CN113253717A - 一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法 - Google Patents

一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法 Download PDF

Info

Publication number
CN113253717A
CN113253717A CN202110285647.3A CN202110285647A CN113253717A CN 113253717 A CN113253717 A CN 113253717A CN 202110285647 A CN202110285647 A CN 202110285647A CN 113253717 A CN113253717 A CN 113253717A
Authority
CN
China
Prior art keywords
obstacle
laser
dynamic
robot
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110285647.3A
Other languages
English (en)
Other versions
CN113253717B (zh
Inventor
蒋林
李峻
张旭阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202110285647.3A priority Critical patent/CN113253717B/zh
Publication of CN113253717A publication Critical patent/CN113253717A/zh
Application granted granted Critical
Publication of CN113253717B publication Critical patent/CN113253717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • G05D1/024Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors in combination with a laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法,其特征在于:在结合AMCL算法基础上通过单线激光雷达获取所有障碍物点云的位置信息,再对所有激光点云进行分割与直线拟合并去除地图中已知的障碍,并用合适大小的圆圈标记新出现的可能的动态障碍,再通过圆圈圆心坐标变化进行动态障碍物检测,不断获取动态障碍的圆心坐标并利用最小二乘求解其运动方程,最后扩大动态障碍物速度方向代价地图,通过结合DWA算法实现安全避开动态障碍。针对目前的局部路径规划算法在躲避动障碍物时都是将其当成瞬时的静态障碍物进行避障,缺乏主动性与安全性,利用本发明方法能够更安全的避障。

Description

一种基于动态障碍物运动信息的室内移动机器人局部路径规 划方法
技术领域
本发明属于移动机器人局部路径规划领域,具体涉及一种基于动态障碍物运动信息的移 动机器人局部路径规划方法。
背景技术
随着移动机器人产业的飞速发展,人们对其智能化水平要求越来越高,而路径规划技术 是移动机器人的关键技术,特别是对于局部路径规划,它决定着机器人是否能够避开已知环 境中的未知障碍物。
目前主流的局部路径规划算法有TEB算法、人工势场法、DWA算法,它们被广泛用于各 类移动机器人上,且能很好的避开环境中新出现的静态障碍,但这些算法在躲避动态障碍物 时,都是将其当做瞬时的静态障碍处理,缺乏主动性与安全性。
对于室内移动机器人无法通过GPS进行精确定位,只能通过机器人所带的传感器进行环 境感知从而估计自身位姿,这使机器人判断动态物体十分困难,所以如何引导移动机器人在 导航过程中安全避开动态障碍物成为一个热点、难点问题。
发明内容
针对现有技术存在的问题,本发明为解决现有技术中存在的问题采用的技术方案如下:
一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法,其特征在于:在结 合AMCL(Adaptive Monte Carlo Localization)算法基础上通过单线激光雷达获取所有障 碍物点云的位置信息,再对所有激光点云进行分割与直线拟合并去除地图中已知的障碍,并 用合适大小的圆圈标记新出现的可能的动态障碍,再通过圆圈圆心坐标变化进行动态障碍物 检测,不断获取动态障碍的圆心坐标并利用最小二乘求解其运动方程,最后扩大动态障碍物 速度方向代价地图,通过结合DWA算法(Dynamic Window Approach,动态窗口法)实现安全 避开动态障碍。
所述一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法,具体包括如下 步骤:
步骤1、使用AMCL算法实现机器人定位,得到机器人的初始位姿(Xrobot,Yrobotrobot);
步骤2、设打在障碍物上激光点云数据为(ρi,θi)(i=1,2,...,n),其中ρi代表第i条激光点 的距离,θi代表第i条激光的角度,在得到机器人自身位姿估计后,根据激光雷达返回的信息, 计算障碍物的绝对位置信息(Xobs,Yobs),计算公式如式(1),其中Xrobot为机器人在全局地图 中的横坐标值,Yrobot为机器人纵坐标值,σrobot为机器人的方位角,
Figure RE-GDA0003158205510000021
步骤3、由于激光点距离越大,激光越稀疏,可保留所有阈值范围内的激光点形成激光 点云
Figure RE-GDA0003158205510000022
其中m为符合要求激光点的总个数,遍历所有激光数据,求 相邻激光坐标距离的平方
Figure RE-GDA0003158205510000023
其中
Figure RE-GDA0003158205510000024
表示第k与第k-1个 激光点之间距离的平方;
步骤4、设置距离阈值为
Figure RE-GDA0003158205510000025
其中r为阈值常量,p为比例常量,ρk为第k个激光数据(ρk,θk)的距离极值,若:
Figure RE-GDA0003158205510000026
则初次判断第k个激光数据为断点,遍历所有数据,将所有激光点根据断点进行分开,设置每组数据点个数最少为Pmin,去除激光点数小于Pmin的激光组;
步骤5、设第k个激光数据为第一组激光坐标的断点,则第一组数据为
Figure RE-GDA0003158205510000027
利用最小二乘实现直线拟合,设拟合的直线为:Y=a*X+b, 参数a,b按式(2)求解:
Figure RE-GDA0003158205510000028
去掉所拟合直线上首尾两端点,计算该组数据中间k-3个激光点到直线的距离,设第n 个点距直线的距离为
Figure RE-GDA0003158205510000029
设置距离阈值
Figure RE-GDA00031582055100000210
其中 β为第二次分割的阈值常量,p为比例常量(同上),ρn为第n个激光数据(ρn,θn)的距离极 值,若
Figure RE-GDA00031582055100000211
则判断第n个激光数据为断点;
步骤6、循环步骤3-步骤5至所有激光数据被分组,利用最小二乘求解每组数据的直线 方程;
步骤7、设Lm与Lm+1为所求两条相邻直线,直线Lm方程为:Y=am*X+bm,直线上的最后一点为
Figure RE-GDA0003158205510000031
直线Lm+1方程为:Y=am+1*X+bm+1,直线上第一个点为
Figure RE-GDA0003158205510000032
步骤8、比较直线Lm与Lm+1,若|am-am+1|<amax且|bm-bm+1|<bmax
Figure RE-GDA0003158205510000033
则判断Lm、Lm+1为同一条直线并进行合并,反之,不进行处理,其中amax为斜率阈值,bmax为截距阈值,
Figure RE-GDA0003158205510000034
为距离阈值,
Figure RE-GDA0003158205510000035
r为阈值常量,p为比例常量,
Figure RE-GDA0003158205510000036
为直线Lm+1中第一个激光数据
Figure RE-GDA0003158205510000037
的距离极值;
步骤9、将拟合得到的直线与二维栅格地图进行对比,若直线在栅格地图上,则不再对 这些直线进行处理。假设障碍物为圆形,设每条直线为圆的内接等边三角形的一边,若有直 线Lj:Y=aj*X+bj,其两个端点分别为
Figure RE-GDA0003158205510000038
根据式(3)可求圆 的半径R1
Figure RE-GDA0003158205510000039
为了保证障碍物被完全包含,设置附加边界Br,则最终圆的半径R根据式(4)求得,并 用圆圈进行标记:
Figure RE-GDA00031582055100000310
滤除环境中一些过大的非动态障碍,设置圆的最大容许半径为Rmax,若R<Rmax,根据(5) 式求该圆的圆心坐标:
Figure RE-GDA00031582055100000311
步骤10、不断获取圆心坐标与对应时间,设可能的动态障碍物
Figure RE-GDA00031582055100000312
在T1时刻的 圆心坐标为
Figure RE-GDA00031582055100000313
T2时刻的圆心坐标为
Figure RE-GDA00031582055100000314
根据式(6)计算其瞬时速 度Vi
Figure RE-GDA0003158205510000041
设置速度阈值为Vmax,若Vi<Vmax,判断其为静态障碍物,不做处理;若Vi>Vmax,判断其为动态障碍物;
步骤11、不断更新动态障碍物前G(G>0)个坐标点,利用最小二乘实现直线拟合Ycenter=ac*Xcenter+b,用此方程作为动态障碍的运动状态方程;
步骤12、利用DWA局部路径规划算法实现避障,根据机器人速度限制、加速度限制、离 障碍物距离限制对速度(vrobot,ωrobot)进行采样,设计评价函数对每组采样数据进行评分,最 后选择评分最高的速度组合;
步骤13、机器人在导航过程中,会对环境地图以及所有出现的障碍物进行一个安全距离 的膨胀处理,称为代价地图,为了让DWA局部路径规划器更好的实现动态避障,在得到障碍 物的运动状态后,扩大动态障碍物速度方向的膨胀区域,膨胀规则(相当于给障碍物增大一 个安全距离)是用一个更大的等腰三角形重叠原始膨胀区域,求得障碍物的运动直线方程后, 以障碍物运动方向为等腰三角形区域的上顶点,三角形的大小可以根据障碍物的移动速度进 行调整,计算出三角形三边的直线方程,再取三角形三边上及内部点若干作为膨胀位置,用 来模拟人工膨胀区域;
步骤14、通过扩大动态障碍物速度方向的代价地图后,增大了DWA算法所规划的路径与 动态障碍物之间的距离,能够使机器人更安全的避开动态障碍物,为室内移动机器人适应高 动态环境提供了理论基础。
针对目前的局部路径规划算法在躲避动障碍物时都是将其当成瞬时的静态障碍物进行避 障,缺乏主动性与安全性,而本发明方法能够更安全的避障,具体优点如下:
(1)利用单个二维激光雷达就识别、判断了动态障碍物,并且计算出了动态障碍物的运 动方程;(2)在判断计算出动态障碍物的运动方程之后,创新性的扩大了动态障碍速度方向 的代价地图,再结合DWA算法用于局部动态避障,这样的避障效果更好。
附图说明
图1为障碍物点云位置计算原理图,机器人初始位姿(Xrobot,Yrobotrobot)由AMCL算法估 计得出,利用坐标变换可求得障碍物点云坐标(Xobs,Yobs);
图2为第二次寻找断点的示意图,将原本的折线在拐点处分开;
图3为激光点云拟合成直线、标记新出现障碍物的过程;
图4为动态障碍物代价地图扩大规则,其中左边为原始代价地图,右边为扩大之后的代 价地图;
图5为本发明的总体流程图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明,机器人在拥 有先验地图的前提下,通过AMCL定位算法获取到机器人的初始位姿(Xrobot,Yrobotrobot)。机器 人上的激光雷达获取到激光点云数据为(ρi,θi)(i=1,2,...,n),其中ρi代表第i条激光点的距 离,θi代表第i条激光的角度。根据式(1)容易计算得到每个激光点的绝对位置,也就是障 碍物绝对位置信息(Xobs,Yobs),如图1所示为障碍物点云位置计算原理图。
根据不同精度的激光雷达可设置不同的距离阈值,保留阈值范围内的激光点形成点云
Figure RE-GDA0003158205510000051
m为符合要求激光点的总个数,历所有激光数据,求相邻激光坐 标距离的平方
Figure RE-GDA0003158205510000052
比较
Figure RE-GDA0003158205510000053
与阈值
Figure RE-GDA0003158205510000054
的大小,若:
Figure RE-GDA0003158205510000055
则第k个激光数据为断点。遍历所有数 据,将激光点根据断点进行分开。设每组数据点个数最少为Pmin,去除激光点数小于Pmin的激 光组。
若第k个激光数据为第一组激光坐标的断点,则第一组数据为
Figure RE-GDA0003158205510000056
利用最小二乘实现直线拟合,得到直线:Y=a*X+b,参数a,b 按式(2)求解。
计算这组数据中间k-3个激光点到直线的距离,求得第n个点距直线的距离
Figure RE-GDA0003158205510000057
Figure RE-GDA0003158205510000058
则判断第n个激光数据为断点,如图2所示。
循环以上三个步骤直至所有激光数据均被处理并求解每组数据的直线方程。如果有相 邻直线Lm、Lm+1,其中直线Lm的方程为:Y=am*X+bm,直线上最后一点为
Figure RE-GDA0003158205510000059
直线Lm+1方程为:Y=am+1*X+bm+1,直线上第一个点为
Figure RE-GDA00031582055100000510
若|am-am+1|<amax且|bm-bm+1|<bmax
Figure RE-GDA00031582055100000511
合并直线Lm、Lm+1,反之,不进行处理。
若有直线Lj:Y=aj*X+bj不在栅格地图上,且两个端点分别为
Figure RE-GDA0003158205510000061
Figure RE-GDA0003158205510000062
根据式(3)可求得外接圆的半径R1
添加附加边界Br,最终圆的半径R根据式(4)求得,滤除环境中一些过大的非动态障碍, 若R<Rmax,根据(5)式求该圆的圆心坐标
Figure RE-GDA0003158205510000063
并进行标记,如图3所示。
不断获取圆心坐标与对应时间,设可能的动态障碍物
Figure RE-GDA0003158205510000064
在T1时刻的圆心坐标 为
Figure RE-GDA0003158205510000065
T2时刻的圆心坐标为
Figure RE-GDA0003158205510000066
根据式(6)计算其瞬时速度Vi,若 Vi<Vmax,判断其为静态障碍物,不做处理;若Vi>Vmax,判断其为动态障碍物。
不断更新动态障碍物前G(G>0)个坐标点,利用最小二乘求解得到直线 Ycenter=ac*Xcenter+bc,用此方程作为动态障碍的运动状态方程。
扩大动态障碍物速度方向的膨胀区域,用一个更大的等腰三角形重叠原始膨胀区域。如 图4所示,求得障碍物的运动直线方程后,以障碍物运动方向为等腰三角形区域的上顶点, 三角形的大小可以根据障碍物的移动速度进行调整,计算出三角形三边的直线方程,再取三 角形三边上及内部点若干作为膨胀位置,用来模拟人工膨胀区域。
通过扩大动态障碍物速度方向的代价地图后,结合DWA算法实现动态避障,增大了DWA 算法所规划的路径与动态障碍物之间的距离,能够使机器人更安全的避开动态障碍物,本发 明方法不断获取障碍物上的点云位置信息,再根据点云特征对其进行分割分组,利用最小二 乘对每组激光数据进行直线拟合,最后与环境地图进行比对,去除了已知障碍,同时用圆圈 标记新加入障碍物,通过其圆心的实时变化判断了动态障碍物,试验结果表明了该方法的可 行性。
本发明的保护范围并不限于上述的实施例,显然,本领域的技术人员可以对本发明进行 各种改动和变形而不脱离本发明的范围和精神。倘若这些改动和变形属于本发明权利要求及 其等同技术的范围内,则本发明的意图也包含这些改动和变形在内。

Claims (3)

1.一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法,其特征在于:在结合AMCL算法基础上通过单线激光雷达获取所有障碍物点云的位置信息,再对所有激光点云进行分割与直线拟合并去除地图中已知的障碍,并用合适大小的圆圈标记新出现的可能的动态障碍,再通过圆圈圆心坐标变化进行动态障碍物检测,不断获取动态障碍的圆心坐标并利用最小二乘求解其运动方程,最后扩大动态障碍物速度方向代价地图,通过结合DWA算法实现安全避开动态障碍。
2.如权利要求1所述的一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法,其特征在于,具体包括如下步骤:
步骤1、使用AMCL算法实现机器人定位,得到机器人的初始位姿(Xrobot,Yrobotrobot);
步骤2、设打在障碍物上激光点云数据为(ρi,θi)(i=1,2,...,n),其中ρi代表第i条激光点的距离,θi代表第i条激光的角度,在得到机器人自身位姿估计后,根据激光雷达返回的信息,计算障碍物的绝对位置信息(Xobs,Yobs),计算公式如式(1),其中Xrobot为机器人在全局地图中的横坐标值,Yrobot为机器人纵坐标值,σrobot为机器人的方位角,
Figure FDA0002980344250000011
步骤3、由于激光点距离越大,激光越稀疏,可保留所有阈值范围内的激光点形成激光点云
Figure FDA0002980344250000012
其中m为符合要求激光点的总个数,遍历所有激光数据,求相邻激光坐标距离的平方
Figure FDA0002980344250000013
其中
Figure FDA0002980344250000014
表示第k与第k-1个激光点之间距离的平方;
步骤4、设置距离阈值为
Figure FDA0002980344250000015
其中r为阈值常量,p为比例常量,ρk为第k个激光数据(ρk,θk)的距离极值,若:
Figure FDA0002980344250000016
则初次判断第k个激光数据为断点,遍历所有数据,将所有激光点根据断点进行分开,设置每组数据点个数最少为Pmin,去除激光点数小于Pmin的激光组;
步骤5、设第k个激光数据为第一组激光坐标的断点,则第一组数据为
Figure FDA0002980344250000017
利用最小二乘实现直线拟合,设拟合的直线为:Y=a*X+b,参数a,b按式(2)求解:
Figure FDA0002980344250000021
去掉所拟合直线上首尾两端点,计算该组数据中间k-3个激光点到直线的距离,设第n个点距直线的距离为
Figure FDA0002980344250000022
设置距离阈值
Figure FDA0002980344250000023
其中β为第二次分割的阈值常量,p为比例常量(同上),ρn为第n个激光数据(ρn,θn)的距离极值,若
Figure FDA0002980344250000024
则判断第n个激光数据为断点;
步骤6、循环步骤3-步骤5至所有激光数据被分组,利用最小二乘求解每组数据的直线方程;
步骤7、设Lm与Lm+1为所求两条相邻直线,直线Lm方程为:Y=am*X+bm,直线上的最后一点为
Figure FDA0002980344250000025
直线Lm+1方程为:Y=am+1*X+bm+1,直线上第一个点为
Figure FDA0002980344250000026
步骤8、比较直线Lm与Lm+1,若|am-am+1|<amax且|bm-bm+1|<bmax
Figure FDA0002980344250000027
则判断Lm、Lm+1为同一条直线并进行合并,反之,不进行处理,其中amax为斜率阈值,bmax为截距阈值,
Figure FDA0002980344250000028
为距离阈值,
Figure FDA0002980344250000029
r为阈值常量,p为比例常量,
Figure FDA00029803442500000210
为直线Lm+1中第一个激光数据
Figure FDA00029803442500000211
的距离极值;
步骤9、将拟合得到的直线与二维栅格地图进行对比,若直线在栅格地图上,则不再对这些直线进行处理,假设障碍物为圆形,设每条直线为圆的内接等边三角形的一边,若有直线Lj:Y=aj*X+bj,其两个端点分别为
Figure FDA00029803442500000212
根据式(3)可求圆的半径R1
Figure FDA00029803442500000213
为了保证障碍物被完全包含,设置附加边界Br,则最终圆的半径R根据式(4)求得,并用圆圈进行标记:
Figure FDA0002980344250000031
滤除环境中一些过大的非动态障碍,设置圆的最大容许半径为Rmax,若R<Rmax,根据(5)式求该圆的圆心坐标:
Figure FDA0002980344250000032
步骤10、不断获取圆心坐标与对应时间,设可能的动态障碍物
Figure FDA0002980344250000033
在T1时刻的圆心坐标为
Figure FDA0002980344250000034
T2时刻的圆心坐标为
Figure FDA0002980344250000035
根据式(6)计算其瞬时速度Vi
Figure FDA0002980344250000036
设置速度阈值为Vmax,若Vi<Vmax,判断其为静态障碍物,不做处理;若Vi>Vmax,判断其为动态障碍物;
步骤11、不断更新动态障碍物前G(G>0)个坐标点,利用最小二乘实现直线拟合Ycenter=ac*Xcenter+b,用此方程作为动态障碍的运动状态方程;
步骤12、利用DWA局部路径规划算法实现避障,根据机器人速度限制、加速度限制、离障碍物距离限制对速度(vrobot,ωrobot)进行采样,设计评价函数对每组采样数据进行评分,最后选择评分最高的速度组合;
步骤13、机器人在导航过程中,会对环境地图以及所有出现的障碍物进行一个安全距离的膨胀处理,称为代价地图,为了让DWA局部路径规划器更好的实现动态避障,在得到障碍物的运动状态后,扩大动态障碍物速度方向的膨胀区域;
步骤14、通过扩大动态障碍物速度方向的代价地图后,增大了DWA算法所规划的路径与动态障碍物之间的距离,能够使机器人更安全的避开动态障碍物,为室内移动机器人适应高动态环境提供了理论基础。
3.如权利要求2所述的一种基于动态障碍物运动信息的室内移动机器人局部路径规划方法,其特征在于:所述步骤13膨胀区域的膨胀规则是用一个更大的等腰三角形重叠原始膨胀区域,求得障碍物的运动直线方程后,以障碍物运动方向为等腰三角形区域的上顶点,三角形的大小可以根据障碍物的移动速度进行调整,计算出三角形三边的直线方程,再取三角形三边上及内部点若干作为膨胀位置,用来模拟人工膨胀区域。
CN202110285647.3A 2021-03-17 2021-03-17 一种基于动态障碍物的室内移动机器人局部路径规划方法 Active CN113253717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110285647.3A CN113253717B (zh) 2021-03-17 2021-03-17 一种基于动态障碍物的室内移动机器人局部路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110285647.3A CN113253717B (zh) 2021-03-17 2021-03-17 一种基于动态障碍物的室内移动机器人局部路径规划方法

Publications (2)

Publication Number Publication Date
CN113253717A true CN113253717A (zh) 2021-08-13
CN113253717B CN113253717B (zh) 2022-10-11

Family

ID=77181421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110285647.3A Active CN113253717B (zh) 2021-03-17 2021-03-17 一种基于动态障碍物的室内移动机器人局部路径规划方法

Country Status (1)

Country Link
CN (1) CN113253717B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741480A (zh) * 2021-09-16 2021-12-03 中科南京软件技术研究院 一种基于动态障碍物提取与代价地图相结合的避障方法
CN114047759A (zh) * 2021-11-08 2022-02-15 航天科工微电子系统研究院有限公司 一种基于dwa与人工势场融合的局部路径规划方法
CN114111825A (zh) * 2021-11-19 2022-03-01 广西柳工机械股份有限公司 路径规划方法、装置、电子设备、工程机械和存储介质
CN115711624A (zh) * 2022-10-18 2023-02-24 中国科学院半导体研究所 运动代价地图构建方法、装置、无人设备及存储介质
CN116382308A (zh) * 2023-06-05 2023-07-04 华侨大学 智能化移动机械自主寻径与避障方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111457929A (zh) * 2019-12-31 2020-07-28 南京工大数控科技有限公司 一种基于地理信息系统的物流车辆自主路径规划与导航方法
CN111511620A (zh) * 2017-09-22 2020-08-07 轨迹机器人公司 使用最优交互避碰代价评估的动态窗口方法
CN111522339A (zh) * 2020-04-20 2020-08-11 北京农业信息技术研究中心 畜禽舍巡检机器人自动路径规划与定位方法及装置
CN111736599A (zh) * 2020-06-09 2020-10-02 上海欣巴自动化科技股份有限公司 基于多激光雷达的agv导航避障系统、方法、设备
CN112013841A (zh) * 2020-08-26 2020-12-01 南京工业大学 一种室内动态环境下的语义slam服务机器人导航方法
CN112130559A (zh) * 2020-08-21 2020-12-25 同济大学 一种基于uwb与激光雷达的室内行人跟随与避障方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511620A (zh) * 2017-09-22 2020-08-07 轨迹机器人公司 使用最优交互避碰代价评估的动态窗口方法
CN111457929A (zh) * 2019-12-31 2020-07-28 南京工大数控科技有限公司 一种基于地理信息系统的物流车辆自主路径规划与导航方法
CN111522339A (zh) * 2020-04-20 2020-08-11 北京农业信息技术研究中心 畜禽舍巡检机器人自动路径规划与定位方法及装置
CN111736599A (zh) * 2020-06-09 2020-10-02 上海欣巴自动化科技股份有限公司 基于多激光雷达的agv导航避障系统、方法、设备
CN112130559A (zh) * 2020-08-21 2020-12-25 同济大学 一种基于uwb与激光雷达的室内行人跟随与避障方法
CN112013841A (zh) * 2020-08-26 2020-12-01 南京工业大学 一种室内动态环境下的语义slam服务机器人导航方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741480A (zh) * 2021-09-16 2021-12-03 中科南京软件技术研究院 一种基于动态障碍物提取与代价地图相结合的避障方法
CN114047759A (zh) * 2021-11-08 2022-02-15 航天科工微电子系统研究院有限公司 一种基于dwa与人工势场融合的局部路径规划方法
CN114047759B (zh) * 2021-11-08 2023-09-26 航天科工微电子系统研究院有限公司 一种基于dwa与人工势场融合的局部路径规划方法
CN114111825A (zh) * 2021-11-19 2022-03-01 广西柳工机械股份有限公司 路径规划方法、装置、电子设备、工程机械和存储介质
CN115711624A (zh) * 2022-10-18 2023-02-24 中国科学院半导体研究所 运动代价地图构建方法、装置、无人设备及存储介质
CN116382308A (zh) * 2023-06-05 2023-07-04 华侨大学 智能化移动机械自主寻径与避障方法、装置、设备及介质
CN116382308B (zh) * 2023-06-05 2023-09-05 华侨大学 智能化移动机械自主寻径与避障方法、装置、设备及介质

Also Published As

Publication number Publication date
CN113253717B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN113253717B (zh) 一种基于动态障碍物的室内移动机器人局部路径规划方法
CN110703762B (zh) 一种复杂环境下水面无人艇混合路径规划方法
CN108958282B (zh) 基于动态球形窗口的三维空间路径规划方法
CN107885209B (zh) 一种基于动态窗口与虚拟目标点的避障方法
CN104267728B (zh) 一种基于可达区域质心矢量的移动机器人避障方法
CN109933067B (zh) 一种基于遗传算法和粒子群算法的无人艇避碰方法
CN109657863B (zh) 一种基于萤火虫算法的无人船全局路径动态优化方法
CN109001757B (zh) 一种基于2d激光雷达的车位智能检测方法
CN113110522A (zh) 一种基于复合式边界检测的机器人自主探索方法
CN111368607A (zh) 一种机器人、障碍物的检测方法及检测装置
CN108490939B (zh) 在局部感知能力下的势流法的避障方法
CN110146087B (zh) 一种基于动态规划思想的船舶路径规划方法
CN114488194A (zh) 一种智能驾驶车辆结构化道路下目标检测识别方法
CN114200945B (zh) 一种移动机器人的安全控制方法
CN114625150A (zh) 基于危险指数和距离函数的快速蚁群无人艇动态避障方法
CN111522335B (zh) 基于改进粒子群算法的机器人路径优化方法及系统
CN115342821A (zh) 一种复杂未知环境下的无人车导航代价地图构建方法
CN107356932B (zh) 机器人激光定位方法
CN113050684A (zh) 一种面向突发威胁的无人机航迹规划算法
Qing et al. A novel particle filter implementation for a multiple-vehicle detection and tracking system using tail light segmentation
CN113325867A (zh) 一种无人航行器搜寻的路径规划方法、装置和无人航行器
CN105538309B (zh) 一种有限传感能力的机器人障碍物动态识别算法
CN108334071B (zh) 多机器人系统无碰撞到达目标位置的方法
CN113741480A (zh) 一种基于动态障碍物提取与代价地图相结合的避障方法
Wang et al. Dynamic path planning algorithm for autonomous vehicles in cluttered environments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant