CN113252019A - Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent - Google Patents
Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent Download PDFInfo
- Publication number
- CN113252019A CN113252019A CN202110522933.7A CN202110522933A CN113252019A CN 113252019 A CN113252019 A CN 113252019A CN 202110522933 A CN202110522933 A CN 202110522933A CN 113252019 A CN113252019 A CN 113252019A
- Authority
- CN
- China
- Prior art keywords
- signals
- forward amplification
- angle
- amplification factor
- gyroscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003321 amplification Effects 0.000 title claims abstract description 83
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000005284 excitation Effects 0.000 claims abstract description 21
- 238000005259 measurement Methods 0.000 claims description 39
- 239000011159 matrix material Substances 0.000 claims description 20
- 238000001914 filtration Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 8
- 238000013461 design Methods 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5705—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5776—Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/18—Stabilised platforms, e.g. by gyroscope
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Automation & Control Theory (AREA)
- Gyroscopes (AREA)
Abstract
Description
技术领域technical field
本发明涉及前向放大系数不一致时的半球谐振陀螺振型角获取方法,属于惯性技术领域。The invention relates to a method for obtaining the mode angle of a hemispherical resonant gyro when the forward amplification coefficients are inconsistent, and belongs to the field of inertial technology.
背景技术Background technique
上世纪60年代,出现了一种新型振动陀螺,半球谐振陀螺。此新型陀螺具备许多优点,例如误差小、工作寿命长、应用领域广等优点。不仅如此,相比于传统机械陀螺,半球谐振陀螺组成部件少,结构简单,其表头仅由二到三件零部件组成,且不易磨损,故障率非常低。半球谐振陀螺的核心部件谐振子是由熔融石英制成的,由于石英玻璃稳定的物理特性,因此谐振子不仅可靠性高、工作寿命长,而且具有极强的抗辐射能力,不易受宇宙射线及高能粒子的干扰,常用于空间飞行器的定姿与导航。综上所述,半球谐振陀螺具有极好的发展前景,对半球谐振陀螺进行研究,有益于惯性技术的发展与创新,可以为我国的深空探测以及其它相关的高科技领域进一步打下良好的基础。In the 1960s, a new type of vibrating gyroscope appeared, the hemispherical resonant gyroscope. This new type of gyroscope has many advantages, such as small error, long working life and wide application fields. Not only that, compared with the traditional mechanical gyroscope, the hemispherical resonant gyroscope has fewer components and a simple structure. The resonator, the core component of the hemispherical resonant gyroscope, is made of fused silica. Due to the stable physical properties of quartz glass, the resonator not only has high reliability and long working life, but also has strong radiation resistance and is not susceptible to cosmic rays and The interference of high-energy particles is often used for attitude determination and navigation of space vehicles. To sum up, the hemispherical resonant gyroscope has excellent development prospects. The research on the hemispherical resonant gyroscope is beneficial to the development and innovation of inertial technology, and can further lay a good foundation for my country's deep space exploration and other related high-tech fields. .
现阶段,半球谐振陀螺主要有力平衡和全角两种工作模式,全角模式是一种新型半球谐振陀螺工作模式,该模式是利用谐振子进动角度与陀螺载体转动角度呈正比这一物理特性,通过对谐振子振型的进动角度的实时解算来读出载体的转动角度,适合于转速较高的场合。全角模式下,通常会对0°和45°电极采集到的信号x、y进行等比例的前向放大,再计算振型的进动角度,但这存在一个值得考虑问题:如果两个信号的放大系数不相等时,那么常用的测角方程就不够精确,计算出来的振型角会与实际的振型角存在不小的误差,解算后读出的载体转动角度与载体实际转角也会存在一定误差,这在高精度应用场合中是不允许存在的情况。At present, the hemispherical resonant gyroscope mainly has two working modes: force balance and full-angle. The full-angle mode is a new working mode of hemispherical resonant gyroscope. The real-time calculation of the precession angle of the harmonic oscillator mode shape can read the rotation angle of the carrier, which is suitable for occasions with high rotation speed. In the full-angle mode, the signals x and y collected by the 0° and 45° electrodes are usually forward amplified in equal proportions, and then the precession angle of the mode shape is calculated, but there is a problem worth considering: if the two signals are When the magnification factor is not equal, the commonly used angle measurement equation is not accurate enough, the calculated mode shape angle will have a large error with the actual mode shape angle, and the rotation angle of the carrier read out after the solution will also be different from the actual rotation angle of the carrier. There is a certain error, which is not allowed in high-precision applications.
综上所述,想要计算出精确的振型角,就必须知道前向放大系数比值k的精确大小。因此,提出一种高精度的辨识方法来辨识出k,是十分必要的。To sum up, if you want to calculate the exact mode angle, you must know the exact size of the forward amplification factor ratio k. Therefore, it is very necessary to propose a high-precision identification method to identify k.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为了解决前向放大系数不一致时半球谐振陀螺无法精确测出载体的角度等信息,降低导航准确率的问题,而提出一种前向放大系数不一致时的半球谐振陀螺振型角获取方法。The purpose of the present invention is to solve the problem that the hemispherical resonant gyroscope cannot accurately measure the information such as the angle of the carrier when the forward amplification factor is inconsistent, and reduce the navigation accuracy, and propose a hemispherical resonant gyroscope mode angle when the forward amplification factor is inconsistent. get method.
载体可以是飞行器、转台等等。The carrier may be an aircraft, a turntable, or the like.
一种前向放大系数不一致时的半球谐振陀螺振型角获取方法具体过程为:The specific process of a hemispherical resonant gyro mode angle acquisition method when the forward amplification factor is inconsistent is as follows:
步骤1:将半球谐振陀螺安装并固定在转台上,使陀螺敏感轴与转台的旋转轴重合;Step 1: Install and fix the hemispherical resonant gyroscope on the turntable so that the sensitive axis of the gyroscope coincides with the rotation axis of the turntable;
步骤2:对半球谐振陀螺上的激励电极施加激励电压进行参数激励,直到谐振子的振动信号幅值不变;Step 2: apply an excitation voltage to the excitation electrodes on the hemispherical resonant gyroscope for parameter excitation until the amplitude of the vibration signal of the resonator remains unchanged;
步骤3:使转台匀速旋转,采集陀螺上0°、45°检测电极检测到的振动信号x、y,同时采集转台角度θr;Step 3: make the turntable rotate at a constant speed, collect the vibration signals x and y detected by the 0° and 45° detection electrodes on the gyro, and simultaneously collect the turntable angle θ r ;
步骤4:利用锁相环生成的参考信号vrc、vrs分别对检测到的振动信号x、y进行解调,得到信号Cx、Sx、Cy、Sy,对信号Cx、Sx、Cy、Sy分别进行低通滤波得到信号Cx'、Sx'、Cy'、Sy',再对信号Cx'、Sx'、Cy'、Sy'进行二次组合,得到E、R、S信号;Step 4: Use the reference signals v rc and v rs generated by the phase-locked loop to demodulate the detected vibration signals x and y, respectively, to obtain the signals Cx, Sx, Cy, and Sy. Perform low-pass filtering to obtain signals Cx', Sx', Cy', Sy', and then perform secondary combination of signals Cx', Sx', Cy', Sy' to obtain E, R, S signals;
步骤5:建立考虑前向放大系数比值k的测角方程,基于前向放大系数比值k的测角方程,设计扩展卡尔曼滤波器,并对扩展卡尔曼滤波器进行初始参数设置;Step 5: establish an angle measurement equation considering the forward amplification factor ratio k, design an extended Kalman filter based on the angle measurement equation of the forward amplification coefficient ratio k, and set the initial parameters of the extended Kalman filter;
步骤6:将步骤4得到的E、R、S信号作为扩展卡尔曼滤波器的输入,对前向放大系数比值k进行辨识,滤波结束后输出估计的前向放大系数比值 Step 6: Use the E, R, and S signals obtained in
步骤7:将输出的代入步骤5建立的考虑前向放大系数比值k的测角方程,获取前向放大系数不一致时的半球谐振陀螺振型角。Step 7: The output will be Substitute into the angle measurement equation established in
本发明的有益效果为:The beneficial effects of the present invention are:
传统的测角方程默认前向放大系数是等比例的情况,没有考虑前向放大系数不一致的问题,计算出来的载体的角度等信息就会存在一定误差,降低了陀螺的精度,降低了导航准确率,无法满足高精度的工作场合的需求。The default forward magnification factor of the traditional angle measurement equation is equal to the proportion, and the problem of inconsistent forward magnification factor is not considered. There will be certain errors in the calculated information such as the angle of the carrier, which reduces the accuracy of the gyro and reduces the accuracy of navigation. rate, cannot meet the needs of high-precision workplaces.
本发明提出了一种前向放大系数不一致时的半球谐振陀螺振型角获取方法,首先将半球谐振陀螺固定安装在转台上,使陀螺敏感轴与转台的旋转轴重合,然后对间隔布置在半球谐振陀螺上的激励电极施加激励电压进行参数激励,直到谐振子的振动信号幅值稳定。使转台匀速旋转,采集陀螺上0°、45°检测电极检测到的振动信号x、y,并利用锁相环生成的参考信号vrc、vrs分别对x、y进行解调、低通滤波、二次组合后得到E、R、S信号。基于改进的测角方程,完成扩展卡尔曼滤波器的设计后将步骤4得到的信号E、R、S作为扩展卡尔曼滤波器的输入,对k进行辨识,滤波结束后输出最后将辨识的代入改进的测角方程中,得到精确的测角方程。该方法可以实现前向放大系数比值k的精确辨识,具有很高的精度,辨识的误差小,通过计算得到的陀螺振型角精度高,实现了陀螺的高精度角度测量,精确测出载体的角度信息,提高导航准确率;解决前向放大系数不一致时半球谐振陀螺无法精确测出载体的角度等信息,降低导航准确率的问题。The invention proposes a method for obtaining the mode angle of the hemispherical resonant gyroscope when the forward amplification factor is inconsistent. First, the hemispherical resonant gyroscope is fixedly installed on the turntable, so that the sensitive axis of the gyroscope is coincident with the rotation axis of the turntable, and then the hemispherical resonant gyroscope is arranged at intervals in the hemisphere. The excitation electrodes on the resonant gyroscope apply excitation voltage for parameter excitation until the amplitude of the vibration signal of the resonator is stable. The turntable is rotated at a constant speed, and the vibration signals x and y detected by the 0° and 45° detection electrodes on the gyro are collected, and the reference signals v rc and v rs generated by the phase-locked loop are used to demodulate and low-pass filter x and y respectively. , E, R, S signals are obtained after the second combination. Based on the improved angle measurement equation, after the design of the extended Kalman filter is completed, the signals E, R, and S obtained in
本发明通过理论分析和仿真实验可以看出,本发明提出的一种前向放大系数不一致时的半球谐振陀螺振型角获取方法能够实现全角模式半球谐振陀螺在前向放大系数不一致时的高精度工作,从而广泛应用到需要高精度半球谐振陀螺的高端科技领域中。It can be seen from the theoretical analysis and simulation experiments of the present invention that the method for obtaining the mode angle of the hemispherical resonant gyroscope when the forward amplification coefficients are inconsistent proposed by the present invention can realize the high precision of the full-angle mode hemispherical resonant gyroscope when the forward amplification coefficients are inconsistent. It is widely used in high-end technology fields that require high-precision hemispherical resonant gyroscopes.
附图说明Description of drawings
图1为本发明流程图;Fig. 1 is the flow chart of the present invention;
图2为本发明实施例参数k辨识误差曲线图;Fig. 2 is the parameter k identification error curve diagram of the embodiment of the present invention;
图3为本发明实施例振型角误差曲线图;Fig. 3 is the mode shape angle error curve diagram of the embodiment of the present invention;
图4为半球谐振陀螺上的激励电极布置图。FIG. 4 is an arrangement diagram of excitation electrodes on a hemispherical resonant gyroscope.
具体实施方式Detailed ways
具体实施方式一:结合图1说明本实施方式,本实施方式一种前向放大系数不一致时的半球谐振陀螺振型角获取方法具体过程为:Embodiment 1: This embodiment is described with reference to FIG. 1 . The specific process of a method for obtaining the mode angle of a hemispherical resonant gyroscope when the forward amplification factor is inconsistent in this embodiment is as follows:
本发明的目的是针对于半球谐振陀螺检测回路前向放大系数不相等时测角存在误差的问题,提供一种前向放大系数不一致时的半球谐振陀螺振型角获取方法,提出改进的测角公式,基于此公式建立扩展卡尔曼滤波器,在转动陀螺的同时,对0°和45°电极采集到的振动信号进行解调、低通滤波等处理,得到的信号E、R、S作为扩展卡尔曼滤波器的输入,实现了前向放大系数比值k的辨识,得到精确的测角公式,提高陀螺的测量精度。The purpose of the present invention is to solve the problem of angle measurement errors when the forward amplification coefficients of the detection loops of the hemispherical resonant gyroscope are not equal, to provide a method for obtaining the mode angle of the hemispherical resonant gyroscope when the forward amplification coefficients are inconsistent, and to propose an improved angle measurement method. formula, based on this formula, an extended Kalman filter is established. While rotating the gyro, the vibration signals collected by the 0° and 45° electrodes are demodulated and low-pass filtered, and the obtained signals E, R, and S are used as extended The input of the Kalman filter realizes the identification of the ratio k of the forward amplification factor, and obtains an accurate angle measurement formula, which improves the measurement accuracy of the gyro.
为了达到上述目的,本发明提供了一种前向放大系数不一致时的半球谐振陀螺振型角获取方法,包含:In order to achieve the above object, the present invention provides a method for obtaining the mode angle of the hemispherical resonant gyroscope when the forward amplification coefficients are inconsistent, including:
步骤1:将半球谐振陀螺安装并固定在转台上,使陀螺敏感轴与转台的旋转轴重合;Step 1: Install and fix the hemispherical resonant gyroscope on the turntable so that the sensitive axis of the gyroscope coincides with the rotation axis of the turntable;
步骤2:对半球谐振陀螺上的激励电极施加激励电压进行参数(激励电极施加的信号,如信号的幅值、频率、相位)激励,直到谐振子的振动信号幅值不变;Step 2: apply an excitation voltage to the excitation electrodes on the hemispherical resonant gyroscope to excite parameters (signals applied by the excitation electrodes, such as signal amplitude, frequency, phase) until the vibration signal amplitude of the resonator remains unchanged;
步骤3:使转台匀速旋转,采集陀螺上0°、45°检测电极检测到的振动信号x、y,同时采集转台角度θr;Step 3: make the turntable rotate at a constant speed, collect the vibration signals x and y detected by the 0° and 45° detection electrodes on the gyro, and simultaneously collect the turntable angle θ r ;
步骤4:利用锁相环生成的参考信号vrc、vrs分别对检测到的振动信号x、y进行解调,得到信号Cx、Sx、Cy、Sy,对信号Cx、Sx、Cy、Sy分别进行低通滤波得到信号Cx'、Sx'、Cy'、Sy',再对信号Cx'、Sx'、Cy'、Sy'进行二次组合,得到E、R、S信号;Step 4: Use the reference signals v rc and v rs generated by the phase-locked loop to demodulate the detected vibration signals x and y, respectively, to obtain the signals Cx, Sx, Cy, and Sy. Perform low-pass filtering to obtain signals Cx', Sx', Cy', Sy', and then perform secondary combination of signals Cx', Sx', Cy', Sy' to obtain E, R, S signals;
步骤5:建立考虑前向放大系数比值k的测角方程,基于前向放大系数比值k的测角方程,设计扩展卡尔曼滤波器,并对扩展卡尔曼滤波器进行初始参数设置;Step 5: establish an angle measurement equation considering the forward amplification factor ratio k, design an extended Kalman filter based on the angle measurement equation of the forward amplification coefficient ratio k, and set the initial parameters of the extended Kalman filter;
步骤6:将步骤4得到的E、R、S信号作为扩展卡尔曼滤波器的输入,对前向放大系数比值k进行辨识,滤波结束后输出估计的前向放大系数比值 Step 6: Use the E, R, and S signals obtained in
步骤7:将输出的代入步骤5建立的考虑前向放大系数比值k的测角方程,获取前向放大系数不一致时的半球谐振陀螺振型角。Step 7: The output will be Substitute into the angle measurement equation established in
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤2中激励电极间隔布置在半球谐振陀螺上。如图4所示。Embodiment 2: The difference between this embodiment and
其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as in the first embodiment.
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述步骤4中利用锁相环生成的参考信号vrc、vrs分别对检测到的振动信号x、y进行解调,得到信号Cx、Sx、Cy、Sy,对信号Cx、Sx、Cy、Sy分别进行低通滤波得到信号Cx'、Sx'、Cy'、Sy',再对信号Cx'、Sx'、Cy'、Sy'进行二次组合,得到E、R、S信号;具体过程为:Embodiment 3: The difference between this embodiment and
所述利用锁相环生成的参考信号vrc、vrs分别对检测到的振动信号x、y进行解调,得到信号Cx、Sx、Cy、Sy,表达式为:The reference signals v rc and v rs generated by the phase-locked loop are used to demodulate the detected vibration signals x and y, respectively, to obtain signals Cx, Sx, Cy, and Sy, and the expressions are:
将信号Cx、Sx、Cy、Sy经过低通滤波,分别滤除信号Cx、Sx、Cy、Sy中的二倍频,得到信号Cx'、Sx'、Cy'、Sy';The signals Cx, Sx, Cy, and Sy are subjected to low-pass filtering to filter out the double frequency in the signals Cx, Sx, Cy, and Sy, respectively, to obtain the signals Cx', Sx', Cy', Sy';
对信号Cx'、Sx'、Cy'、Sy'进行二次组合,得到E、R、S信号。The signals Cx', Sx', Cy', and Sy' are combined twice to obtain E, R, and S signals.
其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as in the first or second embodiment.
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述对信号Cx'、Sx'、Cy'、Sy'进行二次组合,得到E、R、S信号,表达式为:Embodiment 4: The difference between this embodiment and one of
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as one of the first to third embodiments.
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述参考信号vrc、vrs由正弦信号和余弦信号组成。Embodiment 5: The difference between this embodiment and one of
其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as one of the first to fourth embodiments.
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述步骤5中建立考虑前向放大系数比值k的测角方程;具体过程为:Embodiment 6: The difference between this embodiment and one of
建立考虑前向放大系数比值k的测角方程,该公式能精确描述振型的真实进动角,形式如下:An angle measurement equation considering the ratio k of the forward magnification factor is established, which can accurately describe the true precession angle of the mode shape, and the form is as follows:
其中,k=ky/kx,kx为0°电极的前向放大系数,ky为45°电极(确定了0°电极后,逆时针方向45°就是45°电极)的前向放大系数;θreal为半球谐振陀螺振型角真实值。Among them, k= ky /k x , k x is the forward amplification factor of the 0° electrode, and ky is the forward amplification of the 45° electrode (after the 0° electrode is determined, 45° in the counterclockwise direction is the 45° electrode) coefficient; θ real is the real value of the mode angle of the hemispherical resonant gyro.
因此,只要知道参数k,就能直接求得半球谐振陀螺振型角真实值θreal。Therefore, as long as the parameter k is known, the real value θ real of the mode shape angle of the hemispherical resonant gyro can be directly obtained.
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the specific embodiments one to five.
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,所述步骤5中基于前向放大系数比值k的测角方程,设计扩展卡尔曼滤波器,滤波器选取的模型如下所示:Embodiment 7: The difference between this embodiment and one of
k(i+1)=k(i)、c(i+1)=c(i)是状态方程,为陀螺前向放大系数比值k=ky/kx以及陀螺进动系数c,这两个参数为不随时间改变的固定值k(i)为前向放大系数比值,c(i)为陀螺进动系数,i为第i个时刻;k(i+1)=k(i), c(i+1)=c(i) are the state equations, which are the ratio of the forward amplification factor of the gyro k= ky /k x and the precession coefficient of the gyro, c. The first parameter is a fixed value that does not change with time k(i) is the ratio of the forward amplification coefficient, c(i) is the gyro precession coefficient, and i is the ith moment;
是观测方程,θr为转台转角,v为测量噪声; is the observation equation, θ r is the rotation angle of the turntable, and v is the measurement noise;
所述步骤5中对扩展卡尔曼滤波器进行初始参数设置;具体过程为:In the
扩展卡尔曼滤波是一种递推算法,扩展卡尔曼滤波器启动时进行初始参数设置,给定初始值,令P0|0=I;Extended Kalman filter is a recursive algorithm. When the extended Kalman filter is started, initial parameters are set. Given the initial value, let P 0|0 =I;
式中,为前向放大系数比值k的初始估计值,为进动系数c的初始估计值,P0|0为估计误差协方差矩阵的初始值。In the formula, is the initial estimated value of the forward amplification factor ratio k, is the initial estimated value of the precession coefficient c, and P 0|0 is the initial value of the estimated error covariance matrix.
其它步骤及参数与具体实施方式一至六之一相同。Other steps and parameters are the same as one of
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是,所述步骤6中将步骤4得到的E、R、S信号作为扩展卡尔曼滤波器的输入,对前向放大系数比值k进行辨识,滤波结束后输出估计的前向放大系数比值辨识具体步骤如下:Embodiment 8: The difference between this embodiment and one of
S1:对下一时刻的状态估计值进行预测S1: Predict the state estimate value at the next moment
式中,为前向放大系数比值k第i个时刻的先验估计值,为前向放大系数比值k第i-1时刻的估计值,为进动系数c第i个时刻的先验估计值,为进动系数c第i-1时刻的估计值;In the formula, is the a priori estimate of the forward amplification factor ratio k at the ith moment, is the estimated value of the forward amplification coefficient ratio k at the i-1th moment, is the a priori estimate of the ith moment of the precession coefficient c, is the estimated value of the precession coefficient c at the i-1th moment;
S2:对下一时刻的估计误差协方差进行预测:S2: Predict the estimated error covariance at the next moment:
Pi|i-1=Pi-1|i-1 P i|i-1 =P i-1|i-1
式中,Pi|i-1为估计误差协方差矩阵第i时刻的预测值,Pi-1|i-1为估计误差协方差矩阵第i-1时刻的值;In the formula, P i|i-1 is the predicted value of the estimated error covariance matrix at time i, and P i-1|i-1 is the value of the estimated error covariance matrix at time i-1;
S3:判断是否还有信号E、R和S输入扩展卡尔曼滤波器,若有则跳到S4,若无则跳到步骤S9;S3: judge whether there are still signals E, R and S input to the extended Kalman filter, if so, skip to S4, if not, skip to step S9;
S4:对下一时刻的测量矩阵进行预测:S4: Predict the measurement matrix at the next moment:
令 make
式中,b为中间变量,Ci为第i个时刻的测量矩阵;In the formula, b is the intermediate variable, and C i is the measurement matrix at the ith moment;
S5:对下一时刻的测量估计值进行预测:S5: Predict the measurement estimate at the next moment:
其中,为转台转角的估计值;in, is the estimated value of the turntable rotation angle;
S6:对下一时刻的状态增益矩阵进行预测:S6: Predict the state gain matrix at the next moment:
Ki=Pi|i-1*Ci T*(Ci*Pi|i-1*Ci T+Q)-1 K i =P i|i-1 *C i T *(C i *P i|i-1 *C i T +Q) -1
式中,Q为噪声v的协方差,可取Q=0.012;*为乘号,Ki为第i个时刻的状态增益矩阵,T为转置;In the formula, Q is the covariance of the noise v, which can be taken as Q=0.01 2 ; * is the multiplication sign, K i is the state gain matrix at the ith moment, and T is the transpose;
S7:对下一时刻的状态估计值进行更新:S7: Update the state estimate value at the next moment:
式中,为前向放大系数比值k第i个时刻的后验估计值;In the formula, is the posterior estimated value of the ith moment of the forward amplification coefficient ratio k;
S8:对下一时刻的估计误差协方差进行更新,然后跳转到S1;S8: Update the estimated error covariance at the next moment, and then jump to S1;
Pi|i=(I-KiCi)*Pi|i-1 P i|i =(IK i C i )*P i|i-1
式中,Pi|i为估计误差协方差矩阵第i个时刻的值,I为单位矩阵;In the formula, P i|i is the value at the ith moment of the estimated error covariance matrix, and I is the identity matrix;
S9:滤波结束,输出估计的前向放大系数比值 S9: The filtering is over, and the estimated forward amplification factor ratio is output
综上,完成了基于考虑前向放大系数比值k的测角方程的扩展卡尔曼滤波器的设计。In conclusion, the design of the extended Kalman filter based on the goniometric equation considering the forward amplification factor ratio k is completed.
其它步骤及参数与具体实施方式一至七之一相同。Other steps and parameters are the same as one of the first to seventh embodiments.
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是,所述步骤7中将输出的代入步骤5建立的考虑前向放大系数比值k的测角方程,获取前向放大系数不一致时的半球谐振陀螺振型角;表达式为:Embodiment 9: The difference between this embodiment and one of
式中,θguji为半球谐振陀螺振型角的估计值。In the formula, θ guji is the estimated value of the mode shape angle of the hemispherical resonant gyroscope.
所述其它步骤及参数与具体实施方式一至八之一相同。The other steps and parameters are the same as those of one of the first to eighth embodiments.
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是,所述前向放大系数不一致由前向放大电路误差、谐振子电极极板面积误差、谐振子电极极板间距误差、谐振子安装偏差中的一种或多种导致;Embodiment 10: The difference between this embodiment and one of
所述多种为2种、3种或4种。The plurality is 2, 3 or 4.
其它步骤及参数与具体实施方式一至九之一相同。Other steps and parameters are the same as one of
采用以下实施例验证本发明的有益效果:Adopt the following examples to verify the beneficial effects of the present invention:
实施例一:Example 1:
步骤1,将半球谐振陀螺安装并固定在转台上,使陀螺敏感轴与转台的旋转轴重合;
步骤2,对间隔布置在半球谐振陀螺上的激励电极施加激励电压进行参数激励,直到谐振子的振动信号幅值稳定;
步骤3,使转台以Ωr=30°/s的速度匀速旋转,设定采样频率为fs=1000Hz,采样时间为ti=10s,采集陀螺上0°、45°检测电极检测到的振动信号x、y,同时采集转台角度θr,其中0°检测电极前向放大系数为kx=2,45°检测电极前向放大系数为ky=2.2,则k=ky/kx=1.1;Step 3: Make the turntable rotate at a constant speed at a speed of Ω r = 30°/s, set the sampling frequency to be fs = 1000 Hz, set the sampling time to be t i = 10s, and collect the vibration signals detected by the 0° and 45° detection electrodes on the gyro x, y, and simultaneously acquire the turntable angle θ r , where the forward magnification factor of the 0° detection electrode is k x =2, and the forward magnification factor of the 45° detection electrode is ky =2.2, then k= ky /k x =1.1 ;
步骤4,利用锁相环生成的参考信号vrc、vrs分别对所述的振动信号x、y进行解调,得到信号Cx、Sx、Cy、Sy,低通滤波后得到Cx'、Sx'、Cy'、Sy',再进行二次组合,得到E、R、S信号,所述的参考信号vrc、vrs由正弦信号和余弦信号组成;
步骤5,基于考虑前向放大系数比值k的测角方程,完成扩展卡尔曼滤波器的设计,滤波器模型如下:In
并将滤波器初始参数设置为P0|0=I,测量噪声协方差Q=0.012。and set the filter initial parameters to P 0|0 =I, measurement noise covariance Q=0.01 2 .
步骤6,将步骤4得到的信号E、R、S作为扩展卡尔曼滤波器的输入,对k进行辨识,滤波结束后输出
S1:对下一时刻的状态估计值进行预测S1: Predict the state estimate value at the next moment
S2:对下一时刻的估计误差协方差进行预测:S2: Predict the estimated error covariance at the next moment:
Pi|i-1=Pi-1|i-1 P i|i-1 =P i-1|i-1
S3:判断是否还有实验数据输入,若有则跳到S4,若无则跳到步骤S9;S3: determine whether there is still experimental data input, if so, skip to S4, if not, skip to step S9;
S4:对下一时刻的测量矩阵进行预测:S4: Predict the measurement matrix at the next moment:
令 make
S5:对下一时刻的测量估计值进行预测:S5: Predict the measurement estimate at the next moment:
其中,为转台转角的估计值in, is the estimated value of the turntable rotation angle
S6:对下一时刻的状态增益矩阵进行预测:S6: Predict the state gain matrix at the next moment:
Ki=Pi|i-1*Ci T*(Ci*Pi|i-1*Ci T+Q)-1 K i =P i|i-1 *C i T *(C i *P i|i-1 *C i T +Q) -1
S7:对下一时刻的状态估计值进行更新:S7: Update the state estimate value at the next moment:
S8:对下一时刻的估计误差协方差进行更新,然后跳转到S1:S8: Update the estimated error covariance at the next moment, and then jump to S1:
Pi|i=(I-KiCi)*Pi|i-1*(I-KiCi)T P i|i =(IK i C i )*P i|i-1 *(IK i C i ) T
S9:滤波结束,输出估计的前向放大系数比值 S9: The filtering is over, and the estimated forward amplification factor ratio is output
仿真结果如图2所示,从图2可以看出扩展卡尔曼滤波器在5秒时辨识误差已趋于平稳,在采样时间里滤波器一共输出了10000个值,取最后辨识的可以得到最终辨识的与实际k的差值约等于2×10-5,可以看出滤波器对k辨识精度很高。The simulation results are shown in Figure 2. It can be seen from Figure 2 that the identification error of the extended Kalman filter has stabilized at 5 seconds, and the filter has output a total of 10,000 samples during the sampling time. value, take the last identified finally identifiable The difference from the actual k is approximately equal to 2×10 -5 , and it can be seen that the filter has high identification accuracy for k.
步骤7,将输出的代入步骤5建立的考虑前向放大系数比值k的测角方程,获取前向放大系数不一致时的半球谐振陀螺振型角;表达式为:
计算得到估计振型角θguji与真实振型角θreal之间的位置误差,绘制的位置误差曲线如图3;Calculate the position error between the estimated mode shape angle θ guji and the real mode shape angle θ real , and the drawn position error curve is shown in Figure 3;
由图3曲线可知,位置误差范围始终处在[-0.0012°,0.0012°],该方法估计的振型角θguji具有很高的精度。It can be seen from the curve in Figure 3 that the position error range is always in [-0.0012°, 0.0012°], and the mode shape angle θ guji estimated by this method has high accuracy.
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments. Without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all It should belong to the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110522933.7A CN113252019B (en) | 2021-05-13 | 2021-05-13 | Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110522933.7A CN113252019B (en) | 2021-05-13 | 2021-05-13 | Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113252019A true CN113252019A (en) | 2021-08-13 |
CN113252019B CN113252019B (en) | 2022-05-24 |
Family
ID=77183287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110522933.7A Active CN113252019B (en) | 2021-05-13 | 2021-05-13 | Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113252019B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113670340A (en) * | 2021-09-13 | 2021-11-19 | 哈尔滨工业大学 | Method and system for measuring standing wave azimuth angle of hemispheric resonant gyroscope based on X/Y signal phase difference identification |
CN113899365A (en) * | 2021-11-22 | 2022-01-07 | 哈尔滨工业大学 | Standing wave azimuth angle measurement method based on asymmetric parameter identification of hemispherical resonator gyroscope detection channel |
CN114166242A (en) * | 2021-10-29 | 2022-03-11 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Calibration method and system for detecting signal nonuniformity of hemispherical resonator gyroscope |
CN114838741A (en) * | 2022-07-04 | 2022-08-02 | 中国船舶重工集团公司第七0七研究所 | Error compensation method for excitation electrode of full-angle hemispherical resonator gyroscope |
CN114858153A (en) * | 2022-04-08 | 2022-08-05 | 哈尔滨工业大学 | A hemispheric resonant gyroscope vibration state monitoring system and monitoring method |
CN115638780A (en) * | 2022-12-23 | 2023-01-24 | 中国船舶集团有限公司第七〇七研究所 | Resonant gyroscope vibration displacement extraction method, control system and resonant gyroscope |
CN119147012A (en) * | 2024-11-20 | 2024-12-17 | 中国船舶集团有限公司第七〇七研究所 | An inertial navigation initial alignment method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6189382B1 (en) * | 1999-11-05 | 2001-02-20 | Litton Systems, Inc. | Vibratory sensor with self-calibration and low noise digital conversion |
CN105547272A (en) * | 2016-01-26 | 2016-05-04 | 上海交通大学 | All-angle control signal detection system of piezoelectric hemispherical resonator gyroscope |
CN109813340A (en) * | 2019-02-21 | 2019-05-28 | 哈尔滨工业大学 | Signal detection system of hemispherical resonant gyroscope and detection method considering shape and position error of detection electrode |
CN111896026A (en) * | 2020-05-11 | 2020-11-06 | 中国科学院地质与地球物理研究所 | Solid-state resonant gyroscope self-calibration method and system |
CN112595303A (en) * | 2020-12-10 | 2021-04-02 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Parameter calculation method in HRG full angle mode |
CN112595304A (en) * | 2020-11-17 | 2021-04-02 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Self-adaptive control system and control method for working mode of hemispherical resonator gyroscope |
-
2021
- 2021-05-13 CN CN202110522933.7A patent/CN113252019B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6189382B1 (en) * | 1999-11-05 | 2001-02-20 | Litton Systems, Inc. | Vibratory sensor with self-calibration and low noise digital conversion |
CN105547272A (en) * | 2016-01-26 | 2016-05-04 | 上海交通大学 | All-angle control signal detection system of piezoelectric hemispherical resonator gyroscope |
CN109813340A (en) * | 2019-02-21 | 2019-05-28 | 哈尔滨工业大学 | Signal detection system of hemispherical resonant gyroscope and detection method considering shape and position error of detection electrode |
CN111896026A (en) * | 2020-05-11 | 2020-11-06 | 中国科学院地质与地球物理研究所 | Solid-state resonant gyroscope self-calibration method and system |
CN112595304A (en) * | 2020-11-17 | 2021-04-02 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Self-adaptive control system and control method for working mode of hemispherical resonator gyroscope |
CN112595303A (en) * | 2020-12-10 | 2021-04-02 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Parameter calculation method in HRG full angle mode |
Non-Patent Citations (1)
Title |
---|
张岚昕等: "半球谐振陀螺全角模式信号处理控制方法", 《导航定位与授时》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113670340A (en) * | 2021-09-13 | 2021-11-19 | 哈尔滨工业大学 | Method and system for measuring standing wave azimuth angle of hemispheric resonant gyroscope based on X/Y signal phase difference identification |
CN113670340B (en) * | 2021-09-13 | 2022-05-27 | 哈尔滨工业大学 | Method and system for measuring standing wave azimuth angle of hemispherical resonator gyroscope based on X/Y signal phase difference identification |
CN114166242A (en) * | 2021-10-29 | 2022-03-11 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Calibration method and system for detecting signal nonuniformity of hemispherical resonator gyroscope |
CN114166242B (en) * | 2021-10-29 | 2023-08-08 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | Calibration method and system for hemispherical resonator gyro detection signal non-uniformity |
CN113899365A (en) * | 2021-11-22 | 2022-01-07 | 哈尔滨工业大学 | Standing wave azimuth angle measurement method based on asymmetric parameter identification of hemispherical resonator gyroscope detection channel |
CN114858153A (en) * | 2022-04-08 | 2022-08-05 | 哈尔滨工业大学 | A hemispheric resonant gyroscope vibration state monitoring system and monitoring method |
CN114838741A (en) * | 2022-07-04 | 2022-08-02 | 中国船舶重工集团公司第七0七研究所 | Error compensation method for excitation electrode of full-angle hemispherical resonator gyroscope |
CN114838741B (en) * | 2022-07-04 | 2022-09-02 | 中国船舶重工集团公司第七0七研究所 | Error compensation method for excitation electrode of full-angle hemispherical resonator gyroscope |
CN115638780A (en) * | 2022-12-23 | 2023-01-24 | 中国船舶集团有限公司第七〇七研究所 | Resonant gyroscope vibration displacement extraction method, control system and resonant gyroscope |
CN119147012A (en) * | 2024-11-20 | 2024-12-17 | 中国船舶集团有限公司第七〇七研究所 | An inertial navigation initial alignment method and system |
Also Published As
Publication number | Publication date |
---|---|
CN113252019B (en) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113252019B (en) | Method for acquiring vibration mode angle of hemispherical resonant gyroscope when forward amplification coefficients are inconsistent | |
CN113670340B (en) | Method and system for measuring standing wave azimuth angle of hemispherical resonator gyroscope based on X/Y signal phase difference identification | |
CN113551660B (en) | Method for obtaining vibration mode angle of hemispherical resonance gyroscope when electrode angle has error | |
CN111896026B (en) | Solid-state resonant gyroscope self-calibration method and system | |
CN113899365B (en) | Standing wave azimuth angle measurement method based on hemispheric resonant gyroscope detection path asymmetry parameter identification | |
CN106482747B (en) | A zero-bias temperature compensation method for a high-precision gyroscope | |
Kou et al. | A novel MEMS S-springs vibrating ring gyroscope with atmosphere package | |
CN109282804B (en) | Single-axis fiber-optic gyroscope north-seeking algorithm | |
CN109443337B (en) | A kind of positioning and navigation system and method based on NV color center in diamond | |
RU2499223C1 (en) | Method of determining heading by turning inertial device | |
CN114440852A (en) | An error identification method for the drive gain asymmetry of the X/Y channel of a hemispheric resonant gyroscope | |
CN111089576A (en) | Method for determining actual output value of fiber-optic gyroscope and method for testing threshold value of fiber-optic gyroscope | |
CN102183249B (en) | Sagnac phase shift tracing method of optical fiber gyroscope | |
CN103983259A (en) | Omnibearing north-seeking method based on maximum precession velocity coarse north-seeking principle of pendulous gyroscope | |
CN107576992B (en) | A Gravity Gradiometer Self-Calibration Method and Centrifugal Gradient Compensation Method | |
Chen et al. | Highly sensitive resonant sensor using quartz resonator cluster for inclination measurement | |
CN109443333B (en) | A Feedback Weighted Fusion Method of Gyro Array | |
CN117949011A (en) | A method for calibrating asymmetric sampling gain of hemispherical resonant gyroscope | |
CN116046016B (en) | Hemispherical resonator gyro control circuit phase lag compensation method | |
CN117330107A (en) | A hemispheric resonant gyro drift test method | |
CN110207696A (en) | A kind of nine axis movement sensor attitude measurement methods based on quasi-Newton method | |
RU89895U1 (en) | DEVICE FOR DETERMINING THE DIRECTION TO THE GEOGRAPHIC NORTH | |
CN201133818Y (en) | North finder | |
CN111380561B (en) | Micro-electromechanical gyro scale factor compensation method based on multi-parameter fusion | |
CN116222529A (en) | North-finding method, system and storage medium based on fiber optic gyroscope for measuring angular acceleration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |