。并且,为了使算法更适用于分类问题,可以在目标函数中嵌入类标签信息或分类器参数,使稀疏编码更具有识别能力。where the equality constraint y=Dx is too strict for the optimization problem, so a smaller threshold can be used to relax the optimization problem. Moreover, in order to make the algorithm more suitable for classification problems, the class label information or classifier parameters can be embedded in the objective function to make the sparse coding more discriminating.

结合上述内容,本发明实施例提供一种基于双层字典学习的CSI指纹定位方法,该方法可以应用于提供定位服务的电子设备。在具体应用中,该电子设备具体可以包括:台式计算机,便携式计算机,移动终端,可穿戴设备,互联网电视以及服务器等等。In combination with the above content, an embodiment of the present invention provides a CSI fingerprint positioning method based on double-layer dictionary learning, and the method can be applied to an electronic device that provides a positioning service. In a specific application, the electronic device may specifically include: a desktop computer, a portable computer, a mobile terminal, a wearable device, an Internet TV, a server, and the like.

如图1所示,本发明实施例提供的一种基于双层字典学习的CSI指纹定位方法,该方法可以包括如下步骤:As shown in FIG. 1, an embodiment of the present invention provides a CSI fingerprint positioning method based on double-layer dictionary learning. The method may include the following steps:

S101,在获取到对目标进行定位的指令时,采集目标的信道状态信息,作为目标信道状态信息CSI数据。S101, when an instruction to locate the target is obtained, collect channel state information of the target as the target channel state information CSI data.

其中,获取对目标进行定位的指令的方式具体可以是多种的。示例性的,可以接收目标发送的对目标进行定位的指令,或者,可以在检测到存在目标时,确定获取到对目标进行定位的指令。Specifically, there may be various manners for obtaining the instruction for locating the target. Exemplarily, the instruction for locating the target sent by the target may be received, or when it is detected that there is a target, the instruction for locating the target may be determined to be obtained.

S102,基于预先训练得到的第一字典学习模型,获取目标CSI数据的第一稀疏编码以及区域标签。S102, based on the pre-trained first dictionary learning model, obtain the first sparse coding and the region label of the target CSI data.

其中,第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型。The first dictionary learning model is used to discriminate the region to which the CSI data belongs based on the principle of minimizing the reconstruction error, and is a sparse coding model trained by using a plurality of sample CSI data and the position label of each sample CSI data.

S103,基于预先训练得到的第二字典学习模型和区域标签,获取第一稀疏编码的第二稀疏编码,并利用第二字典学习模型中的分类器,获取第二稀疏编码的位置标签,作为目标的位置标签。S103, based on the pre-trained second dictionary learning model and the region label, obtain the second sparse coding of the first sparse coding, and use the classifier in the second dictionary learning model to obtain the position label of the second sparse coding as the target location label.

其中,第二字典学习模型用于基于字典原子局部约束项增强第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;分类器用于按照稀疏编码的位置标签的不同进行分类。The second dictionary learning model is used to enhance the discrimination of the second sparse coding based on the local constraints of dictionary atoms, and is a sparse coding obtained by using the first sparse coding of multiple sample CSI data and the position label of each sample CSI data Encoding model; the classifier is used to classify by differences in sparsely encoded location labels.

本发明实施例提供的方案中,可以通过字典学习模型对目标CSI数据进行稀疏编码,实现对高纬度的目标CSI数据的简洁表达与深层特征提取,从而在对目标CSI数据降噪的并且,降低存储压力和数据处理复杂度。并且,通过两层字典学习模型:第一字典学习模型和第二字典学习模型,分别获取区域标签和增强区分度的第二稀疏编码,保证不同定位区域的稀疏编码具有高区分度,以及不同指纹点也就是不同位置标签的稀疏编码具有高区分度,从而提高定位的准确度。并且,可以将指纹定位中的匹配过程简化为对第二字典学习模型的输出进行分类即可,可以降低匹配过程,也就是数据处理的复杂度。可见,本方案可以兼顾提高定位准确度,以及降低存储压力和数据处理复杂度。In the solution provided by the embodiment of the present invention, the target CSI data can be sparsely encoded through a dictionary learning model, so as to realize the concise expression and deep feature extraction of the high-latitude target CSI data, so as to reduce the noise reduction of the target CSI data and reduce the Storage pressure and data processing complexity. Moreover, through the two-layer dictionary learning model: the first dictionary learning model and the second dictionary learning model, the region labels and the second sparse coding to enhance the discrimination are obtained respectively, so as to ensure that the sparse coding of different positioning regions has high discrimination and different fingerprints. The sparse coding of points, that is, labels of different positions, has a high degree of discrimination, thereby improving the accuracy of localization. In addition, the matching process in fingerprint positioning can be simplified to classify the output of the second dictionary learning model, which can reduce the matching process, that is, the complexity of data processing. It can be seen that this solution can improve the positioning accuracy and reduce the storage pressure and data processing complexity.

在一种可选的实施方式中,上述第一字典学习模型,采用如下步骤训练得到:In an optional embodiment, the above-mentioned first dictionary learning model is obtained by training the following steps:

基于多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据;Obtain sample data based on a plurality of sample CSI data and the position label of each sample CSI data;

将样本数据,字典学习模型的规格,以及字典学习模型的初始参数,输入第一字典学习模型的目标函数,对第一字典学习模型的目标函数进行迭代训练:The sample data, the specifications of the dictionary learning model, and the initial parameters of the dictionary learning model are input into the objective function of the first dictionary learning model, and the objective function of the first dictionary learning model is iteratively trained:

当第一字典学习模型的目标函数收敛时,将所训练的第一字典学习模型的目标函数,作为第一字典学习模型;收敛包括:迭代次数达到第一迭代阈值,或当前迭代的目标函数与上一次迭代的目标函数之间,输出结果的差异小于第一差异阈值;When the objective function of the first dictionary learning model converges, the trained objective function of the first dictionary learning model is used as the first dictionary learning model; the convergence includes: the number of iterations reaches the first iteration threshold, or the objective function of the current iteration is equal to Between the objective functions of the previous iteration, the difference of the output results is less than the first difference threshold;

当第一字典学习模型的目标函数不收敛时,利用样本数据,获取更新的第一稀疏编码,并利用更新的第一稀疏编码对所训练的第一字典学习模型的目标函数进行更新。When the objective function of the first dictionary learning model does not converge, the sample data is used to obtain an updated first sparse code, and the updated first sparse code is used to update the trained objective function of the first dictionary learning model.

在一种可选的实施方式中,上述第二字典学习模型,采用如下步骤训练得到:In an optional embodiment, the above-mentioned second dictionary learning model is obtained by training the following steps:

基于多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据;Obtain sample data based on a plurality of sample CSI data and the position label of each sample CSI data;

将样本数据的第一稀疏编码,字典学习模型的规格,以及字典学习模型的初始参数,输入第一字典学习模型的目标函数,对第一字典学习模型的目标函数进行迭代训练:The first sparse coding of the sample data, the specifications of the dictionary learning model, and the initial parameters of the dictionary learning model are input into the objective function of the first dictionary learning model, and the objective function of the first dictionary learning model is iteratively trained:

当第二字典学习模型的目标函数收敛时,将所训练的第二字典学习模型的目标函数,作为第二字典学习模型;收敛包括:迭代次数达到第二迭代阈值,或当前迭代的目标函数与上一次迭代的目标函数之间,输出结果的差异小于第二差异阈值;When the objective function of the second dictionary learning model converges, the trained objective function of the second dictionary learning model is used as the second dictionary learning model; the convergence includes: the number of iterations reaches the second iteration threshold, or the objective function of the current iteration is equal to Between the objective functions of the previous iteration, the difference of the output results is less than the second difference threshold;

当第二字典学习模型的目标函数不收敛时,利用多个样本CSI数据,以及每个样本CSI数据的位置标签的图拉普拉斯矩阵,获取更新的第二稀疏编码,并利用更新的第二稀疏编码对所训练的第二字典学习模型的目标函数进行更新。When the objective function of the second dictionary learning model does not converge, use multiple sample CSI data and the graph Laplacian matrix of the position label of each sample CSI data to obtain the updated second sparse code, and use the updated first The second sparse coding updates the objective function of the trained second dictionary learning model.

示例性的,如图2所示。本发明实施例提供的基于双层字典学习的CSI指纹定位方法,可以看作包括两个阶段:第一阶段是离线训练阶段,第二阶段是在线定位阶段。上述两个可选实施例即为离线训练阶段,本发明图1实施例即为在线定位阶段。在离线训练阶段,训练数据为Y,字典规格为K,参数为α,τ,λ12,θ。这样:Illustratively, as shown in FIG. 2 . The CSI fingerprint positioning method based on double-layer dictionary learning provided by the embodiment of the present invention can be regarded as including two stages: the first stage is an offline training stage, and the second stage is an online positioning stage. The above two optional embodiments are the offline training stage, and the embodiment of FIG. 1 of the present invention is the online positioning stage. In the offline training phase, the training data is Y, the dictionary size is K, and the parameters are α, τ, λ 1 , λ 2 , θ. so:

针对第一字典学习模型:可以通过X(1)=(D(11)TD(11)+τI+τΛ)-1D(11)TY更新稀疏编码;通过

Figure BDA0003016584010000071
更新所训练的第一字典学习模型的目标函数。其中,X(1)为更新后的第一稀疏编码,D(11)为所训练的第一字典学习模型的目标函数,D(12)为更新后的所训练的第一字典学习模型的目标函数。For the first dictionary learning model: the sparse coding can be updated by X (1) = (D (11)T D (11) +τI+τΛ) −1 D (11)T Y; by
Figure BDA0003016584010000071
Update the objective function of the trained first dictionary learning model. Wherein, X (1) is the updated first sparse coding, D (11) is the objective function of the trained first dictionary learning model, D (12) is the updated target of the trained first dictionary learning model function.

针对第二字典学习模型:Learning the model for the second dictionary:

可以通过

Figure BDA0003016584010000072
获得图拉普拉斯矩阵;通过Z(21)=(D(21)TD(21)1L)-1D(21)Tx获取更新的第二稀疏编码;通过D(22)=X(21)Z(21)T(Z(21)Z(21)T+Δ)-1更新第二字典学习模型中的字典,以及通过
Figure BDA0003016584010000073
更新分类器参数。able to pass
Figure BDA0003016584010000072
Obtain the graph Laplacian matrix; obtain the updated second sparse code by Z (21) = (D (21)T D (21)1 L) -1 D (21)T x; by D (22) =X (21) Z (21)T (Z (21) Z (21)T +Δ) -1 to update the dictionary in the second dictionary learning model, and by
Figure BDA0003016584010000073
Update the classifier parameters.

其中,L为图拉普拉斯矩阵,D(21)为所训练的第二字典学习模型的目标函数,Δ为一对角矩阵,其对角线上的元素为拉格朗日乘子,D(22)为更新的第二字典学习模型中的字典,Z(21)为更新的第二稀疏编码,U',b'为更新的分类器参数,n为输入的样本CSI数据的数量,l为损失函数,uc为支持向量机(Support Vector Machine,SVM)的第c类超平面参数,zi为第i个样本CSI数据的第二稀疏编码,

Figure BDA0003016584010000081
为第i个类别为c类的样本CSI数据,bc为支持向量机的第c类偏差。Among them, L is the graph Laplacian matrix, D (21) is the objective function of the trained second dictionary learning model, Δ is a diagonal matrix, and the elements on the diagonal are Lagrange multipliers, D (22) is the dictionary in the updated second dictionary learning model, Z (21) is the updated second sparse coding, U', b' are the updated classifier parameters, n is the number of input sample CSI data, l is the loss function, u c is the c- th hyperplane parameter of the Support Vector Machine (SVM), zi is the second sparse coding of the i-th sample CSI data,
Figure BDA0003016584010000081
is the sample CSI data with the i-th category as the c-type, and b c is the c-th type deviation of the support vector machine.

在一种可选的实施方式中,上述基于多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据,具体可以包括如下步骤:In an optional embodiment, the above-mentioned acquisition of sample data based on a plurality of sample CSI data and the position label of each sample CSI data may specifically include the following steps:

分别将每个样本CSI数据图像化,得到多个CSI图像;Image each sample CSI data to obtain multiple CSI images;

针对每个CSI图像,获取该CSI图像各像素点的原始平均振幅,并对各像素点的原始平均振幅进行离差标准化,得到第一标准化后的CSI图像;For each CSI image, obtain the original average amplitude of each pixel point of the CSI image, and perform dispersion normalization on the original average amplitude of each pixel point to obtain a first normalized CSI image;

基于第一标准化后的CSI图像,获得样本数据。Based on the first normalized CSI image, sample data is obtained.

示例性的,基于第一标准化后的CSI图像,获得样本数据的方式,可以是多种的。在一种可选的实施方式中,可以直接将第一标准化后的CSI图像作为样本数据。在另一种可选的实时方式中,上述基于第一标准化后的CSI图像,获得样本数据,具体可以包括如下步骤:Exemplarily, based on the first normalized CSI image, there may be various ways to obtain sample data. In an optional implementation manner, the first standardized CSI image may be directly used as sample data. In another optional real-time manner, the above-mentioned obtaining sample data based on the first standardized CSI image may specifically include the following steps:

针对每个第一标准化后的CSI图像,利用原始平均振幅,对该第一标准化后的CSI图像中相应的像素点进行离差标准化,得到样本数据。For each first normalized CSI image, using the original average amplitude, dispersion normalization is performed on the corresponding pixel points in the first normalized CSI image to obtain sample data.

利用CSI数据轨迹增强定位效果,将每一个参考点(Reference Point,RP)的CSI进行多次采集,例如在第i个RP,我们将来自W个子载波的H个CSI幅度测量分组,从而构建一个H×W的矩阵:Using the CSI data trace to enhance the positioning effect, the CSI of each reference point (Reference Point, RP) is collected multiple times. For example, at the i-th RP, we group H CSI amplitude measurements from W subcarriers to construct a H×W matrix:

Figure BDA0003016584010000082
Figure BDA0003016584010000082

其中,

Figure BDA0003016584010000083
是在第i个RP的第h个时间戳中,来自第w个子载波的CSI幅度特征。由于字典学习在应对图像分类任务上具有出色性能,因此,可以将CSI数据图像化。首先应用一个标准化过程从CSI数据矩阵中得到更清晰的数据,也就是计算每个图象在每个位置点li处的原始平均振幅:in,
Figure BDA0003016584010000083
is the CSI amplitude feature from the wth subcarrier in the hth timestamp of the ith RP. Due to the excellent performance of dictionary learning on image classification tasks, CSI data can be visualized. First apply a normalization process to get clearer data from the CSI data matrix, that is to calculate the raw average amplitude of each image at each position li :

Figure BDA0003016584010000084
其中,Ai为每个图象在每个位置点li处的原始平均振幅。
Figure BDA0003016584010000084
where A i is the original average amplitude of each image at each location point li .

在CSI图像的每一行使用离差标准化:对于位置点li的CSI图像,分别记录每一行的最大值

Figure BDA0003016584010000091
与最小值
Figure BDA0003016584010000092
则第h行第w列的单个元素的标准化结果为
Figure BDA0003016584010000093
Use dispersion normalization on each row of the CSI image: for the CSI image at position l i , record the maximum value of each row separately
Figure BDA0003016584010000091
with the minimum value
Figure BDA0003016584010000092
Then the normalized result of a single element in the hth row and the wth column is
Figure BDA0003016584010000093

Figure BDA0003016584010000094
Figure BDA0003016584010000094

最终,标准化后的CSI幅度图像即为

Figure BDA0003016584010000095
Finally, the normalized CSI magnitude image is
Figure BDA0003016584010000095

Figure BDA0003016584010000096
Figure BDA0003016584010000096

并且,为了保持图像的原始输出功率,可以利用先前计算的平均幅值对每个位置点li的CSI图像进行再一次的标准化:And, in order to maintain the original output power of the image, the CSI image of each location point li can be normalized again using the previously calculated average amplitude:

Figure BDA0003016584010000097
Figure BDA0003016584010000097

其中,

Figure BDA0003016584010000098
为位置点li的再一次标准化后的CSI图像,
Figure BDA0003016584010000099
为位置点li的标准化后的CSI图像,Amax为所有位置点中CSI数据的最大幅值。in,
Figure BDA0003016584010000098
is the normalized CSI image of the position point l i again,
Figure BDA0003016584010000099
is the normalized CSI image of the position point li, and Amax is the maximum amplitude of the CSI data in all the position points.

在一种可选的实施方式中,上述第一字典学习模型,为:In an optional implementation manner, the above-mentioned first dictionary learning model is:

Figure BDA00030165840100000910
Figure BDA00030165840100000910

其中,D(1)为聚合了子字典的第一字典,Z(1)为所述目标CSI数据的第一稀疏编码,n为所述第一字典对应的各区域的个数,Dl为第一字典中属于区域l的子字典,Xl为在区域l中采集的CSI数据Yl在对应子字典Dl上的稀疏编码,α,τ为常量参数,

Figure BDA00030165840100000911
为字典原子约束项,f(Dl)为非相干促进项,用于增强属于不同区域的CSI数据之间的区分度。Wherein, D (1) is the first dictionary in which the sub-dictionaries are aggregated, Z (1) is the first sparse coding of the target CSI data, n is the number of regions corresponding to the first dictionary, and D l is In the first dictionary, the sub-dictionary belongs to the region l, X l is the sparse coding of the CSI data Y l collected in the region l on the corresponding sub-dictionary D l , α, τ are constant parameters,
Figure BDA00030165840100000911
is the dictionary atomic constraint term, and f(D l ) is the incoherent promotion term, which is used to enhance the discrimination between CSI data belonging to different regions.

在一种可选的实施方式中,上述第二字典学习模型,为:In an optional implementation manner, the above-mentioned second dictionary learning model is:

Figure BDA00030165840100000912
Figure BDA00030165840100000912

其中,Z(2)为CSI数据的第二稀疏编码,U,b均为分类器参数,λ1和λ2是两个常量参数,

Figure BDA0003016584010000101
为字典原子局部约束项,D(2)为第二字典,
Figure BDA0003016584010000102
为支持向量判别项,用于区分属于不同位置标签的稀疏编码,uc是与支持向量判别项所代表的支持向量的第c类超平面相关联的法向量,bc是与支持向量对应的偏差。Among them, Z (2) is the second sparse coding of CSI data, U, b are both classifier parameters, λ 1 and λ 2 are two constant parameters,
Figure BDA0003016584010000101
is the dictionary atomic local constraint term, D (2) is the second dictionary,
Figure BDA0003016584010000102
is the support vector discriminant item, used to distinguish sparse coding belonging to different position labels, u c is the normal vector associated with the c-th hyperplane of the support vector represented by the support vector discriminant item, b c is the corresponding support vector deviation.

示例性的,如图3所示。在训练过程中的目标函数与上述模型相似,区别在于目标函数的参数在训练过程不断更新,直到目标函数收敛时,目标函数的参数与上述模型的参数相同。因此,上述第一字典学习模型和第二字典学习模型均为收敛的字典学习模型的目标函数。为了减少包含大量指纹点的位置指纹库对数据处理带来的负担,在第一字典学习模型中,训练区域特定的子字典。为了让不同分区的CSI幅度的稀疏编码之间具有高区分度,首先引入如下的非相干促进项:

Figure BDA0003016584010000103
Illustratively, as shown in FIG. 3 . The objective function in the training process is similar to the above model, the difference is that the parameters of the objective function are continuously updated during the training process, until the objective function converges, the parameters of the objective function are the same as those of the above model. Therefore, both the first dictionary learning model and the second dictionary learning model described above are objective functions of the converged dictionary learning model. In order to reduce the burden on data processing brought by the location fingerprint database containing a large number of fingerprint points, in the first dictionary learning model, region-specific sub-dictionaries are trained. In order to make the sparse coding of CSI magnitudes of different partitions have a high degree of discrimination, the following incoherent promotion terms are first introduced:
Figure BDA0003016584010000103

其中,Dl对应区域l的子字典,Xl为区域l上采集的CSI训练数据Yl在对应子字典Dl上的稀疏编码。

Figure BDA0003016584010000104
表示Xl的互补矩阵,即在所有的训练数据中排除Xl本身。其中,Xl和分区l是对应的,也就是说训练数据Yl可以很好地被Xl表示而不是Xj,(l≠j)。如下式所示,
Figure BDA0003016584010000105
在优化过程中要尽可能的小,从而确保DlXj和Yl并不接近,而这一点将显著增加指纹点分区时的判别效果:Wherein, D1 corresponds to the sub-dictionary of the region 1 , and X1 is the sparse coding of the CSI training data Y1 collected in the region 1 on the corresponding sub-dictionary D1 .
Figure BDA0003016584010000104
Represents the complementary matrix of X l , i.e. excludes X l itself in all training data. Among them, X l and partition l are corresponding, that is to say, the training data Y l can be well represented by X l instead of X j , (l≠j). As shown in the following formula,
Figure BDA0003016584010000105
In the optimization process, it should be as small as possible to ensure that D l X j and Y l are not close, which will significantly increase the discriminative effect of fingerprint point partitioning:

Figure BDA0003016584010000106
Figure BDA0003016584010000106

并且,为了保证Xl尽可能稀疏,为了减少现有的模型大多会对稀疏编码采用l0-范数正则化或l1-范数正则化所导致的计算耗时,以训练一个高效的区域分类模型,本发明实施例利用l2,1-范数保证编码系数的行稀疏,且l2,1-范数的计算比较容易。最终,定义第一字典学习模型的目标函数为:And, in order to ensure that X l is as sparse as possible, in order to reduce the computational time-consuming caused by l 0 -norm regularization or l 1 -norm regularization for sparse coding in most existing models, in order to train an efficient region For the classification model, in the embodiment of the present invention, the l 2,1 -norm is used to ensure that the lines of the coding coefficients are sparse, and the calculation of the l 2,1 -norm is relatively easy. Finally, the objective function that defines the first dictionary learning model is:

Figure BDA0003016584010000107
Figure BDA0003016584010000107

其中,

Figure BDA0003016584010000108
为字典原子约束项,使第一字典学习模型的计算过程保持稳定。第一字典学习模型对输入的CSI数据进行区域判别,而不涉及更细节的指纹匹配,因此不额外训练分类器,而是以重构误差的最小化作为衡量标准来进行区域判别:
Figure BDA0003016584010000109
也就是说,ynew根据它的稀疏编码来分区的,具体方法是将其分配给能够得到最小化重构误差的对象类。综上,在双层学习模型中,第一字典学习模型可以通过引入一个非相干促进项来保证CSI数据在对应区域子字典上的稀疏表示能力。in,
Figure BDA0003016584010000108
For dictionary atomic constraints, the calculation process of the first dictionary learning model is kept stable. The first dictionary learning model performs regional discrimination on the input CSI data without involving more detailed fingerprint matching, so no additional training of the classifier is performed, but the minimization of the reconstruction error is used as the criterion for regional discrimination:
Figure BDA0003016584010000109
That is, y new is partitioned according to its sparse encoding by assigning it to the object class that minimizes the reconstruction error. To sum up, in the two-layer learning model, the first dictionary learning model can ensure the sparse representation ability of CSI data on the corresponding region sub-dictionary by introducing an incoherent promotion term.

并且,为了使稀疏编码还具备指纹定位的能力,可以将第一字典学习模型的第一稀疏编码作为第二字典学习模型的输入,引入一个支持向量判别项,从而强制来自不同指纹点的稀疏编码能分隔开,其具体定义为:

Figure BDA0003016584010000111
并且,考虑到CSI数据的敏感性及不稳定性,引入字典原子局部约束项,它可以进一步增强第二字典学习模型对CSI数据流形结构描述的真实性。最终,提出第二层的目标函数如下:In addition, in order to make sparse coding also have the ability to locate fingerprints, the first sparse coding of the first dictionary learning model can be used as the input of the second dictionary learning model, and a support vector discriminant term can be introduced to force the sparse coding from different fingerprint points. can be separated, which is specifically defined as:
Figure BDA0003016584010000111
Moreover, considering the sensitivity and instability of CSI data, the dictionary atomic local constraint term is introduced, which can further enhance the authenticity of the second dictionary learning model's description of the CSI data manifold structure. Finally, the objective function of the proposed second layer is as follows:

Figure BDA0003016584010000112
Figure BDA0003016584010000112

这样,经过第一字典学习模型的稀疏编码输入到第二字典学习中,并通过分类器参数U和b进行位置标签的预测。In this way, the sparse encoding of the first dictionary learning model is input into the second dictionary learning, and the location label is predicted through the classifier parameters U and b.

相应于上述方法实施例,本发明实施例还提供一种基于双层字典学习的CSI指纹定位装置。Corresponding to the above method embodiments, the embodiments of the present invention further provide a CSI fingerprint positioning device based on double-layer dictionary learning.

如图4所示,本发明一实施例提供的一种基于双层字典学习的CSI指纹定位装置的结构,该装置包括:As shown in FIG. 4 , a structure of a CSI fingerprint positioning device based on double-layer dictionary learning provided by an embodiment of the present invention includes:

信息采集模块401,用于在获取到对目标进行定位的指令时,采集所述目标的信道状态信息,作为目标信道状态信息CSI数据;The information collection module 401 is configured to collect the channel state information of the target as the target channel state information CSI data when the instruction to locate the target is obtained;

第一编码模块402,用于基于预先训练得到的第一字典学习模型,获取所述目标CSI数据的第一稀疏编码以及区域标签;其中,所述第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型;The first coding module 402 is configured to obtain the first sparse coding and the region label of the target CSI data based on the first dictionary learning model obtained by pre-training; wherein, the first dictionary learning model is used for minimizing reconstruction based on The error principle is used to discriminate the region to which the CSI data belongs, and is a sparse coding model trained by using multiple sample CSI data and the position label of each sample CSI data;

第二编码模块403,用于基于预先训练得到的第二字典学习模型和所述区域标签,获取所述第一稀疏编码的第二稀疏编码,并利用所述第二字典学习模型中的分类器,获取所述第二稀疏编码的位置标签,作为所述目标的位置标签;The second encoding module 403 is configured to acquire the second sparse encoding of the first sparse encoding based on the second dictionary learning model obtained by pre-training and the region label, and use the classifier in the second dictionary learning model , obtain the position label of the second sparse encoding as the position label of the target;

其中,所述第二字典学习模型用于基于字典原子局部约束项增强所述第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;所述分类器用于按照稀疏编码的位置标签的不同进行分类。Wherein, the second dictionary learning model is used to enhance the discrimination degree of the second sparse coding based on dictionary atomic local constraints, and uses the first sparse coding of multiple sample CSI data and the position label of each sample CSI data The sparse coding model obtained by training; the classifier is used to classify according to the difference of the sparsely coded position labels.

本发明实施例提供的方案中,可以通过字典学习模型对目标CSI数据进行稀疏编码,实现对高纬度的目标CSI数据的简洁表达与深层特征提取,从而在对目标CSI数据降噪的并且,降低存储压力和数据处理复杂度。并且,通过两层字典学习模型:第一字典学习模型和第二字典学习模型,分别获取区域标签和增强区分度的第二稀疏编码,保证不同定位区域的稀疏编码具有高区分度,以及不同指纹点也就是不同位置标签的稀疏编码具有高区分度,从而提高定位的准确度。并且,可以将指纹定位中的匹配过程简化为对第二字典学习模型的输出进行分类即可,可以降低匹配过程,也就是数据处理的复杂度。可见,本方案可以兼顾提高定位准确度,以及降低存储压力和数据处理复杂度。In the solution provided by the embodiment of the present invention, the target CSI data can be sparsely encoded through a dictionary learning model, so as to realize the concise expression and deep feature extraction of the high-latitude target CSI data, so as to reduce the noise reduction of the target CSI data and reduce the Storage pressure and data processing complexity. Moreover, through the two-layer dictionary learning model: the first dictionary learning model and the second dictionary learning model, the region labels and the second sparse coding to enhance the discrimination are obtained respectively, so as to ensure that the sparse coding of different positioning regions has high discrimination and different fingerprints. The sparse coding of points, that is, labels of different positions, has a high degree of discrimination, thereby improving the accuracy of localization. In addition, the matching process in fingerprint positioning can be simplified to classify the output of the second dictionary learning model, which can reduce the matching process, that is, the complexity of data processing. It can be seen that this solution can improve the positioning accuracy and reduce the storage pressure and data processing complexity.

可选的,所述第一字典学习模型,采用如下步骤训练得到:Optionally, the first dictionary learning model is obtained by training the following steps:

基于所述多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据;obtaining sample data based on the plurality of sample CSI data and the position label of each sample CSI data;

将所述样本数据,字典学习模型的规格,以及字典学习模型的初始参数,输入第一字典学习模型的目标函数,对所述第一字典学习模型的目标函数进行迭代训练:The sample data, the specifications of the dictionary learning model, and the initial parameters of the dictionary learning model are input into the objective function of the first dictionary learning model, and the objective function of the first dictionary learning model is iteratively trained:

当所述第一字典学习模型的目标函数收敛时,将所训练的第一字典学习模型的目标函数,作为所述第一字典学习模型;所述收敛包括:迭代次数达到第一迭代阈值,或当前迭代的目标函数与上一次迭代的目标函数之间,输出结果的差异小于第一差异阈值;When the objective function of the first dictionary learning model converges, use the trained objective function of the first dictionary learning model as the first dictionary learning model; the convergence includes: the number of iterations reaches a first iteration threshold, or Between the objective function of the current iteration and the objective function of the previous iteration, the difference between the output results is less than the first difference threshold;

当所述第一字典学习模型的目标函数不收敛时,利用所述样本数据,获取更新的第一稀疏编码,并利用所述更新的第一稀疏编码对所训练的第一字典学习模型的目标函数进行更新。When the objective function of the first dictionary learning model does not converge, use the sample data to obtain an updated first sparse code, and use the updated first sparse code to set the target of the trained first dictionary learning model function to update.

本发明实施例还提供了一种电子设备,如图5所示,包括处理器501、通信接口502、存储器503和通信总线504,其中,处理器501,通信接口502,存储器503通过通信总线504完成相互间的通信,An embodiment of the present invention further provides an electronic device, as shown in FIG. 5 , including a processor 501 , a communication interface 502 , a memory 503 and a communication bus 504 , wherein the processor 501 , the communication interface 502 , and the memory 503 pass through the communication bus 504 complete communication with each other,

存储器503,用于存放计算机程序;a memory 503 for storing computer programs;

处理器501,用于执行存储器503上所存放的程序时,实现如下步骤:When the processor 501 is used to execute the program stored in the memory 503, the following steps are implemented:

在获取到对目标进行定位的指令时,采集所述目标的信道状态信息,作为目标信道状态信息CSI数据;When the instruction to locate the target is obtained, the channel state information of the target is collected as the target channel state information CSI data;

基于预先训练得到的第一字典学习模型,获取所述目标CSI数据的第一稀疏编码以及区域标签;其中,所述第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型;Based on the first dictionary learning model obtained by pre-training, the first sparse coding and the region label of the target CSI data are obtained; wherein, the first dictionary learning model is used to perform the analysis of the region to which the CSI data belongs based on the principle of minimizing the reconstruction error. Discriminate, and is a sparse coding model trained by using multiple sample CSI data and the position label of each sample CSI data;

基于预先训练得到的第二字典学习模型和所述区域标签,获取所述第一稀疏编码的第二稀疏编码,并利用所述第二字典学习模型中的分类器,获取所述第二稀疏编码的位置标签,作为所述目标的位置标签;Obtain the second sparse code of the first sparse code based on the pre-trained second dictionary learning model and the region label, and use the classifier in the second dictionary learning model to obtain the second sparse code The location label of , as the location label of the target;

其中,所述第二字典学习模型用于基于字典原子局部约束项增强所述第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;所述分类器用于按照稀疏编码的位置标签的不同进行分类。Wherein, the second dictionary learning model is used to enhance the discrimination degree of the second sparse coding based on dictionary atomic local constraints, and uses the first sparse coding of multiple sample CSI data and the position label of each sample CSI data The sparse coding model obtained by training; the classifier is used to classify according to the difference of the sparsely coded position labels.

本发明实施例提供的方案中,可以通过字典学习模型对目标CSI数据进行稀疏编码,实现对高纬度的目标CSI数据的简洁表达与深层特征提取,从而在对目标CSI数据降噪的并且,降低存储压力和数据处理复杂度。并且,通过两层字典学习模型:第一字典学习模型和第二字典学习模型,分别获取区域标签和增强区分度的第二稀疏编码,保证不同定位区域的稀疏编码具有高区分度,以及不同指纹点也就是不同位置标签的稀疏编码具有高区分度,从而提高定位的准确度。并且,可以将指纹定位中的匹配过程简化为对第二字典学习模型的输出进行分类即可,可以降低匹配过程,也就是数据处理的复杂度。可见,本方案可以兼顾提高定位准确度,以及降低存储压力和数据处理复杂度。In the solution provided by the embodiment of the present invention, the target CSI data can be sparsely encoded through a dictionary learning model, so as to realize the concise expression and deep feature extraction of the high-latitude target CSI data, so as to reduce the noise reduction of the target CSI data and reduce the Storage pressure and data processing complexity. Moreover, through the two-layer dictionary learning model: the first dictionary learning model and the second dictionary learning model, the region labels and the second sparse coding to enhance the discrimination are obtained respectively, so as to ensure that the sparse coding of different positioning regions has high discrimination and different fingerprints. The sparse coding of points, that is, labels of different locations, has a high degree of discrimination, thereby improving the accuracy of localization. In addition, the matching process in fingerprint positioning can be simplified to classify the output of the second dictionary learning model, which can reduce the matching process, that is, the complexity of data processing. It can be seen that this solution can improve the positioning accuracy and reduce the storage pressure and data processing complexity.

上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准结构(Extended Industry StandardArchitecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。The communication bus mentioned in the above electronic device may be a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus or the like. The communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.

通信接口用于上述电子设备与其他设备之间的通信。The communication interface is used for communication between the above electronic device and other devices.

存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。The memory may include random access memory (Random Access Memory, RAM), and may also include non-volatile memory (Non-Volatile Memory, NVM), such as at least one disk memory. Optionally, the memory may also be at least one storage device located away from the aforementioned processor.

上述的处理器可以是通用处理器,包括中央处理器(Central Processor Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital SignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processor Unit, CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (Digital SignalProcessor, DSP), application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.

在本发明提供的又一实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一基于双层字典学习的CSI指纹定位方法的步骤。In another embodiment provided by the present invention, a computer-readable storage medium is also provided, and a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any of the above-mentioned two-layer-based Steps of a dictionary-learned CSI fingerprinting method.

在本发明提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例中任一基于双层字典学习的CSI指纹定位方法。In yet another embodiment provided by the present invention, there is also provided a computer program product including instructions, which, when running on a computer, enables the computer to execute any of the two-layer dictionary learning-based CSI fingerprint positioning methods in the above-mentioned embodiments .

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.). The computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置和设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the apparatus and device embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and reference may be made to some descriptions of the method embodiments for related parts.

以上所述仅为本发明的较佳实施例,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.

Claims (10)

1.一种基于双层字典学习的CSI指纹定位方法,其特征在于,所述方法包括:1. a CSI fingerprint positioning method based on double-layer dictionary learning, is characterized in that, described method comprises: 在获取到对目标进行定位的指令时,采集所述目标的信道状态信息,作为目标信道状态信息CSI数据;When the instruction to locate the target is obtained, the channel state information of the target is collected as the target channel state information CSI data; 基于预先训练得到的第一字典学习模型,获取所述目标CSI数据的第一稀疏编码以及区域标签;其中,所述第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型;Based on the first dictionary learning model obtained by pre-training, the first sparse coding and the region label of the target CSI data are obtained; wherein, the first dictionary learning model is used to perform the analysis of the region to which the CSI data belongs based on the principle of minimizing the reconstruction error. Discriminate, and is a sparse coding model trained by using multiple sample CSI data and the position label of each sample CSI data; 基于预先训练得到的第二字典学习模型和所述区域标签,获取所述第一稀疏编码的第二稀疏编码,并利用所述第二字典学习模型中的分类器,获取所述第二稀疏编码的位置标签,作为所述目标的位置标签;Obtain the second sparse code of the first sparse code based on the pre-trained second dictionary learning model and the region label, and use the classifier in the second dictionary learning model to obtain the second sparse code The location label of , as the location label of the target; 其中,所述第二字典学习模型用于基于字典原子局部约束项增强所述第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;所述分类器用于按照稀疏编码的位置标签的不同进行分类。Wherein, the second dictionary learning model is used to enhance the discrimination degree of the second sparse coding based on dictionary atomic local constraints, and uses the first sparse coding of multiple sample CSI data and the position label of each sample CSI data The sparse coding model obtained by training; the classifier is used to classify according to the difference of the sparsely coded position labels. 2.根据权利要求1所述的方法,其特征在于,所述第一字典学习模型,采用如下步骤训练得到:2. method according to claim 1, is characterized in that, described first dictionary learning model, adopts following steps to train to obtain: 基于所述多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据;obtaining sample data based on the plurality of sample CSI data and the position label of each sample CSI data; 将所述样本数据,字典学习模型的规格,以及字典学习模型的初始参数,输入第一字典学习模型的目标函数,对所述第一字典学习模型的目标函数进行迭代训练:The sample data, the specifications of the dictionary learning model, and the initial parameters of the dictionary learning model are input into the objective function of the first dictionary learning model, and the objective function of the first dictionary learning model is iteratively trained: 当所述第一字典学习模型的目标函数收敛时,将所训练的第一字典学习模型的目标函数,作为所述第一字典学习模型;所述收敛包括:迭代次数达到第一迭代阈值,或当前迭代的目标函数与上一次迭代的目标函数之间,输出结果的差异小于第一差异阈值;When the objective function of the first dictionary learning model converges, use the trained objective function of the first dictionary learning model as the first dictionary learning model; the convergence includes: the number of iterations reaches a first iteration threshold, or Between the objective function of the current iteration and the objective function of the previous iteration, the difference between the output results is less than the first difference threshold; 当所述第一字典学习模型的目标函数不收敛时,利用所述样本数据,获取更新的第一稀疏编码,并利用所述更新的第一稀疏编码对所训练的第一字典学习模型的目标函数进行更新。When the objective function of the first dictionary learning model does not converge, use the sample data to obtain an updated first sparse code, and use the updated first sparse code to set the target of the trained first dictionary learning model function to update. 3.根据权利要求1所述的方法,其特征在于,所述第二字典学习模型,采用如下步骤训练得到:3. method according to claim 1, is characterized in that, described second dictionary learning model, adopts following steps to train to obtain: 基于所述多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据;obtaining sample data based on the plurality of sample CSI data and the position label of each sample CSI data; 将所述样本数据的第一稀疏编码,字典学习模型的规格,以及字典学习模型的初始参数,输入第一字典学习模型的目标函数,对所述第一字典学习模型的目标函数进行迭代训练:The first sparse coding of the sample data, the specifications of the dictionary learning model, and the initial parameters of the dictionary learning model are input into the objective function of the first dictionary learning model, and the objective function of the first dictionary learning model is iteratively trained: 当所述第二字典学习模型的目标函数收敛时,将所训练的第二字典学习模型的目标函数,作为所述第二字典学习模型;所述收敛包括:迭代次数达到第二迭代阈值,或当前迭代的目标函数与上一次迭代的目标函数之间,输出结果的差异小于第二差异阈值;When the objective function of the second dictionary learning model converges, the objective function of the trained second dictionary learning model is used as the second dictionary learning model; the convergence includes: the number of iterations reaches the second iteration threshold, or Between the objective function of the current iteration and the objective function of the previous iteration, the difference between the output results is less than the second difference threshold; 当所述第二字典学习模型的目标函数不收敛时,利用所述多个样本CSI数据,以及每个样本CSI数据的位置标签的图拉普拉斯矩阵,获取更新的第二稀疏编码,并利用所述更新的第二稀疏编码对所训练的第二字典学习模型的目标函数进行更新。When the objective function of the second dictionary learning model does not converge, use the plurality of sample CSI data and the graph Laplacian matrix of the position label of each sample CSI data to obtain an updated second sparse code, and The objective function of the trained second dictionary learning model is updated using the updated second sparse coding. 4.根据权利要求2至3任一项所述的方法,其特征在于,所述基于所述多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据,包括:4. The method according to any one of claims 2 to 3, wherein the acquiring sample data based on the plurality of sample CSI data and the position label of each sample CSI data comprises: 分别将每个样本CSI数据图像化,得到多个CSI图像;Image each sample CSI data to obtain multiple CSI images; 针对每个CSI图像,获取该CSI图像各像素点的原始平均振幅,并对各像素点的原始平均振幅进行离差标准化,得到第一标准化后的CSI图像;For each CSI image, obtain the original average amplitude of each pixel point of the CSI image, and perform dispersion normalization on the original average amplitude of each pixel point to obtain a first normalized CSI image; 基于所述第一标准化后的CSI图像,获得所述样本数据。The sample data is obtained based on the first normalized CSI image. 5.根据权利要求4所述的方法,其特征在于,所述基于所述第一标准化后的CSI图像,获得所述样本数据,包括:5. The method according to claim 4, wherein the obtaining the sample data based on the first standardized CSI image comprises: 针对每个第一标准化后的CSI图像,利用所述原始平均振幅,对该第一标准化后的CSI图像中相应的像素点进行离差标准化,得到所述样本数据。For each first normalized CSI image, using the original average amplitude, perform dispersion normalization on the corresponding pixel points in the first normalized CSI image to obtain the sample data. 6.根据权利要求1所述的方法,其特征在于,所述第一字典学习模型,为:6. The method according to claim 1, wherein the first dictionary learning model is:
Figure FDA0003016583000000031
Figure FDA0003016583000000031
其中,D(1)为聚合了子字典的第一字典,Z(1)为所述目标CSI数据的第一稀疏编码,n为所述第一字典对应的各区域的个数,Dl为第一字典中属于区域l的子字典,Xl为在区域l中采集的CSI数据Yl在对应子字典Dl上的稀疏编码,α,τ为常量参数,
Figure FDA0003016583000000032
为字典原子约束项,f(Dl)为非相干促进项,用于增强属于不同区域的CSI数据之间的区分度。
Wherein, D (1) is the first dictionary in which the sub-dictionaries are aggregated, Z (1) is the first sparse coding of the target CSI data, n is the number of regions corresponding to the first dictionary, and D l is In the first dictionary, the sub-dictionary belongs to the region l, X l is the sparse coding of the CSI data Y l collected in the region l on the corresponding sub-dictionary D l , α, τ are constant parameters,
Figure FDA0003016583000000032
is the dictionary atomic constraint term, and f(D l ) is the incoherent promotion term, which is used to enhance the discrimination between CSI data belonging to different regions.
7.根据权利要求1所述的方法,其特征在于,所述第二字典学习模型,为:7. The method according to claim 1, wherein the second dictionary learning model is:
Figure FDA0003016583000000033
Figure FDA0003016583000000033
其中,Z(2)为CSI数据的第二稀疏编码,U,b均为分类器参数,λ1和λ2是两个常量参数,
Figure FDA0003016583000000034
为字典原子局部约束项,D(2)为第二字典,
Figure FDA0003016583000000035
为支持向量判别项,用于区分属于不同位置标签的稀疏编码,uc是与所述支持向量判别项所代表的支持向量的第c类超平面相关联的法向量,bc是与所述支持向量对应的偏差。
Among them, Z (2) is the second sparse coding of CSI data, U, b are both classifier parameters, λ 1 and λ 2 are two constant parameters,
Figure FDA0003016583000000034
is the dictionary atomic local constraint term, D (2) is the second dictionary,
Figure FDA0003016583000000035
is the support vector discriminant term, used to distinguish sparse coding belonging to different position labels, u c is the normal vector associated with the c-th hyperplane of the support vector represented by the support vector discriminant term, b c is the Bias corresponding to the support vector.
8.一种基于双层字典学习的CSI指纹定位装置,其特征在于,所述装置包括:8. A CSI fingerprint positioning device based on double-layer dictionary learning, wherein the device comprises: 信息采集模块,用于在获取到对目标进行定位的指令时,采集所述目标的信道状态信息,作为目标信道状态信息CSI数据;an information collection module, configured to collect the channel state information of the target as the target channel state information CSI data when the instruction to locate the target is obtained; 第一编码模块,用于基于预先训练得到的第一字典学习模型,获取所述目标CSI数据的第一稀疏编码以及区域标签;其中,所述第一字典学习模型用于基于最小化重构误差原则进行CSI数据所属区域的判别,且为利用多个样本CSI数据和每个样本CSI数据的位置标签训练得到的稀疏编码模型;a first coding module, configured to obtain the first sparse coding and the region label of the target CSI data based on the first dictionary learning model obtained by pre-training; wherein, the first dictionary learning model is used to minimize the reconstruction error based on In principle, the region to which the CSI data belongs is discriminated, and it is a sparse coding model trained by using multiple sample CSI data and the position label of each sample CSI data; 第二编码模块,用于基于预先训练得到的第二字典学习模型和所述区域标签,获取所述第一稀疏编码的第二稀疏编码,并利用所述第二字典学习模型中的分类器,获取所述第二稀疏编码的位置标签,作为所述目标的位置标签;The second encoding module is configured to obtain the second sparse encoding of the first sparse encoding based on the second dictionary learning model obtained by pre-training and the region label, and use the classifier in the second dictionary learning model, obtaining the position label of the second sparse encoding as the position label of the target; 其中,所述第二字典学习模型用于基于字典原子局部约束项增强所述第二稀疏编码的区分度,且为利用多个样本CSI数据的第一稀疏编码和每个样本CSI数据的位置标签训练得到的稀疏编码模型;所述分类器用于按照稀疏编码的位置标签的不同进行分类。Wherein, the second dictionary learning model is used to enhance the discrimination degree of the second sparse coding based on dictionary atomic local constraints, and uses the first sparse coding of multiple sample CSI data and the position label of each sample CSI data The sparse coding model obtained by training; the classifier is used to classify according to the difference of the sparsely coded position labels. 9.根据权利要求8所述的装置,其特征在于,所述第一字典学习模型,采用如下步骤训练得到:9. The device according to claim 8, wherein the first dictionary learning model is obtained by training the following steps: 基于所述多个样本CSI数据以及每个样本CSI数据的位置标签,获取样本数据;obtaining sample data based on the plurality of sample CSI data and the position label of each sample CSI data; 将所述样本数据,字典学习模型的规格,以及字典学习模型的初始参数,输入第一字典学习模型的目标函数,对所述第一字典学习模型的目标函数进行迭代训练:The sample data, the specifications of the dictionary learning model, and the initial parameters of the dictionary learning model are input into the objective function of the first dictionary learning model, and the objective function of the first dictionary learning model is iteratively trained: 当所述第一字典学习模型的目标函数收敛时,将所训练的第一字典学习模型的目标函数,作为所述第一字典学习模型;所述收敛包括:迭代次数达到第一迭代阈值,或当前迭代的目标函数与上一次迭代的目标函数之间,输出结果的差异小于第一差异阈值;When the objective function of the first dictionary learning model converges, use the trained objective function of the first dictionary learning model as the first dictionary learning model; the convergence includes: the number of iterations reaches a first iteration threshold, or Between the objective function of the current iteration and the objective function of the previous iteration, the difference between the output results is less than the first difference threshold; 当所述第一字典学习模型的目标函数不收敛时,利用所述样本数据,获取更新的第一稀疏编码,并利用所述更新的第一稀疏编码对所训练的第一字典学习模型的目标函数进行更新。When the objective function of the first dictionary learning model does not converge, use the sample data to obtain an updated first sparse code, and use the updated first sparse code to set the target of the trained first dictionary learning model function to update. 10.一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;10. An electronic device, comprising a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus; 存储器,用于存放计算机程序;memory for storing computer programs; 处理器,用于执行存储器上所存放的程序时,实现权利要求1-7任一所述的方法步骤。The processor is configured to implement the method steps of any one of claims 1-7 when executing the program stored in the memory.
CN202110390650.1A 2021-04-12 2021-04-12 CSI fingerprint positioning method, device and device based on double-layer dictionary learning Active CN113260044B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110390650.1A CN113260044B (en) 2021-04-12 2021-04-12 CSI fingerprint positioning method, device and device based on double-layer dictionary learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110390650.1A CN113260044B (en) 2021-04-12 2021-04-12 CSI fingerprint positioning method, device and device based on double-layer dictionary learning

Publications (2)

Publication Number Publication Date
CN113260044A true CN113260044A (en) 2021-08-13
CN113260044B CN113260044B (en) 2022-04-05

Family

ID=77220634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110390650.1A Active CN113260044B (en) 2021-04-12 2021-04-12 CSI fingerprint positioning method, device and device based on double-layer dictionary learning

Country Status (1)

Country Link
CN (1) CN113260044B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050701A1 (en) * 2022-09-06 2024-03-14 华为技术有限公司 Positioning method, electronic device, computer-readable storage medium, and chip system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170319098A1 (en) * 2016-05-06 2017-11-09 Case Western Reserve University System and method for spectroscopic magnetic resonance fingerprinting
CN109584270A (en) * 2018-11-13 2019-04-05 大连大学 Based on the visual tracking method for differentiating dictionary learning
CN110267194A (en) * 2019-06-06 2019-09-20 普联技术有限公司 A kind of radio roaming performance optimization method, device, storage medium and system
CN110889865A (en) * 2019-10-31 2020-03-17 广东技术师范大学 Video target tracking method based on local weighted sparse feature selection
CN111915830A (en) * 2020-07-24 2020-11-10 辽宁工程技术大学 Indoor intrusion detection method based on CSI signal sparse representation
CN112487231A (en) * 2020-12-17 2021-03-12 中国矿业大学(北京) Automatic image labeling method based on double-image regularization constraint and dictionary learning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170319098A1 (en) * 2016-05-06 2017-11-09 Case Western Reserve University System and method for spectroscopic magnetic resonance fingerprinting
CN109584270A (en) * 2018-11-13 2019-04-05 大连大学 Based on the visual tracking method for differentiating dictionary learning
CN110267194A (en) * 2019-06-06 2019-09-20 普联技术有限公司 A kind of radio roaming performance optimization method, device, storage medium and system
CN110889865A (en) * 2019-10-31 2020-03-17 广东技术师范大学 Video target tracking method based on local weighted sparse feature selection
CN111915830A (en) * 2020-07-24 2020-11-10 辽宁工程技术大学 Indoor intrusion detection method based on CSI signal sparse representation
CN112487231A (en) * 2020-12-17 2021-03-12 中国矿业大学(北京) Automatic image labeling method based on double-image regularization constraint and dictionary learning

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
R. JHANSI RANI: "Latent Fingerprint Image Enhancement using Gabor Functions via Multi-Scale Patch based Sparse Representation and Matching based on Neural Networks", <2019 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP)> *
朱会杰等: "基于频域信号的稀疏编码在机械故障诊断中的应用", 《振动与冲击》 *
查培等: "基于字典学习的毫米波大规模MIMO系统混合预编码", 《电讯技术》 *
蒋天润尹露邓中亮: "信道状态信息指纹定位算法性能评价方法研究", 《导航定位与授时》 *
邓中亮等: "基于高精度室内位置感知的大数据研究与应用", 《计算机应用》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024050701A1 (en) * 2022-09-06 2024-03-14 华为技术有限公司 Positioning method, electronic device, computer-readable storage medium, and chip system

Also Published As

Publication number Publication date
CN113260044B (en) 2022-04-05

Similar Documents

Publication Publication Date Title
CN110798417B (en) Signal modulation identification method and device based on cyclic residual error network
US10664381B2 (en) Method and system for synthetic generation of time series data
CN108280477B (en) Method and apparatus for clustering images
WO2021169301A1 (en) Method and device for selecting sample image, storage medium and server
WO2022077646A1 (en) Method and apparatus for training student model for image processing
US20200097997A1 (en) Predicting counterfactuals by utilizing balanced nonlinear representations for matching models
CN112131322B (en) Time sequence classification method and device
CN109214501B (en) Method and apparatus for identifying information
CN114565807B (en) Method and device for training target image retrieval model
CN112862093A (en) Graph neural network training method and device
US20220300557A1 (en) Quantifying and improving the performance of computation-based classifiers
WO2023020214A1 (en) Retrieval model training method and apparatus, retrieval method and apparatus, device and medium
CN114781463A (en) A cross-scene robust wireless fall detection method and related equipment
CN113260044B (en) CSI fingerprint positioning method, device and device based on double-layer dictionary learning
CN104077408B (en) Extensive across media data distributed semi content of supervision method for identifying and classifying and device
Wang et al. Specific emitter identification based on the multi‐discrepancy deep adaptation network
CN111241106A (en) Approximate data processing method, device, medium and electronic equipment
CN115049003A (en) Pre-training model fine-tuning method, device, equipment and storage medium
US20240104915A1 (en) Long duration structured video action segmentation
JP2017162230A (en) Information processor, similar data search method and similar data search program
WO2023227030A1 (en) Intention recognition method and apparatus, storage medium and electronic device
US20230162518A1 (en) Systems for Generating Indications of Relationships between Electronic Documents
CN111966851B (en) Image recognition method and system based on small number of samples
CN115049843A (en) Confrontation sample generation method and device, electronic equipment and storage medium
CN113869099A (en) Image processing method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant