CN113249723A - 一种基于数据库系统的cmt电弧表面熔覆方法 - Google Patents

一种基于数据库系统的cmt电弧表面熔覆方法 Download PDF

Info

Publication number
CN113249723A
CN113249723A CN202110716441.1A CN202110716441A CN113249723A CN 113249723 A CN113249723 A CN 113249723A CN 202110716441 A CN202110716441 A CN 202110716441A CN 113249723 A CN113249723 A CN 113249723A
Authority
CN
China
Prior art keywords
cladding
temperature
width
cmt
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110716441.1A
Other languages
English (en)
Other versions
CN113249723B (zh
Inventor
王大为
漆林
黄崇权
荣鹏
高川云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN202110716441.1A priority Critical patent/CN113249723B/zh
Publication of CN113249723A publication Critical patent/CN113249723A/zh
Application granted granted Critical
Publication of CN113249723B publication Critical patent/CN113249723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Abstract

本发明提供了一种基于数据库系统的CMT电弧表面熔覆方法,属于金属表面熔覆技术领域,该数据库系统的工作方式为:选用CMT电弧为热源,在待熔覆工件表面进行合金材料快速熔覆,实时监测待熔覆处温度,通过温度‑已熔覆层宽度‑搭接宽度的数据库系统,根据待熔覆处温度自动匹配搭接宽度。本发明通过大量预实验,建立温度‑熔覆层宽度‑搭接宽度最佳匹配的数据库,针对当前表面熔覆工艺的固定搭接宽度出现的前期熔合不良,后期效率低下的问题,采用可变搭接宽度的方式,实现合金高效、无缺陷的快速熔覆。

