CN113255984A - 一种海水淡化负荷消纳弃风电量的集群优化调度方法 - Google Patents

一种海水淡化负荷消纳弃风电量的集群优化调度方法 Download PDF

Info

Publication number
CN113255984A
CN113255984A CN202110546312.2A CN202110546312A CN113255984A CN 113255984 A CN113255984 A CN 113255984A CN 202110546312 A CN202110546312 A CN 202110546312A CN 113255984 A CN113255984 A CN 113255984A
Authority
CN
China
Prior art keywords
seawater desalination
water
water storage
energy consumption
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110546312.2A
Other languages
English (en)
Other versions
CN113255984B (zh
Inventor
楚帅
董辉
葛维春
刘闯
李音璇
唐婧怡
张诗钽
崔岱
蔡国伟
葛延峰
王顺江
罗桓桓
滕云
杨俊友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Tianjin Electric Power Co Ltd
Shenyang University of Technology
State Grid Liaoning Electric Power Co Ltd
Northeast Electric Power University
Binhai Power Supply Co of State Grid Tianjin Electric Power Co Ltd
Original Assignee
Shenyang University of Technology
Northeast Dianli University
State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology, Northeast Dianli University, State Grid Liaoning Electric Power Co Ltd filed Critical Shenyang University of Technology
Priority to CN202110546312.2A priority Critical patent/CN113255984B/zh
Publication of CN113255984A publication Critical patent/CN113255984A/zh
Application granted granted Critical
Publication of CN113255984B publication Critical patent/CN113255984B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种海水淡化负荷消纳弃风电量的集群优化调度方法,包括:建立海水淡化单元运行模型,计算海水淡化单元的产水量Vt、储水箱淡水量RV,t;根据居民用水需求、储水箱的淡水量及储水箱的储水体积计算海水淡化单元运行功率极限
Figure DDA0003073640880000011
Figure DDA0003073640880000012
以海水淡化厂能耗成本Cdesal最低为目标函数,以弃风电量利用率、电网购电功率、海水淡化负荷能耗、海水淡化单元启停、储水箱的储水体积作为约束条件,构建海水淡化单元集群调度模型。能最大化消纳弃风电量、降低生产淡水的能耗成本、以及提高海水淡化设备的利用率,最终实现“清洁淡水”。

Description

一种海水淡化负荷消纳弃风电量的集群优化调度方法
技术领域
本发明属于清洁能源消纳方法技术领域,涉及一种海水淡化负荷消纳弃风电量的集群优化调度方法。
背景技术
助力“双碳”能源战略,必将迎来一个崭新的以新能源为主力电源的电力系统。在保证电力系统安全稳定运行前提下,大规模风电并网消纳瓶颈亟待突破。在风电消纳与负荷波动背景下,调峰矛盾本质上体现为火电、负荷与风电三者间功率平衡。未来,风电在电网中渗透率持续增长的背景下,向负荷侧挖掘调峰资源是一种经济可行的方式。在建设新一代电力系统的大背景下,用户侧参与电力市场的程度不断加深,用户不再仅作为电能的消费者,而是向产消者过度。负荷侧多元化的发展趋势为负荷参与主动配电网消纳风电提供了可能性。柔性负荷作为一种新的可调度资源,极大缓解了主动配电网的调度压力,同时可以为风电消纳和负荷削峰填谷提供良好的支撑作用。
反渗透海水淡化负荷作为一种能源密集型产业,是消纳风电的宝贵资源。海水淡化工厂中配备的高压变速泵与储水库的结合,使得其运行过程具有一定程度的灵活调节能力,能够有效适应风电发电的不确定性,并且在参与调峰辅助服务市场方面展现出巨大潜力。然而,目前海水淡化厂都是全天24小时连续运行,浪费了海水淡化负荷的操作灵活性。
发明内容
本发明的目的是提供一种海水淡化负荷消纳弃风电量的集群优化调度方法,解决了现有技术中存在的海水淡化能耗成本高的问题。
本发明所采用的技术方案是,一种海水淡化负荷消纳弃风电量的集群优化调度方法,包括以下步骤:
步骤1、建立海水淡化单元运行模型,计算海水淡化单元的产水量Vt、储水箱淡水量RV,t
步骤2、根据居民用水需求、储水箱的淡水量及储水箱的储水体积计算海水淡化单元运行功率极限
Figure BDA0003073640860000021
Figure BDA0003073640860000022
步骤3、以海水淡化厂能耗成本Cdesal最低为目标函数,以弃风电量利用率、电网购电功率、海水淡化负荷能耗、海水淡化单元启停、储水箱的储水体积作为约束条件,构建海水淡化单元集群调度模型。
本发明的特点还在于:
步骤1具体包括以下步骤:
步骤1.1、建立海水淡化单元运行模型:
Figure BDA0003073640860000023
上式中,Vt为t时刻的产水体积,Pro,i为第i台海水淡化单元的运行功率,ND为海水淡化单元的数量,Gi为第i台海水淡化单元产水比能耗,ui,t为t时刻第i台海水淡化单元的运行状态,其计算过程如下:
Figure BDA0003073640860000024
步骤1.2、根据海水淡化单元运行模型得到的海水淡化单元的产水量Vt,计算储水箱t时刻淡水量RV,t
RV,t=RV,t-1+Vt-Rwant,t (3);
上式中,Rwant,t为居民在t时刻用水需求。
步骤2具体包括以下步骤:
步骤2.1、按照最小比能耗计算电能消耗上限,则海水淡化单元最大运行功率
Figure BDA0003073640860000031
计算如下:
Figure BDA0003073640860000032
上式中,Gmin为海水淡化单元最小比能耗,
Figure BDA0003073640860000033
为储水箱的最大储水体积,RV,t-1为上一时刻储水箱的淡水量,R0,t为t时刻全部淡化单元运行时的淡水储量,其计算过程如下所示:
Figure BDA0003073640860000034
步骤2.2、按照最大比能耗计算电能消耗下限,则海水淡化单元最小运行功率
Figure BDA0003073640860000035
计算如下:
Figure BDA0003073640860000036
上式中,Gmax为海水淡化单元最大比能耗,
Figure BDA0003073640860000037
为储水箱的最小储水体积。
步骤3具体包括以下步骤:
步骤3.1、海水淡化调度周期内能耗成本Cdesal计算如下:
Figure BDA0003073640860000038
上式中,N为一个调度周期的时刻数,PW,t为海水淡化厂消耗的弃风功率,gw,t为t时刻弃风功率的电价,PG,t为海水淡化厂在时刻t向公共电网的购电功率,gg,t为时刻t的电网的购电电价;
步骤3.2、以海水淡化厂能耗成本Cdesal最低为目标,确定目标函数如下:
min Cdesal(PW,t,PG,t) (8);
步骤3.3、确定约束条件如下:
Figure BDA0003073640860000041
PG,t≥0 (10);
Figure BDA0003073640860000042
Figure BDA0003073640860000043
RV,N≥RV0 (13);
上式中,
Figure BDA0003073640860000044
为风电场在t时刻的最大弃风功率,
Figure BDA0003073640860000045
为海水淡化单元的最大启停次数,RV,N为N时刻储水箱淡水含量,RV0为储水箱初始淡水含量,Pro,t为t时刻海水淡化负荷能耗,计算过程如下:
Figure BDA0003073640860000046
步骤3.4、海水淡化负荷能耗Pro,t还应满足如下等式约束条件:
PG,t+PW,t=Pro,t (15);
步骤3.5、根据公式(8)-(15),构建海水淡化单元集群优化调度模型如下:
Figure BDA0003073640860000047
上式中:gi(t)≥0为公式(9)-公式(13)的不等式约束集合,hj(t)=0为公式(14)和公式(15)的等式约束集合,i为不等式约束的数量,j为等式约束的数量。
本发明的有益效果是:
本发明一种海水淡化负荷消纳弃风电量的集群优化调度方法,通过考虑海水淡化技术的运行特性,对海水淡化单元的能耗、产水量与用水需求和储水箱水位的时空变化关系进行建模,其次,结合海水淡化系统的运行边界、电网售电峰谷电价等参数,以最大化消纳弃风为目标,确定海水淡化单元的最佳运行方案;充分考虑了海水淡化负荷的可时移特性以及海水淡化负荷与弃风的耦合关系,能最大化消纳弃风电量、降低生产淡水的能耗成本、以及提高海水淡化设备的利用率,最终实现“清洁淡水”。
附图说明
图1是本发明一种海水淡化负荷消纳弃风电量的集群优化调度方法的生产淡水分时购电情况;
图2本发明一种海水淡化负荷消纳弃风电量的集群优化调度方法的储水箱淡水量水位变化图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种海水淡化负荷消纳弃风电量的集群优化调度方法,包括以下步骤:
步骤1、建立海水淡化单元运行模型,计算海水淡化单元的产水量Vt、储水箱淡水量RV,t
步骤1.1、使海水淡化装置处于最佳回收率,使产水比能耗最低,当海水淡化单元启动运行后,产水率恒定于最佳运行点;建立上述运行状态时的海水淡化单元运行模型:
Figure BDA0003073640860000051
上式中,Vt为t时刻的产水体积,Pro,i为第i台海水淡化单元的运行功率,ND为海水淡化单元的数量,Gi为第i台海水淡化单元产水比能耗,ui,t为t时刻第i台海水淡化单元的运行状态,其计算过程如下:
Figure BDA0003073640860000061
步骤1.2、储水箱用于存储海水淡化厂除满足负荷外额外生产的淡水。根据海水淡化单元运行模型得到的海水淡化单元的产水量Vt,计算储水箱t时刻淡水量RV,t
RV,t=RV,t-1+Vt-Rwant,t (3);
上式中,Rwant,t为居民在t时刻用水需求。
步骤2、根据居民用水需求、储水箱的淡水量及储水箱的储水体积计算海水淡化单元运行功率极限
Figure BDA0003073640860000062
Figure BDA0003073640860000063
步骤2.1、海水淡化单元功率灵活调节区间上限
Figure BDA0003073640860000064
受居民用水需求Rwant,t、上一时刻储水箱的淡水量RV,t-1和储水箱的最大储水体积
Figure BDA0003073640860000065
的影响。并且考虑到海水淡化装置的产水效率不同、产水比能耗不同,所以为保证所有时刻储水箱水量在最大体积范围内,采取保守策略,按照最小比能耗计算电能消耗上限,则海水淡化单元最大运行功率
Figure BDA0003073640860000066
计算如下:
Figure BDA0003073640860000067
上式中,Gmin为海水淡化单元最小比能耗,
Figure BDA0003073640860000068
为储水箱的最大储水体积,RV,t-1为上一时刻储水箱的淡水量,R0,t为t时刻全部淡化单元运行时的淡水储量,其计算过程如下所示:
Figure BDA0003073640860000069
步骤2.2、海水淡化单元负荷能耗下限
Figure BDA00030736408600000610
受居民用水需求Rwant,t、上一时刻储水箱的淡水量RV,t-1和储水箱的最小储水体积
Figure BDA00030736408600000611
的影响。并且为保证能够满足居民用水需求,按照最大比能耗计算电能消耗下限,则海水淡化单元最小运行功率
Figure BDA0003073640860000071
计算如下:
Figure BDA0003073640860000072
上式中,Gmax为海水淡化单元最大比能耗,
Figure BDA0003073640860000073
为储水箱的最小储水体积。
步骤3、构建海水淡化单元能耗成本Cdesal模型,以最大化消纳弃风电量为目标对海水淡化单元集群进行优化调度。
步骤3.1、海水淡化调度周期内能耗成本Cdesal计算如下:
Figure BDA0003073640860000074
上式中,N为一个调度周期的时刻数,PW,t为海水淡化厂消耗的弃风功率,gw,t为t时刻弃风功率的电价,PG,t为海水淡化厂在时刻t向公共电网的购电功率,gg,t为时刻t的电网的购电电价;
步骤3.2、由于弃风电价低于从电网购电电价,所以海水淡化厂优先使用弃风电量时,生产淡水的成本最低,因此最大化消纳弃风目标等同于海水淡化厂能耗成本最低目标。以海水淡化厂能耗成本Cdesal最低为目标,确定目标函数如下:
min Cdesal(PW,t,PG,t) (8);
步骤3.3、构建优化调度约束条件如下:
Figure BDA0003073640860000075
PG,t≥0 (10);
Figure BDA0003073640860000076
Figure BDA0003073640860000077
RV,N≥RV0 (13);
上式中,
Figure BDA0003073640860000081
为风电场在t时刻的最大弃风功率,
Figure BDA0003073640860000082
为海水淡化单元的最大启停次数,RV,N为N时刻储水箱淡水含量,RV0为储水箱初始淡水含量,Pro,t为t时刻海水淡化负荷能耗,计算过程如下:
Figure BDA0003073640860000083
步骤3.4、海水淡化负荷满足功率平衡约束,所以海水淡化负荷能耗Pro,t还应满足如下等式约束条件:
Figure BDA0003073640860000084
步骤3.5、根据公式(8)-(15),构建海水淡化单元集群优化调度模型如下:
Figure BDA0003073640860000085
上式中:gi(t)≥0为公式(9)-公式(13)的不等式约束集合,hj(t)=0为公式(14)和公式(15)的等式约束集合,i为不等式约束的数量,j为等式约束的数量。
通过以上方式,本发明一种海水淡化负荷消纳弃风电量的集群优化调度方法,通过考虑海水淡化技术的运行特性,对海水淡化单元的能耗、产水量与用水需求和储水箱水位的时空变化关系进行建模,其次,结合海水淡化系统的运行边界、电网售电峰谷电价等参数,以最大化消纳弃风为目标,确定海水淡化单元的最佳运行方案;充分考虑了海水淡化负荷的可时移特性以及海水淡化负荷与弃风的耦合关系,能最大化消纳弃风电量、降低生产淡水的能耗成本、以及提高海水淡化设备的利用率,最终实现“清洁淡水”。
实施例
为验证本发明的海水淡化集群优化调度方法的有效性,设置以下两种对比方案:
方案1(传统方式):传统海水淡化厂生产模式,即各海水淡化厂全天24小时产水量保持恒定。
方案2(本发明方式):考虑弃风情况下,海水淡化单元的集群优化调度,即,除电网购电以外,弃风功率被用于海水淡化,并且以海水淡化厂的能耗成本最小进行优化调度。
以辽宁省四个海水淡化厂为研究对象,对海水淡化集群调度进行优化。表1给出了辽宁省四个海水淡化厂淡化单元的详细参数。表2给出了辽宁省某市峰谷电价实施办法。从表2可以看出,电网的高峰电价与低谷电价差距较大,表明本发明在经济上是可行的。
表1辽宁省海水淡化厂的详细参数
Figure BDA0003073640860000091
表2 2019年12月辽宁省某市峰谷电价实施办法
Figure BDA0003073640860000092
从图1中可以看出,海水淡化单元利用其灵活调节能力减少能耗成本,在普通时段,海水淡化功率会响应电网的峰谷电价,在23点至次日5点负荷低谷时段,淡化单元几乎满功率生产淡水,在6点至8点、18点至22点负荷高峰时段,淡化单元少量运行或退出运行,居民用水量由储水箱提供,避免能耗成本过高。在9点至15点弃风发生时段,由于弃风电价低于电网低谷单价,为降低能耗成本,海水淡化单元会增加运行功率生产并存储淡水。表3列出了不同运行方式海水淡化单元优化运行情况,可以看出本发明能提高海水淡化技术本体装置利用率、降低运行成本和缓解弃风消纳困境,其中能耗成本比传统方式节省了27.63%,而且弃风消纳率提高至94.8%,比传统方式高了32.7%。
从图2中可以看出,储水箱在低电价时段与弃风时段储水箱储存淡水,高电价时段排放淡水满足用户需求。在第一个负荷低谷时段,0点开始储存淡水,至5点接近最大容量,之后的三小时淡水储量下降。此后9点至15点弃风时段,淡水储量开始增加,14点淡水储量接近最大容量,此后淡水储量持续保持高位,18点至22点负荷高峰时段,淡水储量减少并补偿居民用水需求,避免了高电价时段的高功率运行。
结合图2与表3,可以看出在传统运行方式下,海水淡化单元运行模式单一,未能充分发挥储水箱用以缓冲淡水的供需平衡的作用。本发明中储水箱运行灵活,淡水储量变化幅度较大,并且多次接近最大体积,整体利用率最高达到了94.23%,比传统运行方式提高了36.8%,储水箱的灵活缓冲作用更加凸显。
表3不同运行方式海水淡化单元优化运行情况
Figure BDA0003073640860000111

Claims (4)

1.一种海水淡化负荷消纳弃风电量的集群优化调度方法,其特征在于,包括以下步骤:
步骤1、建立海水淡化单元运行模型,计算海水淡化单元的产水量Vt、储水箱淡水量RV,t
步骤2、根据居民用水需求、储水箱的淡水量及储水箱的储水体积计算海水淡化单元运行功率极限
Figure FDA0003073640850000011
Figure FDA0003073640850000012
步骤3、以海水淡化厂能耗成本Cdesal最低为目标函数,以弃风电量利用率、电网购电功率、海水淡化负荷能耗、海水淡化单元启停、储水箱的储水体积作为约束条件,构建海水淡化单元集群调度模型。
2.根据权利要求1所述的一种海水淡化负荷消纳弃风电量的集群优化调度方法,其特征在于,步骤1具体包括以下步骤:
步骤1.1、建立海水淡化单元运行模型:
Figure FDA0003073640850000013
上式中,Vt为t时刻的产水体积,Pro,i为第i台海水淡化单元的运行功率,ND为海水淡化单元的数量,Gi为第i台海水淡化单元产水比能耗,ui,t为t时刻第i台海水淡化单元的运行状态,其计算过程如下:
Figure FDA0003073640850000014
步骤1.2、根据所述海水淡化单元运行模型得到的海水淡化单元的产水量Vt,计算储水箱t时刻淡水量RV,t
RV,t=RV,t-1+Vt-Rwant,t (3);
上式中,Rwant,t为居民在t时刻用水需求。
3.根据权利要求1所述的一种海水淡化负荷消纳弃风电量的集群优化调度方法,其特征在于,步骤2具体包括以下步骤:
步骤2.1、按照最小比能耗计算电能消耗上限,则海水淡化单元最大运行功率
Figure FDA0003073640850000021
计算如下:
Figure FDA0003073640850000022
上式中,Gmin为海水淡化单元最小比能耗,
Figure FDA0003073640850000023
为储水箱的最大储水体积,RV,t-1为上一时刻储水箱的淡水量,R0,t为t时刻全部淡化单元运行时的淡水储量,其计算过程如下所示:
Figure FDA0003073640850000024
步骤2.2、按照最大比能耗计算电能消耗下限,则海水淡化单元最小运行功率
Figure FDA0003073640850000025
计算如下:
Figure FDA0003073640850000026
上式中,Gmax为海水淡化单元最大比能耗,
Figure FDA0003073640850000027
为储水箱的最小储水体积。
4.根据权利要求1所述的一种海水淡化负荷消纳弃风电量的集群优化调度方法,其特征在于,步骤3具体包括以下步骤:
步骤3.1、海水淡化调度周期内能耗成本Cdesal计算如下:
Figure FDA0003073640850000028
上式中,N为一个调度周期的时刻数,PW,t为海水淡化厂消耗的弃风功率,gw,t为t时刻弃风功率的电价,PG,t为海水淡化厂在时刻t向公共电网的购电功率,gg,t为时刻t的电网的购电电价;
步骤3.2、以海水淡化厂能耗成本Cdesal最低为目标,确定目标函数如下:
minCdesal(PW,t,PG,t) (8);
步骤3.3、确定约束条件如下:
Figure FDA0003073640850000031
PG,t≥0 (10);
Figure FDA0003073640850000032
Figure FDA0003073640850000033
RV,N≥RV0 (13);
上式中,
Figure FDA0003073640850000034
为风电场在t时刻的最大弃风功率,
Figure FDA0003073640850000035
为海水淡化单元的最大启停次数,RV,N为N时刻储水箱淡水含量,RV0为储水箱初始淡水含量,Pro,t为t时刻海水淡化负荷能耗,计算过程如下:
Figure FDA0003073640850000036
步骤3.4、所述海水淡化负荷能耗Pro,t还应满足如下等式约束条件:
PG,t+PW,t=Pro,t (15);
步骤3.5、根据公式(8)-(15),构建海水淡化单元集群优化调度模型如下:
minCdesal(PW,t,PG,t)
Figure FDA0003073640850000037
上式中:gi(t)≥0为公式(9)-公式(13)的不等式约束集合,hj(t)=0为公式(14)和公式(15)的等式约束集合,i为不等式约束的数量,j为等式约束的数量。
CN202110546312.2A 2021-05-19 2021-05-19 一种海水淡化负荷消纳弃风电量的集群优化调度方法 Active CN113255984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110546312.2A CN113255984B (zh) 2021-05-19 2021-05-19 一种海水淡化负荷消纳弃风电量的集群优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110546312.2A CN113255984B (zh) 2021-05-19 2021-05-19 一种海水淡化负荷消纳弃风电量的集群优化调度方法

Publications (2)

Publication Number Publication Date
CN113255984A true CN113255984A (zh) 2021-08-13
CN113255984B CN113255984B (zh) 2024-04-12

Family

ID=77182787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110546312.2A Active CN113255984B (zh) 2021-05-19 2021-05-19 一种海水淡化负荷消纳弃风电量的集群优化调度方法

Country Status (1)

Country Link
CN (1) CN113255984B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829302A (zh) * 2023-02-23 2023-03-21 国网天津市电力公司城西供电分公司 计及风电消纳的综合能源系统优化方法、装置及可读介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103606969A (zh) * 2013-12-03 2014-02-26 国家电网公司 含新能源及海水淡化负荷的海岛微电网优化调度方法
WO2014110878A1 (zh) * 2013-01-16 2014-07-24 国电南瑞科技股份有限公司 风火协调调度模式下日前调度计划优化辅助分析方法
CN111382901A (zh) * 2020-02-25 2020-07-07 沈阳工业大学 一种反渗透海水淡化厂的建模方法
CN111969655A (zh) * 2020-08-17 2020-11-20 东北大学 考虑负荷响应不确定性的多源多荷协调调度方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110878A1 (zh) * 2013-01-16 2014-07-24 国电南瑞科技股份有限公司 风火协调调度模式下日前调度计划优化辅助分析方法
CN103606969A (zh) * 2013-12-03 2014-02-26 国家电网公司 含新能源及海水淡化负荷的海岛微电网优化调度方法
CN111382901A (zh) * 2020-02-25 2020-07-07 沈阳工业大学 一种反渗透海水淡化厂的建模方法
CN111969655A (zh) * 2020-08-17 2020-11-20 东北大学 考虑负荷响应不确定性的多源多荷协调调度方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈培育;宋杰;陈嘉栋;朱庆;张金禄;于光耀;: "含海水淡化负荷的多源多荷系统日前优化调度策略研究", 全球能源互联网, no. 03 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115829302A (zh) * 2023-02-23 2023-03-21 国网天津市电力公司城西供电分公司 计及风电消纳的综合能源系统优化方法、装置及可读介质

Also Published As

Publication number Publication date
CN113255984B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN106992556B (zh) 一种基于混合电源多时间尺度互补的优化调度方法
US7315769B2 (en) Multi-tier benefit optimization for operating the power systems including renewable and traditional generation, energy storage, and controllable loads
CN108711892B (zh) 一种多能互补发电系统的优化调度方法
CN112039056A (zh) 一种新能源两阶段优化调度方法
CN109523065A (zh) 一种基于改进量子粒子群算法的微能源网优化调度方法
CN109741110A (zh) 一种基于机会约束规划的风氢系统联合优化建模方法
CN112990523B (zh) 区域综合能源系统分层优化运行方法
CN112072710B (zh) 一种考虑需求响应的源网荷一体化经济调度方法及系统
CN115689233A (zh) 计及调峰主动性的风光水火储系统互补协调优化调度方法
CN111030101B (zh) 一种基于多元化大数据清洁能源消纳联动调控方法及系统
CN113255984A (zh) 一种海水淡化负荷消纳弃风电量的集群优化调度方法
CN112769156B (zh) 一种计及大规模海上风电并网的源网荷储协调运行方法
CN111210119A (zh) 多种市场下vpp电、热、气优化调度模型的建立方法
CN114914918A (zh) 全可再生能源驱动的离网海岛海水淡化系统及其调控方法
CN112332456A (zh) 一种蓄热式电采暖负荷参与电网运行的优化控制方法及装置
Ma et al. Two-stage optimal dispatching based on wind-photovoltaic-pumped storage-thermal power combined power generation system
CN112801816A (zh) 一种风光水互补系统总效益的资源优化调度方法
Ma et al. Multi-objective optimal scheduling of power system considering the coordinated operation of photovoltaic-wind-pumped storage hybrid power
CN112884191A (zh) 一种基于网源协调的热电日前调度模型及计算方法
CN113839412B (zh) 一种光伏电站的制氢调峰计算方法及装置
Hong et al. Multi-time-scale optimal scheduling control strategy for Cascade Hydro-PV-Pumped Storage complementary Generation System
CN218352187U (zh) 一种基于太阳池供水的离网式光储柴供电设备
CN116799872B (zh) 一种基于梯级水电功能改造的水光泵互补调度方法及系统
Liu et al. Hierarchy Optimization Method for Day-ahead Coordinated Power Dispatch with Priority Given to Clean Energy
CN110198054B (zh) 一种含海水淡化负荷的微网功率调度方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240315

Address after: No. 394, Yingkou Road, Tanggu, Binhai New Area, Tianjin 300450

Applicant after: STATE GRID TIANJIN ELECTRIC POWER COMPANY BINHAI POWER SUPPLY BRANCH

Country or region after: China

Applicant after: STATE GRID TIANJIN ELECTRIC POWER Co.

Applicant after: SHENYANG University OF TECHNOLOGY

Applicant after: STATE GRID LIAONING ELECTRIC POWER SUPPLY Co.,Ltd.

Applicant after: NORTHEAST DIANLI University

Address before: 110870 No. 111 Shenyang West Road, Shenyang economic and Technological Development Zone, Liaoning

Applicant before: SHENYANG University OF TECHNOLOGY

Country or region before: China

Applicant before: STATE GRID LIAONING ELECTRIC POWER SUPPLY Co.,Ltd.

Applicant before: NORTHEAST DIANLI University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant