CN113256538A - 一种基于深度学习的无监督去雨方法 - Google Patents
一种基于深度学习的无监督去雨方法 Download PDFInfo
- Publication number
- CN113256538A CN113256538A CN202110695087.9A CN202110695087A CN113256538A CN 113256538 A CN113256538 A CN 113256538A CN 202110695087 A CN202110695087 A CN 202110695087A CN 113256538 A CN113256538 A CN 113256538A
- Authority
- CN
- China
- Prior art keywords
- rain
- model
- image
- unsupervised
- deep learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000013135 deep learning Methods 0.000 title claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 59
- 238000012360 testing method Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 6
- 230000002708 enhancing effect Effects 0.000 claims abstract description 4
- 238000013507 mapping Methods 0.000 claims abstract description 4
- 238000005070 sampling Methods 0.000 claims abstract description 4
- 238000012795 verification Methods 0.000 claims abstract description 3
- 230000006870 function Effects 0.000 claims description 26
- 238000005457 optimization Methods 0.000 claims description 13
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110695087.9A CN113256538B (zh) | 2021-06-23 | 2021-06-23 | 一种基于深度学习的无监督去雨方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110695087.9A CN113256538B (zh) | 2021-06-23 | 2021-06-23 | 一种基于深度学习的无监督去雨方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113256538A true CN113256538A (zh) | 2021-08-13 |
CN113256538B CN113256538B (zh) | 2021-10-15 |
Family
ID=77189246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110695087.9A Active CN113256538B (zh) | 2021-06-23 | 2021-06-23 | 一种基于深度学习的无监督去雨方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113256538B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114331872A (zh) * | 2021-12-07 | 2022-04-12 | 合肥工业大学 | 一种无监督的双支路带雨无雨图像处理方法 |
CN114332460A (zh) * | 2021-12-07 | 2022-04-12 | 合肥工业大学 | 一种半监督单图像去雨处理方法 |
CN115412669A (zh) * | 2022-08-26 | 2022-11-29 | 清华大学 | 基于图像信噪比分析的雾天成像方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106204499A (zh) * | 2016-07-26 | 2016-12-07 | 厦门大学 | 基于卷积神经网络的单幅图像去雨方法 |
AU2020100196A4 (en) * | 2020-02-08 | 2020-03-19 | Juwei Guan | A method of removing rain from single image based on detail supplement |
CN111462014A (zh) * | 2020-04-03 | 2020-07-28 | 西安交通大学 | 一种基于深度学习和模型驱动的单图去雨方法 |
CN111462013A (zh) * | 2020-04-03 | 2020-07-28 | 西安交通大学 | 一种基于结构化残差学习的单图去雨方法 |
CN112508083A (zh) * | 2020-12-02 | 2021-03-16 | 南京邮电大学 | 基于无监督注意力机制的图像去雨雾方法 |
-
2021
- 2021-06-23 CN CN202110695087.9A patent/CN113256538B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106204499A (zh) * | 2016-07-26 | 2016-12-07 | 厦门大学 | 基于卷积神经网络的单幅图像去雨方法 |
AU2020100196A4 (en) * | 2020-02-08 | 2020-03-19 | Juwei Guan | A method of removing rain from single image based on detail supplement |
CN111462014A (zh) * | 2020-04-03 | 2020-07-28 | 西安交通大学 | 一种基于深度学习和模型驱动的单图去雨方法 |
CN111462013A (zh) * | 2020-04-03 | 2020-07-28 | 西安交通大学 | 一种基于结构化残差学习的单图去雨方法 |
CN112508083A (zh) * | 2020-12-02 | 2021-03-16 | 南京邮电大学 | 基于无监督注意力机制的图像去雨雾方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114331872A (zh) * | 2021-12-07 | 2022-04-12 | 合肥工业大学 | 一种无监督的双支路带雨无雨图像处理方法 |
CN114332460A (zh) * | 2021-12-07 | 2022-04-12 | 合肥工业大学 | 一种半监督单图像去雨处理方法 |
CN114332460B (zh) * | 2021-12-07 | 2024-04-05 | 合肥工业大学 | 一种半监督单图像去雨处理方法 |
CN115412669A (zh) * | 2022-08-26 | 2022-11-29 | 清华大学 | 基于图像信噪比分析的雾天成像方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113256538B (zh) | 2021-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113256538B (zh) | 一种基于深度学习的无监督去雨方法 | |
CN109859147B (zh) | 一种基于生成对抗网络噪声建模的真实图像去噪方法 | |
CN108876735B (zh) | 一种基于深度残差网络的真实图像盲去噪方法 | |
CN112288658A (zh) | 一种基于多残差联合学习的水下图像增强方法 | |
CN110517203B (zh) | 一种基于参考图像重建的去雾方法 | |
CN113962878B (zh) | 一种低能见度图像去雾模型方法 | |
CN112419163B (zh) | 一种基于先验知识和深度学习的单张图像弱监督去雾方法 | |
CN113284070A (zh) | 基于传递注意力机制的非均匀雾图去雾算法 | |
CN113160286A (zh) | 一种基于卷积神经网络的近红外和可见光图像融合方法 | |
CN113269680A (zh) | 一种基于排序学习和孪生神经网络的图像修复质量评价方法 | |
CN113052776A (zh) | 基于多尺度深度图像先验的无监督图像去雾方法 | |
CN115063318A (zh) | 自适应频率分解的低光照图像增强方法与相关设备 | |
CN116704188A (zh) | 一种基于改进U-Net网络的不同容重小麦籽粒图像分割算法 | |
CN111768326A (zh) | 一种基于gan扩增图像前景物体的高容量数据保护方法 | |
Huang et al. | SIDNet: a single image dedusting network with color cast correction | |
CN112258420B (zh) | 基于dqn的图像增强处理方法及装置 | |
CN113947538A (zh) | 一种多尺度高效卷积自注意力单幅图像除雨方法 | |
CN117333359A (zh) | 基于可分离卷积网络的山水画图像超分辨率重建方法 | |
CN111064905B (zh) | 面向自动驾驶的视频场景转换方法 | |
CN114359180B (zh) | 一种面向虚拟现实的图像质量评价方法 | |
CN114627005B (zh) | 一种雨密度分类引导的双阶段单幅图像去雨方法 | |
CN112419177B (zh) | 一种面向单幅图像去运动模糊的感知质量盲评价方法 | |
CN114881875A (zh) | 基于U-Net结构和残差网络的单幅图像去雾网络及其去雾方法 | |
CN113450267A (zh) | 可快速获取多种自然退化图像复原模型的迁移学习方法 | |
Hua et al. | A Residual ConvNeXt-based Network for Visible and Infrared Image Fusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210813 Assignee: Huzhou Zhiwu Cultural Media Co.,Ltd. Assignor: ZHEJIANG NORMAL University Contract record no.: X2023980045430 Denomination of invention: An Unsupervised Rain Removal Method Based on Deep Learning Granted publication date: 20211015 License type: Common License Record date: 20231101 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210813 Assignee: Ningbo Wuchuan Intelligent Technology Co.,Ltd. Assignor: ZHEJIANG NORMAL University Contract record no.: X2024980000694 Denomination of invention: An Unsupervised Rain Removal Method Based on Deep Learning Granted publication date: 20211015 License type: Common License Record date: 20240115 |