Description

一种基于数据库系统的CMT电弧表面熔覆方法
技术领域
本发明属于计算机数据与机械加工结合技术领域,具体地说,涉及一种基于数据库系统的CMT电弧表面熔覆方法。
背景技术
镍基高温合金由于其优异的耐高温、耐蚀性、抗疲劳以及可焊性广泛应用于宇航、石油和核电等行业。随着轻量化的要求逐渐受到重视,镍基高温合金如GH4169合金,由于其密度大,构件超重导致难以大量投入使用,且该合金Nb元素的含量较高,构件的制造成本高的问题始终无法解决。因此,采用在替代金属,如不锈钢等表面熔覆一层致密的高温合金,可以保证了构件的耐高温和耐蚀性,大幅降低了构件的成本和重量。
目前,用于表面熔覆的热源主要是激光、等离子弧和电弧,激光熔覆设备价格高昂,熔覆效率低,金属粉末成本高,不适合大面积使用;等离子弧的熔覆材料为粉末,同样存在成本高,回收困难的问题;电弧修复技术具有修复效率高、周期短、材料浪费率低、成本低廉、受工件形状尺寸限制小等特点,因此有着极为广阔的前景,但传统的电弧修复技术(如TIG)存在热输入过大,热影响区范围广,熔覆层容易夹钨造成开裂等问题,难以满足使用要求。冷金属过渡(Cold Metal Transfer,CMT)作为一种不产生焊渣,飞溅极小的新型焊接技术,这种技术主要通过控制焊丝的回抽,进而保证了熔滴的过渡方式均为短路过渡,同时改进了电压电流的波形,熔滴过渡时的电流几乎为零,极大地限制了焊接热输入,进而弱化了对界面组织的影响,基于此,CMT在表面快速熔覆领域有很好的应用前景。
目前使用的电弧表面熔覆通常为固定的搭接率和搭接宽度,容易出现在熔覆的前几道次的搭接处由于基板温度低,熔覆金属铺展性差,极易出现熔合不良等缺陷;但随着熔覆过程的进行,基板材料的温度逐渐上升,熔覆金属的润湿性大幅提高,熔宽增加,但是搭接宽度始终不变,因此容易造成局部过热、熔覆金属堆积和熔覆效率低下等问题。
发明内容
本发明针对现有技术的上述缺陷,提出了一种基于数据库系统的CMT电弧表面熔覆方法,通过建立温度-熔宽-搭接宽度的熔覆数据库,然后根据建立的温度-熔宽-搭接宽度的熔覆数据库,在实际的熔覆过程中选取合适的温度下对应的熔宽和搭接温度进行实际的熔覆操作。本发明通过上述操作实现了在熔覆过程中温度更加适宜,熔覆金属效果更加好,且提高了熔覆的效率。
本发明具体实现内容如下:
本发明提出了一种基于数据库系统的CMT电弧表面熔覆方法,包括以下步骤:
步骤1:建立温度-熔宽-搭接宽度的熔覆数据库;
步骤2:使用建立好的温度-熔宽-搭接宽度的熔覆数据库对基板进行实际的CMT电弧表面熔覆;
所述步骤1的操作具体包括:
步骤1.1:对基板表面进行打磨或者车削加工,将基板表面的污物清理去除;
步骤1.2:使用加热装置将去除表面污物后的基板预热至温度t1
步骤1.3:采用CMT电弧在基板表面进行单道熔覆,所述单道熔覆操作过程中的参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min;
步骤1.4:测量并统计在温度t1下的单道熔覆层的熔宽数据d1
步骤1.5:改变预热温度至温度t2,重复步骤1.3和1.4,记录在温度t2下的单道熔覆层的熔宽数据d2
步骤1.6:按照步骤1.5的方法,依次继续改变温度得到温度t3、t4、t5…tn,逐一得到对应的熔宽数据d3、d4、d5…dn
步骤1.7:设置搭接宽度与熔宽的匹配关系:dn´=1/2dn,计算不同温度和熔宽下对应的搭接熔宽数据dn´;
步骤1.8:建立温度-熔宽-搭接宽度的数据库。
为了更好地实现本发明,进一步地,所述步骤1.2中预热温度范围为100~450℃,相邻两组预热温度d之间的间隔为50℃,温度波动为±5℃。
为了更好地实现本发明,进一步地,所述步骤1.4中统计熔覆层宽度的方法为测量单道熔覆层起弧端1cm处、1/2熔覆层长度处和收弧端1cm处三个位置的宽度,取平均值后作为相应温度下的熔宽数据d。
为了更好地实现本发明,进一步地,在所述步骤1.2中,在预热到温度t1后,在焊枪起弧前保持预热至少3s时间,然后再关闭预热装置。
为了更好地实现本发明,进一步地,在所述步骤1.3中,在采用CMT电弧在基板表面进行单道熔覆的过程中,焊枪与熔覆方向始终保持75°倾角。
为了更好地实现本发明,进一步地,所述步骤1.1中,在将基板表面的污物清理去除后,还要使用无水乙醇进行清洗。
为了更好地实现本发明,进一步地,所述步骤2具体包括以下步骤:
步骤2.1:通过机械打磨的方法将待熔覆材料表面打磨干净;
步骤2.2:通过加热装置将待熔覆材料预热至100~150℃;
步骤2.3:采用CMT电弧技术在待熔覆材料表面进行熔覆,熔覆过程中的参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min;
步骤2.4:将红外温度测量仪的斑点对准熔覆层一侧2~5mm处的待熔覆金属表面,根据实测温度选择下一道次熔覆的搭接宽度d´,起弧位置为上一道熔覆层息弧处向未熔覆方向平移d´的距离,表面熔覆的路径采用S型扫描;
步骤2.5:重复步骤2.4,直至完成全部的表面熔覆;
步骤2.6:对表面熔覆金属层进行机加处理至所需厚度。
为了更好地实现本发明,进一步地,在所述步骤2.3中,设置氩气进行保护,氩气保护流量为15L/min。
为了更好地实现本发明,进一步地,在所述步骤2.4中的红外温度测量仪斑点的测量的具体位置为熔覆层长度的1/2处,道间冷却时间为5S,温度测量仪的温度采取时刻为息弧后的第5S。
为了更好地实现本发明,进一步地,在所述步骤2.4中,在将实测温度与熔覆数据库中记录的温度值进行匹配时,以熔覆数据库中与实测温度的值之差的绝对值最小的温度值作为数据库输出的温度值来判定相应的熔覆宽度。
本发明与现有技术相比具有以下优点及有益效果:
本发明通过建立温度-熔覆层宽度-搭接宽度的数据库,动态调整不同基本温度时的搭接宽度,保证搭接质量的同时,可最大程度节约熔覆时间和金属耗材,大幅降低成本,且CMT作为高效率、低热输入的熔覆工艺,熔覆后金属界面区热影响区窄,变形小,残余应力值低,针对难熔合金依然表现出优异的熔覆效果。
附图说明
图1为本发明建立温度-熔覆层宽度-搭接宽度的熔覆数据库的具体流程示意图。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,因此不应被看作是对保护范围的限定。基于本发明中的实施例,本领域普通技术工作人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;也可以是直接相连,也可以是通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1:
本实施例提出了一种基于数据库系统的CMT电弧表面熔覆方法,如图1所示,包括以下步骤:
步骤1:建立温度-熔宽-搭接宽度的熔覆数据库;
步骤2:使用建立好的温度-熔宽-搭接宽度的熔覆数据库对基板进行实际的CMT电弧表面熔覆;
所述步骤1的操作具体包括:
步骤1.1:对基板表面进行打磨或者车削加工,将基板表面的污物清理去除;
步骤1.2:使用加热装置将去除表面污物后的基板预热至温度t1
步骤1.3:采用CMT电弧在基板表面进行单道熔覆,所述单道熔覆操作过程中的参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost=320A,短路电流I scwait=100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min;
步骤1.4:测量并统计在温度t1下的单道熔覆层的熔宽数据d1
步骤1.5:改变预热温度至温度t2,重复步骤1.3和1.4,记录在温度t2下的单道熔覆层的熔宽数据d2
步骤1.6:按照步骤1.5的方法,依次继续改变温度得到温度t3、t4、t5…tn,逐一得到对应的熔宽数据d3、d4、d5…dn
步骤1.7:设置搭接宽度与熔宽的匹配关系:dn´=1/2dn,计算不同温度和熔宽下对应的搭接熔宽数据dn´;
步骤1.8:建立温度-熔宽-搭接宽度的数据库。
实施例2:
本实施例在上述实施例1的基础上,为了更好地实现本发明,进一步地,所述步骤1.2中预热温度范围为100~450℃,相邻两组预热温度d之间的间隔为50℃,温度波动为±5℃。
本实施例的其他部分与上述实施例1相同,故不再赘述。
实施例3:
本实施例在上述实施例1-2任一项的基础上,为了更好地实现本发明,进一步地,所述步骤1.1中,在将基板表面的污物清理去除后,还要使用无水乙醇进行清洗。
在所述步骤1.2中,在预热到温度t1后,在焊枪起弧前保持预热至少3s时间,然后再关闭预热装置。
进一步地,在所述步骤1.3中,在采用CMT电弧在基板表面进行单道熔覆的过程中,焊枪与熔覆方向始终保持75°倾角。
进一步地,所述步骤1.4中统计熔覆层宽度的方法为测量单道熔覆层起弧端1cm处、1/2熔覆层长度处和收弧端1cm处三个位置的宽度,取平均值后作为相应温度下的熔宽数据d。
本实施例的其他部分与上述实施例1-2任一项相同,故不再赘述。
实施例4:
本实施例在上述实施例1-3任一项的基础上,为了更好地实现本发明,进一步地,所述步骤2具体包括以下步骤:
步骤2.1:通过机械打磨的方法将待熔覆材料表面打磨干净;
步骤2.2:通过加热装置将待熔覆材料预热至100~150℃;
步骤2.3:采用CMT电弧技术在待熔覆材料表面进行熔覆,熔覆过程中的参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min;
步骤2.4:将红外温度测量仪的斑点对准熔覆层一侧2~5mm处的待熔覆金属表面,根据实测温度选择下一道次熔覆的搭接宽度d´,起弧位置为上一道熔覆层息弧处向未熔覆方向平移d´的距离,表面熔覆的路径采用S型扫描;
步骤2.5:重复步骤2.4,直至完成全部的表面熔覆;
步骤2.6:对表面熔覆金属层进行机加处理至所需厚度。
本实施例的其他部分与上述实施例1-3任一项相同,故不再赘述。
实施例5:
本实施例在上述实施例1-4任一项的基础上,为了更好地实现本发明,进一步地,在所述步骤2.3中,设置氩气进行保护,氩气保护流量为15L/min。
进一步地,在所述步骤2.4中的红外温度测量仪斑点的测量的具体位置为熔覆层长度的1/2处,道间冷却时间为5S,温度测量仪的温度采取时刻为息弧后的第5S。
进一步地,在所述步骤2.4中,在将实测温度与熔覆数据库中记录的温度值进行匹配时,以熔覆数据库中与实测温度的值之差的绝对值最小的温度值作为数据库输出的温度值来判定相应的熔覆宽度。
本实施例的其他部分与上述实施例1-4任一项相同,故不再赘述。
实施例6:
本实施例在上述实施例1-5任一项的基础上,给出具体的一组以本发明方法进行的操作和以常规方法进行的操作的对比试验数据:
一、以本发明方法进行操作:
(1)通过机械打磨的方法将304不锈钢基板表面打磨干净,露出亮白无污物的金属表面;
(2)通过加热装置将待熔覆材料预热至100℃;
(3)采用CMT电弧技术在待熔覆材料表面进行第一道熔覆,焊丝牌号为HGH4169,焊丝直径1.2mm,熔覆参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min,熔覆层长度为50cm;
(4)将红外温度测量仪斑点对准已熔覆一侧4mm处的待熔覆金属表面,根据实测温度数值,通过数据库系统自动选择下一道次熔覆的搭接宽度d´,起弧位置为上一道熔覆层息弧处向未熔覆方向平移d´的距离,扫描路径为S型;
(5)重复(4)步骤,进行80道次的熔覆。
二、以常规方法进行的操作:
(1)通过机械打磨的方法将304不锈钢基板表面打磨干净,露出亮白无污物的金属表面;
(2)通过加热装置将待熔覆材料预热至100℃;
(3)采用CMT电弧技术在待熔覆材料表面进行第一道熔覆,焊丝牌号为HGH4169,焊丝直径1.2mm,熔覆参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min,熔覆层长度为50cm;
(4)设置搭接宽度为4mm,即下一道熔覆层起弧位置为上一道熔覆层息弧处向未熔覆方向平移4mm的距离,扫描路径为S型;
(5)保持参数不变,完成80道次的表面熔覆。
测量本发明方法下的操作和和常规方法下的操作完成的熔覆层总宽度和熔覆层厚度,宽度值采用两端和1/2处的测量值取平均值,厚度的测量采用对1、20、40、60、80道次的1/2熔覆层长度处的厚度值取平均值。测量结果如下表1所示:
Figure DEST_PATH_IMAGE002
由表1可知,对比本发明的方法和常规方法,在相同熔覆热输入参数下,基于数据库系统的试样熔覆宽度达到了467.7mm,相比于等距离搭接宽的常规方法,其相同焊丝消耗的前提下,熔覆效率提升了44.8%,熔覆厚度下降,降低了后续机加的工作量。
由以上实施例可知,本发明提供的一种基于数据库系统的CMT电弧表面熔覆方法,实际熔覆过程中可以显著降低成本,效率大幅提升。
本实施例的其他部分与上述实施例1-5任一项相同,故不再赘述。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。

Claims (10)

1.一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,包括以下步骤:
步骤1:建立温度-熔宽-搭接宽度的熔覆数据库;
步骤2:使用建立好的温度-熔宽-搭接宽度的熔覆数据库对基板进行实际的CMT电弧表面熔覆;
所述步骤1的操作具体包括:
步骤1.1:对基板表面进行打磨或者车削加工,将基板表面的污物清理去除;
步骤1.2:使用加热装置将去除表面污物后的基板预热至温度t1
步骤1.3:采用CMT电弧在基板表面进行单道熔覆,所述单道熔覆操作过程中的参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min;
步骤1.4:测量并统计在温度t1下的单道熔覆层的熔宽数据d1
步骤1.5:改变预热温度至温度t2,重复步骤1.3和1.4,记录在温度t2下的单道熔覆层的熔宽数据d2
步骤1.6:按照步骤1.5的方法,依次继续改变温度得到温度t3、t4、t5…tn,逐一得到对应的熔宽数据d3、d4、d5…dn
步骤1.7:设置搭接宽度与熔宽的匹配关系:dn´=1/2dn,计算不同温度和熔宽下对应的搭接熔宽数据dn´;
步骤1.8:建立温度-熔宽-搭接宽度的数据库。
2.如权利要求1所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,所述步骤1.2中预热温度范围为100~450℃,相邻两组预热温度d之间的间隔为50℃,温度波动为±5℃。
3.如权利要求1所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,所述步骤1.4中统计熔覆层宽度的方法为测量单道熔覆层起弧端1cm处、1/2熔覆层长度处和收弧端1cm处三个位置的宽度,取平均值后作为相应温度下的熔宽数据d。
4.如权利要求1所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,在所述步骤1.2中,在预热到温度t1后,在焊枪起弧前保持预热至少3s时间,然后再关闭预热装置。
5.如权利要求1所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,在所述步骤1.3中,在采用CMT电弧在基板表面进行单道熔覆的过程中,焊枪与熔覆方向始终保持75°倾角。
6.如权利要求1-5任一项所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,所述步骤1.1中,在将基板表面的污物清理去除后,还要使用无水乙醇进行清洗。
7.如权利要求1所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,所述步骤2具体包括以下步骤:
步骤2.1:通过机械打磨的方法将待熔覆材料表面打磨干净;
步骤2.2:通过加热装置将待熔覆材料预热至100~150℃;
步骤2.3:采用CMT电弧技术在待熔覆材料表面进行熔覆,熔覆过程中的参数为:送丝速度WFS=5.0m/min,CMT非一元化调节起弧电流I boost =320A,短路电流I scwait =100A,短路电流持续时间t b =4.2ms,焊枪移动速度5.4m/min;
步骤2.4:将红外温度测量仪的斑点对准熔覆层一侧2~5mm处的待熔覆金属表面,根据实测温度选择下一道次熔覆的搭接宽度d´,起弧位置为上一道熔覆层息弧处向未熔覆方向平移d´的距离,表面熔覆的路径采用S型扫描;
步骤2.5:重复步骤2.4,直至完成全部的表面熔覆;
步骤2.6:对表面熔覆金属层进行机加处理至所需厚度。
8.如权利要求7所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,在所述步骤2.3中,设置氩气进行保护,氩气保护流量为15L/min。
9.如权利要求7所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,在所述步骤2.4中的红外温度测量仪斑点的测量的具体位置为熔覆层长度的1/2处,道间冷却时间为5S,温度测量仪的温度采取时刻为息弧后的第5S。
10.如权利要求7所述的一种基于数据库系统的CMT电弧表面熔覆方法,其特征在于,在所述步骤2.4中,在将实测温度与熔覆数据库中记录的温度值进行匹配时,以熔覆数据库中与实测温度的值之差的绝对值最小的温度值作为数据库输出的温度值来判定相应的熔覆宽度。
CN202110716441.1A 2021-06-28 2021-06-28 一种基于数据库系统的cmt电弧表面熔覆方法 Active CN113249723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110716441.1A CN113249723B (zh) 2021-06-28 2021-06-28 一种基于数据库系统的cmt电弧表面熔覆方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110716441.1A CN113249723B (zh) 2021-06-28 2021-06-28 一种基于数据库系统的cmt电弧表面熔覆方法

Publications (2)

Publication Number Publication Date
CN113249723A true CN113249723A (zh) 2021-08-13
CN113249723B CN113249723B (zh) 2021-11-30

Family

ID=77189807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110716441.1A Active CN113249723B (zh) 2021-06-28 2021-06-28 一种基于数据库系统的cmt电弧表面熔覆方法

Country Status (1)

Country Link
CN (1) CN113249723B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013005613A5 (de) * 2012-11-22 2015-12-24 Eads Deutschland Gmbh Verfahren zur Nanostrukturierung und Anodisation einer Metalloberfläche
RU2016133843A (ru) * 2016-08-18 2018-02-21 Николай Николаевич Грищенко Способ восстановления рельсов с дефектами на поверхности катания автоматической электродуговой наплавкой
CN109267060A (zh) * 2018-09-28 2019-01-25 河北瑞兆激光再制造技术股份有限公司 一种粗轧机主轴扁头套磨损后的修复方法
CN109434286A (zh) * 2018-12-21 2019-03-08 陕西天元智能再制造股份有限公司 一种高效率的丝材激光熔覆方法
CN111037048A (zh) * 2019-12-09 2020-04-21 西安铂力特增材技术股份有限公司 一种电弧增材制造单道熔覆层竖向搭接形貌的控制方法
CN112329161A (zh) * 2020-10-11 2021-02-05 南京理工大学 一种激光冲击可调的电弧增材制造方法
CN112501606A (zh) * 2020-10-27 2021-03-16 江苏大学 一种激光光斑整形装置及制备单层熔覆层的方法
CN112517926A (zh) * 2020-11-30 2021-03-19 江苏海宇机械有限公司 一种调控激光熔覆过程中熔池温度梯度的方法
CN112517925A (zh) * 2020-11-27 2021-03-19 江苏大学 基于功率的适应性自动调节技术控制熔池动态尺寸的方法
CN112760641A (zh) * 2020-12-26 2021-05-07 南京中科煜宸激光技术有限公司 基于热时效处理的激光熔覆工艺与激光熔覆修复加工系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013005613A5 (de) * 2012-11-22 2015-12-24 Eads Deutschland Gmbh Verfahren zur Nanostrukturierung und Anodisation einer Metalloberfläche
RU2016133843A (ru) * 2016-08-18 2018-02-21 Николай Николаевич Грищенко Способ восстановления рельсов с дефектами на поверхности катания автоматической электродуговой наплавкой
CN109267060A (zh) * 2018-09-28 2019-01-25 河北瑞兆激光再制造技术股份有限公司 一种粗轧机主轴扁头套磨损后的修复方法
CN109434286A (zh) * 2018-12-21 2019-03-08 陕西天元智能再制造股份有限公司 一种高效率的丝材激光熔覆方法
CN111037048A (zh) * 2019-12-09 2020-04-21 西安铂力特增材技术股份有限公司 一种电弧增材制造单道熔覆层竖向搭接形貌的控制方法
CN112329161A (zh) * 2020-10-11 2021-02-05 南京理工大学 一种激光冲击可调的电弧增材制造方法
CN112501606A (zh) * 2020-10-27 2021-03-16 江苏大学 一种激光光斑整形装置及制备单层熔覆层的方法
CN112517925A (zh) * 2020-11-27 2021-03-19 江苏大学 基于功率的适应性自动调节技术控制熔池动态尺寸的方法
CN112517926A (zh) * 2020-11-30 2021-03-19 江苏海宇机械有限公司 一种调控激光熔覆过程中熔池温度梯度的方法
CN112760641A (zh) * 2020-12-26 2021-05-07 南京中科煜宸激光技术有限公司 基于热时效处理的激光熔覆工艺与激光熔覆修复加工系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.L.ARIAS ET AL.: "Real-time laser cladding control with variable spot size", 《LASER 3D MANUFACTURING》 *
宫新勇等: "基于不同搭接率的激光熔覆温度场数值模拟研究", 《华北科技学院学报》 *
张若宾等: "激光熔覆铁基合金的单层多道搭接工艺研究", 《热加工工艺》 *

Also Published As

Publication number Publication date
CN113249723B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN101811231B (zh) 一种激光-冷金属过渡电弧复合热源焊接方法
CN102941397B (zh) 一种镍基合金的钨极氩弧焊焊接方法
CN109158760A (zh) 一种窄间隙扫描振镜激光-热丝复合焊接方法及装置
Lucas TIG and plasma welding: process techniques, recommended practices and applications
CN108568580B (zh) 一种堆焊镍基合金的焊接设备及工艺
CN101648312B (zh) 铝材料的焊接方法
CN108788385B (zh) 以q345r低合金钢为基层、904l不锈钢为复层的不锈钢复合板焊接方法
CN106312270A (zh) 一种同轴空心钨极tig焊装置及其焊枪、使用方法和应用
CN102161134A (zh) 变极性方波钨极氩弧和激光复合焊接方法
CN103252589A (zh) 用于厚板高强或超高强钢拼焊的激光-mag复合焊接方法
CN102699496A (zh) 一种黄铜h62的焊接工艺方法
CN112894087B (zh) 一种管板镍基合金双钨极单热丝自动钨极氩弧焊堆焊工艺
CN102962543A (zh) 紫铜与不锈钢异种材质的焊接工艺
CN110216360A (zh) 用于合金槽的镍基合金堆焊焊接工艺
CN103464873B (zh) 一种钛合金与镍基高温合金的电弧焊工艺
CN101797660A (zh) 核电蒸汽发生器管板镍基合金带极电渣堆焊工艺
JP4757696B2 (ja) Uoe鋼管の製造方法
CN110238491B (zh) 一种CMT埋弧焊焊接inconel的方法
CN101992354A (zh) 微束等离子弧和激光复合焊接方法
CN105364244A (zh) 一种硬质合金与不锈钢复合棒销的焊接方法
CN105798462A (zh) 一种利用激光-mag复合热源的焊接方法
CN113249723B (zh) 一种基于数据库系统的cmt电弧表面熔覆方法
CN107552961B (zh) 一种激光束焊接TiAl合金的方法
CN110405372A (zh) 一种基于残余应力调控的双相不锈钢换热板复合焊接方法
CN109352133A (zh) 手工钨极氦弧焊焊接HFe59-1-1铁黄铜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant