CN113247302A - 用于监测vtol飞行器的状况的方法及系统 - Google Patents
用于监测vtol飞行器的状况的方法及系统 Download PDFInfo
- Publication number
- CN113247302A CN113247302A CN202110178864.2A CN202110178864A CN113247302A CN 113247302 A CN113247302 A CN 113247302A CN 202110178864 A CN202110178864 A CN 202110178864A CN 113247302 A CN113247302 A CN 113247302A
- Authority
- CN
- China
- Prior art keywords
- aerial vehicle
- data set
- vtol
- vtol aerial
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000012544 monitoring process Methods 0.000 title claims abstract description 14
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 53
- 230000036541 health Effects 0.000 claims abstract description 53
- 230000008569 process Effects 0.000 claims abstract description 9
- 239000013598 vector Substances 0.000 claims description 40
- 230000003068 static effect Effects 0.000 claims description 10
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 description 29
- 230000008859 change Effects 0.000 description 17
- 230000033001 locomotion Effects 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 12
- 238000013178 mathematical model Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 6
- 238000007781 pre-processing Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003862 health status Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D45/0005—Devices specially adapted to indicate the position of a movable element of the aircraft, e.g. landing gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0055—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
- G05D1/0072—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements to counteract a motor failure
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
- G05D1/102—Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/652—Take-off
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D2045/0085—Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45071—Aircraft, airplane, ship cleaning manipulator, paint stripping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Feedback Control In General (AREA)
- Navigation (AREA)
Abstract
提出了一种用于监测VTOL飞行器的状况的方法,该飞行器具有多个空间分布的致动器,致动器优选为产生推进力和/或保持飞行器的空间位置的推进单元的形式,其中:主要控制用于控制飞行器的飞行状态,至少一个次要控制用于控制飞行器的致动器,优选用于控制推进单元;在飞行器运转期间,主要控制生成受第一不确定性的影响的主要数据集,主要数据集被输入估计算法,次要控制生成受第二不确定性的影响的次要数据集,次要数据集被输入估计算法;估计算法对主要数据集和次要数据集处理并生成受第三不确定性的影响的估计结果,估计结果表示飞行器的状况,优选表示飞行器的至少一个致动器的健康状态,第三不确定性等于或小于第一不确定性和/或第二不确定性。
Description
技术领域
本公开涉及用于监测VTOL飞行器的状况的方法,该VTOL飞行器优选是电力推进的,更具体地,是自主的,更具体地,是多旋翼VTOL飞行器,其具有多个在空间上分布的致动器,优选地,该致动器为推进单元的形式,该推进单元用于产生推进力和/或保持VTOL飞行器的空间位置。
本公开还涉及用于监测VTOL飞行器的状况的系统。此外,本公开还涉及VTOL飞行器。
背景技术
VTOL飞行器包括各种安全关键系统,例如其致动器。这些致动器可以包括推进单元,该推进单元用于产生推力和/或扭矩以操纵飞行器或在飞行期间达到定义状态。为了达到并维持安全的飞行状况,VTOL飞行器及其致动器需要以可靠的方式运转,这包括评估其当前的运转状况。
然而,技术系统通常会受到疲劳影响,尤其是在其预定的生命周期即将结束时。此外,由于不可预见的恶劣运转状况可能会发生自发故障,从而导致受影响的致动器的性能或可操作性下降。在这些以及任何其他情况下,都需要高度可靠地识别出VTOL飞行器或其致动器的可操作性下降。
为了确定VTOL飞行器或其致动器的健康状态,可以将受影响的组件的实际运行时间/寿命与其标称寿命进行比较,该标称寿命由该组件的设计和制造来定义。然而,这种评估有一定的不确定性,很少正确。另外,用于确定飞行器组件的运转的大概剩余时间的已知方法没有考虑到所述组件在其运转期间如何以及在多大程度上受到压力。这导致用于评估VTOL飞行器或其致动器的状况的信息可靠性较低。
发明内容
因此,需要提供一种动态方法和系统,该方法和系统具有在线能力并且在确定VTOL飞行器的状况方面、优选在确定VTOL飞行器的致动器的状况方面具有更高的可靠性。
该目的借助于方案1的方法、方案14的用于监测VTOL飞行器的状况的系统、以及具有方案15的特征的飞行器来实现。
根据本公开的第一方面,提出了一种用于监测VTOL飞行器的状况的方法,优选地,该VTOL飞行器是电力推进的,更具体地,该VTOL飞行器是自主的(或有人驾驶的),更具体地,该VTOL飞行器是多旋翼VTOL飞行器,所述飞行器包括多个空间分布的致动器,优选地,所述致动器为推进单元的形式,所述推进单元用于产生推进力和/或保持所述VTOL飞行器的空间位置,其中,主要控制用于控制所述VTOL飞行器的飞行状态,而至少一个次要控制用于控制所述VTOL飞行器的所述致动器,优选地,用于控制所述推进单元;在所述VTOL飞行器运转期间,所述主要控制生成主要数据集,该主要数据集受第一不确定性的影响,该主要数据集被输入到估计算法,以及,所述次要控制生成次要数据集,该次要数据集受第二不确定性的影响,该次要数据集也被输入到所述估计算法;所述估计算法对所述主要数据集和所述次要数据集进行处理,并且所述估计算法生成估计结果,所述估计结果表示所述VTOL飞行器的状况,优选地,表示所述VTOL飞行器的至少一个致动器的健康状态,所述估计结果受第三不确定性的影响,所述第三不确定性等于或小于所述第一不确定性和/或所述第二不确定性。
根据本公开的第二方面,提出了一种用于监测VTOL飞行器的状况的系统,优选地,该VTOL飞行器是电力推进的,更具体地,该VTOL飞行器是自主的(或有人驾驶的),更具体地,该VTOL飞行器是多旋翼VTOL飞行器,所述飞行器具有多个空间分布的致动器,优选地,所述致动器为推进单元的形式,所述推进单元用于产生推进力和/或保持所述VTOL飞行器的空间位置,其中,主要控制被配置为用于控制所述VTOL飞行器的飞行状态,而至少一个次要控制被配置为用于控制所述VTOL飞行器的所述致动器,优选地,用于控制所述推进单元;在所述VTOL飞行器运转期间,所述主要控制被配置为生成主要数据集,该主要数据集受第一不确定性的影响,以及,所述次要控制被配置为生成次要数据集,该次要数据集受第二不确定性的影响,所述系统包括估计算法,该估计算法接收所述主要数据集和所述次要数据集两者;所述估计算法被配置为对所述主要数据集和所述次要数据集进行处理,并且所述估计算法被配置为生成估计结果,所述估计结果表示所述VTOL飞行器的状况,优选地,表示所述VTOL飞行器的至少一个致动器的健康状态,所述估计结果受第三不确定性的影响,所述第三不确定性小于所述第一不确定性和/或所述第二不确定性。
根据本公开的第三方面,提出了一种VTOL飞行器(自主的或有人驾驶的),该VTOL飞行器包括根据本公开的所述第二方面的用于监测该VTOL飞行器的状况的系统。
VTOL飞行器的所述状况可以由其在飞行期间的运动或状态表示。如果致动器以降低的功率或性能运转,则确实会特别影响VTOL飞行器的动力特性。这可能导致执行机动或保持飞行器稳定飞行所需的总推力或扭矩减小。术语“致动器”包括与VTOL飞行器的运动或(物理)状态的产生或建立有关的所有组件,包括(但不限于)电动引擎(电动机)、变速器、螺旋桨(转子)和/或涡轮。
因此,VTOL飞行器的动态状态或其致动器(尤其是其推进单元)的运转参数可以与VTOL飞行器的状况联系起来。
VTOL飞行器的运动或状态与作用在其上的力和扭矩之间的关系可以通过运动方程来描述。可以使用例如牛顿-欧拉或拉格朗日原理来得出运动方程,并且该运动方程包括表示作用在VTOL飞行器的机体上的外力和扭矩的项。该运动方程可以具有如下形式:
根据该运动方程,是系统的c维配置向量,例如,表示VTOL飞行器在三维空间中的位置和/或旋转。是与状态有关的广义惯性矩。是与状态有关的科里奥利(Coriolis)(或其他内部速度/速率相关的)力,表示重力。是外部力旋量(wrench),包括例如由于空气动力学、物理接触(碰撞)等作用在VTOL飞行器上的外力和扭矩。是伪控制输入,包括操纵VTOL飞行器所需的加速度。G(x)是控制输入矩阵,包括例如欠驱动的信息,其中,如果rank(G(x))<c,则该系统被认为是欠驱动的。
通过使用运动方程,可以根据作用在VTOL飞行器的重心(CoG)上的力和扭矩来确定该VTOL飞行器的时空行为。这需要确定运动方程的动态/可变项,尤其是加速度或速度还需要确定外部力旋量wext和伪输入up。
其他项(例如,控制输入up或外部力旋量wext)可能需要被间接确定,因为它们不能被直接测量,或者因为在传感器可用性方面,它们的测量工作量很大。
伪控制输入up包括根据飞行员信号或导航系统的信号来操纵VTOL飞行器所需的一个或多个力和一个或多个扭矩的集合。然而,up是用于表征用于VTOL飞行器运转的力和扭矩的理想运动学描述的项。实际上,由所述致动器产生的力和扭矩作用在空间分布的位置。因此,需要生成操作VTOL飞行器所需的实际控制输入因此,伪控制输入up需要被视为期望的控制向量,而控制输入u实际上用于影响致动器,以调整致动器产生的推力和扭矩。
为了强调伪控制输入up与控制输入u之间的差异,可以考虑以下关系:对于欠驱动的VTOL飞行器,普遍的是,q=4,即,ut是总推力,而是作用在机体固定框架上且围绕VTOL飞行器的主要机体轴线的三个控制扭矩。因此,up包含四个条目。然而,控制输入u表示由VTOL飞行器的所有致动器提供的推力和扭矩。对于具有18个致动器的VTOL飞行器而言,u因此是一个具有18个条目的向量,每个条目表示一个致动器的驱动。
u与up之间的关系由如下给出:
up=Du
u=D-1(W)up
其中,W是加权矩阵,表示将由致动器产生的力和扭矩的分布。
需要确定的运动方程的另一个项是wext。如上文提到的,项Wext表示作用在VTOL飞行器上的外部力和扭矩(外部力旋量)。wext的估计或确定可以通过使用外部干扰观测器来执行。外部干扰观测器是一种用于估计作用在VTOL飞行器上的未建模的、意外的力和扭矩的方法。
外部干扰观测器可能需要根据运动方程、允许确定加速度和/或速度的传感器测量(惯性测量单元IMU、全球导航卫星系统、摄像头等)、以及已经计算出的控制输入(例如,控制输入u)的系统模型。
使用例如已知的用于VTOL飞行器的基于动量的外部力旋量估计,以下等式允许使用已知的系统模型、传感器数据和控制输入来确定外部力旋量。
ab,f=(I-Kf)ab,f+Kfab
和分别是力和扭矩的观测器增益(实现低通滤波行为)。惯性矩被描述为机体的旋转速度被描述为加速度被给定为并且它们的低通滤波版本被给定为ab,f。外部推力由表示,并且外部扭矩由表示,该外部扭矩包括τext,x;τext,y;τext,z。因此,估计出的外部力旋量能够被合并到一个向量中:
VTOL飞行器和/或其致动器的状况可以通过分析估计出的外部力旋量的值来估计。例如,在VTOL飞行器中,如果τext,x接近于零,并且τext,y是负的大值,则很有可能是前部致动器发生故障。如果τext,x是正的大值,并且τext,y接近于零,则很有可能是右侧致动器发生故障。如果τext,x接近于零,并且τext,y是正的大值,则很有可能是后部致动器发生故障。如果τext,x是负的大值,并且τext,y是正的大值,则很有可能是左侧致动器发生故障。
估计出的外部力旋量可以由VTOL飞行器的主要控制来生成。该主要控制包括系统组件,该系统组件允许从传感器或飞行员接收信号输入,应用软件和算法例程,并根据主要数据集获得用于控制和/或监测飞行器状况的信号。估计的外部力旋量可以被认为是主要数据集,因此由主要控制根据上述外部干扰估计生成。
估计出的外部力旋量允许执行飞行器的状况的评估,并确定潜在不健康或故障致动器的位置。但是,确定VTOL飞行器和故障致动器的状态的可靠性具有第一不确定性的特征。
根据本公开,VTOL飞行器具有多个控制。在特定的实施例中,主要控制和次要控制可以布置在VTOL飞行器控制架构的相同或不同级别上。在公共级别的情况下,主要控制和次要控制可以具有相同的任务,并因此具有相同的实施例,以便为VTOL飞行器提供冗余的系统组件。在不同级别的情况下,主要控制的级别可以高于次要控制的级别。在这种情况下,主要控制可以例如从飞行员处接收输入信号,并将其处理为信号,然后将该信号传输到次要控制,例如以将飞行器的期望运动转换为致动器的相应推力或扭矩。因此,主要控制可以被配置为监测和控制VTOL飞行器的飞行状态,而次要控制可以被配置为控制致动器,特别是推进单元。像主要控制一样,次要控制可以连接到能够监测致动器状态的传感器集合。
为了实现所观测到的VTOL飞行器和/或其致动器的状况的更高的可靠性,可以使用VTOL飞行器的次要控制来确认、拒绝和/或校正所确定的VTOL飞行器的状态。次要控制通常在VTOL飞行器的控制结构中使用,以操作其他系统的致动器。
在根据本公开的方法的实施例中,主要控制作为飞行控制计算机(飞行控制器)操作,而次要控制作为发动机控制器操作。
在次要控制操作期间,可以由次要控制接收控制输入u。例如,第i个控制输入可以是定义的旋转速度ui=1000RPM,也可以是其他类型的输入,具体取决于致动器的类型和控制方法。为了根据定义的输入来操作致动器,需要测量和/或估计致动器的操作状态。所得到的估计值/测量值可以在向量中表示。如果u包括以每分钟转数(RPM)为单位的多个电动机的期望旋转速度,则u′包括以RPM为单位的电动机的当前旋转速度。然而,测量值/估计值与控制输入不同,该不同的特征在于误差eu,其中:
eu=u-u′
与估计出的外部力旋量相似,误差eu可以用于得出次要数据集,该次要数据集包括关于VTOL飞行器和/或其致动器的状况的信息。如果定义了一个不能超越和/或不能超过的误差极限,则超过值eu,i可以是针对VTOL飞行器状况的故障状态的指示符。
因此,类似于主要数据集,次要数据集受到第二不确定性的影响,该第二不确定性可能是由于测量和/或估计的不准确性而导致的。
关于可以由主要控制和次要控制提供的信息,VTOL飞行器的状况可以使用主要数据集(其可以根据获得)和次要数据集(其可以根据eu获得)来获得。然而,主要控制和次要控制可能具有不同的属性,这些属性可能导致主要数据集和次要数据集的不同的可靠性。
主要控制和次要控制的不同的不确定性可能源于操作主要控制和次要控制的不同测量频率。总的来说,所有不确定性可以包括总不确定性的系统部分,以及总不确定性的随机部分。测量系统或控制系统工程领域的技术人员已知这种不确定性的分类和相关来源。
为了提供VTOL飞行器状态的可靠估计,对于本公开来说至关重要的是使用一种估计算法,该估计算法处理主要数据集和次要数据集以生成估计结果,该估计结果表示VTOL飞行器的状况,优选地,表示VTOL飞行器的至少一个致动器的健康状态。所述估计结果受第三不确定性的影响,该第三不确定性等于或小于第一不确定性和/或第二不确定性。
估计算法可以包括允许减少主要数据集和次要数据集两者中的不确定性的不同方法。可以将统计方法实现为估计算法的一部分,该统计方法分析主要数据和次要数据两者的异常值,该异常值导致所述数据集的不确定性更高。如果存在这些异常值,则可以将它们从数据集中删除。
如果主要数据和次要数据随后被用于确定例如平均值,则该结果可以被认为是比主要数据或次要数据具有较低不确定性的估计结果。分别过滤主要数据集和/或次要数据集也在本公开的范围内。类似地,可以通过飞行前检查来建立置信区间,在确定VTOL飞行器的状况时会丢弃超过该置信区间的测量值或估计值。
在根据本公开的方法的另一实施例中,主要数据集和次要数据集分别表示VTOL飞行器的第一估计状况和第二估计状况中的相同类型的信息,更具体地,分别表示VTOL飞行器的至少一个致动器的第一估计健康状态和第二估计健康状态。
估计出的外部力旋量和误差eu包括不同类型的信息。尽管估计出的外部力旋量允许评估外部力,但误差仅提供有关致动器标称状态与其实际状态之间差异的信息。为了获得有关VTOL飞行器状况或致动器的健康状态的信息,需要先对外部力旋量和误差进行预处理,然后才能通过估计算法对其进行解译。
然而,预处理可以包括复杂的步骤,例如参考或校准,以使测量值与定义量程(scale)对齐,以便确定状况。因此,预处理可能很耗时,导致估计算法的复杂性增加。
为了解决该问题,主要数据集和次要数据集可以在被输入到估计算法之前进行匹配。主要数据和次要数据的对齐分别在主要控制和次要控制内进行。
预处理导致在主要数据和次要数据中包含相同类型的信息,使得可以通过估计算法直接对其进行处理。例如,主要数据集和次要数据集可以分别由包括多个条目的向量表示,该条目的数量等于致动器的数量,并且致动器的健康状态由数值表示。高值可以表示健康的致动器,而低值可以表示不健康的致动器。
在根据本公开的方法的另一实施例中,主要控制至少部分地通过估计在VTOL飞行器的静止状态下的第一外部力旋量并部分地通过估计在VTOL飞行器的非静止状态下的第二外部力旋量来生成主要数据集,所述非静止状态优选地由至少一个致动器的动作引起,该动作导致与所述静止状态的偏离,第一外部力旋量和第二外部力旋量分别包括第一总推力和第二总推力,以及第一扭矩向量和第二扭矩向量。
如上文提到的,外部力旋量可以具有如下形式:
当考虑VTOL飞行器的不同计划操作时,例如悬停、爬升、下降、向前和水平飞行、转弯或飞行前已知的任何其他动作,可以计算出静止状态。因此,静止状态可以被认为是VTOL飞行器的没有故障发生的状态。静止状态下的第一外部力旋量应当被称为其中,右侧的上标opt代表操作。这些值是从模拟和/或实际飞行数据(实验、测试、演示)中获取的,并且它们表示特定操作的稳定状态(其中不发生任何故障)期间的
在另一场景中,来自所述计划操作的模拟和(如果可用)飞行测试数据被考虑与VTOL飞行器和/或其致动器的故障状态相关。对于每个操作和每个故障情况,被再次观测,并记为第二外部力旋量其中,af表示致动器故障。
最后,与之间的差可以被计算,作为参考向量,该参考向量各自包括[fext,zτext,xτext,τext,z]T的条目,其可以被存储在VTOL飞行器的数据库或其他数据存储中。在实际的飞行场景中,这些向量可以被与实际估计出的外部力旋量进行比较,以对当前情况进行分类,从而能够确定计划操作是按计划执行还是存在特定错误。该特定实施例的优点在于这是一种基于来自模拟的经验和/或离线数据来确定故障状况是否已经发生的简单方法。
在根据本公开的方法的另一实施例中,主要控制至少部分地通过将第一外部力旋量与第二外部力旋量进行比较来生成主要数据集,从而获得第一致动器状况向量,该第一致动器状况向量包括表示VTOL飞行器的各个致动器的状况的值。
如果推力是由沿垂直z方向定向的致动器或相对于垂直z方向仅具有较小倾斜角的致动器引起的,则差异力旋量是具有条目的向量。通过使用预先选择的误差容限∈fz比较fext,z与可以容易地使用发现致动器的损耗或故障。随着致动器数量的增加,在故障状态下,似乎收敛于不能被超越的允许极限。基于内的的唯一解释,至少可以确定所有致动器(包括推进单元)是否在静止状态下运转。
然而,在已知的VTOL飞行器设计中,诸如推进单元的致动器可以分布在VTOL飞行器内部。特别地,多轴直升机包括推进单元,该推进单元例如被布置在同心圆中,且位于公共平面/水平中,例如分别布置在内圆和外圆中。在这种情况下,通过观测可以确定致动器的旋转方向是否已改变,和/或致动器是位于内环还是位于外环中。
然后,通过观测和可能发生故障的致动器的位置可以被进一步缩小范围,例如,它位于左侧还是右侧,后部还是前部。如果τextx接近于零,并且τext,y是负的大值,则前部致动器发生故障的可能性增加。如果τext,x是正的大值,并且τext,y接近于零,则右侧致动器发生故障的可能性增加。如果τext,x接近于零,并且τext,y是正的大值,则后部致动器发生故障的可能性增加。如果τext,x是负的大值,并且τext,y是正的大值,则左侧致动器发生故障的可能性增加。
故障致动器的位置的估计可以在估计算法内实现。这可以包括搜索空间的定义,该搜索空间包括可潜在故障的所有致动器。在所述搜索空间中的每个致动器具有在VTOL飞行器内的已知位置,以及可以由数值表示的健康状态。该信息可以被分配给向量其被认为是第一致动器状况向量。
根据本公开的方法的另一实施例,主要数据集至少部分地由电动机分配算法生成,该电动机分配算法被配置为确定由推进单元提供的标称推力分布,以实现和/或保持VTOL飞行器的期望状态。
电动机分配算法基于由飞行员或VTOL飞行器的自主导航系统定义的期望推力和/或扭矩,生成用于操作推进单元的控制信号。
可以采用分配算法来计算伪控制输入与控制输入之间的关系,如上文中定义的。因此,已经用于VTOL飞行器的操作的数据既可以用于系统控制,也可以用于对致动器本身的监测目的。
例如,可以使用如下方程来计算差异控制输入Δu:
在具有18个致动器的飞行器中,差异控制输入具有18个条目:
在根据本公开的方法的另一实施例中,次要数据集至少部分地由用于测量至少一个致动器的运转速度和/或温度的传感器装置生成,并且根据该次要数据集来得出第二致动器状况向量,该第二致动器状况向量包括表示VTOL飞行器的各个致动器的状况的值。
如上所述,次要控制可以确定标称值集合u与由传感器测量并被传送给所述次要控制的另一个实际值集合u’之间的差。根据确定出的差,可以得到误差eu:
eu=u-u′
该误差eu可以被分配。特定时间(或特定计算周期)内的误差eu的均方根Erms可以使用如下公式来计算:
k表示离散的时间步长,N代表用于计算均方根Erms的计算周期的上限。Erms是t×t的对角矩阵,并且可以被与不得超越的绝对误差值进行比较。该计算可以以移动窗方式来实现,即,在例如Δk步长之后,被计算,等等。向量可以被定义,其包括对于每个致动器而言允许的最大跟踪误差。这意味着对于第i个致动器而言,如果Erms(i,i)大于则认为所述致动器是完全不健康的,甚至可能丢失。
此外,可以包括附加的参数测量或估计,例如,温度、振动、扭矩、电流、电压或其他参数/变量,以用于确定VTOL飞行器和/或其致动器的状况。表示所述附加参数,具有至少两个限制其中,γa是第一限制阈值,γb是第二限制阈值。如果,例如,对于第i个致动器而言,则致动器具有下降的状况属性(当前状况或健康状态可以乘以αi∈[0,1]),而如果则第i个致动器处于危险状态(当前状况或健康状态乘以βi∈[0,1],且βi<αi)。可以是但不限于与致动器温度、致动器振动或其他可确定的致动器特性有关的参数,该参数可以被评估以确定致动器的健康状态。
在这种情况下,xE=[u′TγT]T表示被认定用于判断致动器的健康状态的次要控制的实际状态。如上所述,例如通过使用致动器扭矩、电流、振动测量/分析等,可以在xE中包含更多的状态和参数。
在根据本公开的方法的另一实施例中,估计结果是VTOL飞行器内的至少一个异常操作和/或故障致动器的位置,优选是推进单元之一的位置,例如,所述致动器相对于飞行器中心的位置。
由主要控制和次要控制提供的信息优选地包括关于发生临界状况的飞行器状态的可直接解译的陈述。在根据本公开的方法的相应实施例中,安全关键信息可以由有经验的飞行员和经验不足的乘客进行解译,尤其是在自主引导的VTOL飞行器上应用该方法时。此外,由于致动器故障而着陆后,如果知道故障致动器的位置,则可以加快维护速度。该位置可以在VTOL飞行器的任何参考坐标系中进行描述。优选地,在其中指示位置的坐标系的原点位于飞行器的重心。可替换地,该位置可以通过致动器的单独标志或标识号来指示。
在根据本公开的方法的另一实施例中,估计算法是最优估计算法,优选地是卡尔曼滤波器,其包括至少一个预测步骤和至少一个更新步骤。通过实施预测和更新步骤,允许估计算法校正之前的估计值,以便提供基于大多数实际数据的估计。基于卡尔曼滤波器的算法的优势在于它们也基于执行预测和更新步骤。因此,估计算法可以基于以下等式,这些等式对于使用卡尔曼滤波器进行状态估计很常见。
为了实现基于卡尔曼滤波器的估计算法,假定VTOL飞行器致动器的健康状态具有根据如下方程的离散时间线性系统动力学行为:
sk=Fksk-1+Gk(vk+vk)
其中,E是已知的输入向量的期望值。观测矩阵Hk将状态sk映射到测量zk。之后,一般的测量方程可以写成:
zk=Hksk+μk
其中,μk收集零均值测量噪声,其中μk~N(0,Rk),其中传感器协方差Rk由如下给定:
其中,上标*-代表在预测状态下计算出的先验值。先验协方差被计算为:
在根据本公开的方法的另一实施例中,借助于预测步骤,使用VTOL飞行器的物理模型和通过至少一个第一传感器获取到的第一传感器数据集来估计VTOL飞行器的当前状况,优选地,估计VTOL飞行器的至少一个致动器的健康状态,并且其中,借助于更新步骤,使用通过至少一个第二传感器获取到的第二传感器数据集来调整(adapt)估计出的VTOL飞行器的当前状况,优选地,调整估计出的VTOL飞行器的至少一个致动器的健康状态。
残差的协方差可以被计算为:
卡尔曼滤波增益可以通过如下公式计算:
基于此,后验状态估计和该估计的协方差可以被计算为:
其中,I是具有适当维度的单位矩阵(其对角线由1组成,并且所有其他元素为零)。
可以通过预测步骤来处理主要数据集,并且可以通过更新步骤来处理次要数据集,反之亦然,或者可以通过更新步骤来处理主要数据集和次要数据集两者。
在根据本公开的方法的另一实施例中,使用VTOL飞行器状况或致动器健康状态的线性系统模型以及VTOL飞行器状况或致动器健康状态的假定初始状态来执行预测步骤,并且其中,主要数据集和次要数据集两者均被输入到更新步骤中。
在根据本公开的方法的该实施例中,通过使用恒定或缓慢衰减的特性的线性系统动力学来完成预测。状态是sk=mk。因此,
mk=Fkmk-1
在根据本公开的方法的另一实施例中,估计算法分别根据主要数据集和次要数据集确定移动平均值估计,主要数据集和次要数据集分别根据主要数据集和次要数据集的启发式(heuristically)假定的可靠性被互补加权。
通过使用指数加权移动平均值来组合两个估计源,可以实现不基于卡尔曼滤波器的方法的变体:
附图说明
现在将基于附图以示例性方式阐述本公开的其他细节和优点。
图1示出了VTOL飞行器,该飞行器具有处于不健康的推进单元,这是使用主要数据集和次要数据集估计出的。
图2示出了VTOL飞行器,该飞行器具有另一处于不健康的推进单元,这是使用主要数据集和次要数据集估计出的。
图3示出了外部干扰观测器的示意图;
图4示出了由于推进单元发生故障而导致的垂直力的变化;
图5示出了由于推进单元发生故障而导致的偏航扭矩的变化;
图6示出了由于推进单元发生故障而导致的侧倾和俯仰扭矩的变化;
图7示出了估计算法的预处理和子程序,其在预测步骤中使用飞行控制系统数据,而在更新步骤中使用电力推进系统数据;
图8示出了估计算法的预处理和子程序,其在预测步骤中使用电力推进系统数据,而在更新步骤中使用飞行控制系统数据;以及
图9示出了估计算法,其在更新步骤中使用飞行控制系统数据和电力推进系统数据两者。
具体实施方式
图1示出了VTOL飞行器1,在VTOL飞行器1的机体3(或中央吊舱/机舱)的上方,该飞行器1具有布置在外圆中的推进单元2o和布置在内圆中的推进单元2i。VTOL飞行器1包括控制系统4,该控制系统4包括被配置作为飞行控制系统(FCS)4.1的主要控制和被配置作为电力推进系统(EPS)4.2的次要控制。通常,EPS 4.2不必是唯一的:EPS可以不止一个,例如,每个电动机/转子一个。FCS 4.1用作主要控制系统,以操作VTOL飞行器1并在飞行过程中控制其位置。EPS 4.2用于根据由飞行员或FCS 4.1的导航例程生成的控制信号来控制推进单元2i和2o。此外,FCS 4.1连接到惯性测量单元IMU,该IMU提供VTOL飞行器1的加速度和旋转速度数据。EPS连接到传感器S集合,该传感器S提供关于推进单元2i、2o的操作特性的信息,例如温度或振动。控制系统4被配置为运行基于卡尔曼滤波器的算法(参见图7至图9),以便基于由EPS 4.2和FCS 4.1生成的数据来估计推进单元2i、2o的健康状态以及潜在不健康的推进单元在VTOL飞行器1内的位置。
FCS 4.1生成第一数据集,该第一数据集允许对一个或多个不健康的推进单元的位置进行第一估计5。为了生成所述第一数据集,将来自IMU(以及如果来自其他传感器的传感器测量也可用的话,例如,气压计、雷达、GNSS等)的传感器测量传送到FCS 4.1。如果测量的加速度或加速度的变化超过或低于预定义的极限,则FCS 4.1通过使用上述用于计算mF的方法生成估计5,该方法利用启发式已知的推力阈值和扭矩阈值(在此示例中使用的阈值在图4至图6的上下文中进行了描述)。然而,仅基于所述第一数据集,就不健康的推进单元的位置只能做出大致的估计。如图1所示,基于估计5,总共可以将五个推进单元视为不健康。
EPS 4.2提供第二数据集,该第二数据集用于缩小估计5的范围,以确定实际不健康的推进单元的位置。通过使用传感器S测量例如所有推进单元2i、2o的RPM和/或温度,根据第二数据集得出第二估计6。EPS 4.2将测量的推进单元2i、2o的RPM和/或温度值或测量的RPM和/或温度值的变化与预定义的阈值进行比较。然而,与估计5相反,估计6允许确定一个潜在不健康的单个推进单元。
估计5与估计6之间的差异可能有不同的原因。例如,与惯性测量单元IMU相比,传感器S可以更高的测量频率进行操作,这可导致来自传感器S的数据的不确定性降低。另外,不健康的推进单元的测量温度值可能比来自IMU的数据更显着地超过其相应的阈值。
估计5与估计6之间潜在不健康的致动器的数量之间的差异由相应的不同的不确定性表示。通过将估计5和估计6融合到在控制系统4中运行的估计算法中,可以生成估计结果7,该估计结果7允许对估计5和估计6进行综合考虑。估计算法被设计为卡尔曼滤波算法,其可能形式在图7至图9中进行了详细说明。
在根据附图1的情况中,估计6用于缩小估计结果5的范围。然而,图1所示的情况说明了一个相对简单的场景,因为估计结果7与估计结果6相同。但是,确定不健康的推进单元可能会更加复杂,尤其是在FCS 4.1和EPS4.2的估计不同的情况下。图2显示了这种情况,该情况基于同一架VTOL飞行器1,但具有不同的不健康的推进单元。
图2显示了与图1相比具有不同健康状态估计的VTOL飞行器1。尽管由FCS提供的估计8指示三个推进单元可能不健康,这些推进单元被群组到一个区域中,而由EPS提供的估计9指示存在两个可能不健康的推进单元,这两个推进单元位于不同的位置。
分别对估计8和9进行单独评估可能会导致对所谓的不健康的推进单元的错误识别。例如,如果仅考虑估计8,则在飞行过程中需要对由估计8指示的所有三个致动器的自适应控制,以实现所需的飞行状态,否则将向飞行员指示关于致动器状态的故障信息。类似地,如果仅评估估计9,则有必要调整由估计9指示的两个单元的操作,或者再次向飞行员指示关于致动器状态的另一故障信息。然而,类似于图1所示的情况,通过使用来自FCS的第一数据集和来自EPS的第二数据集,可以在估计结果10中缩小严重不健康的推进单元的位置范围,该估计结果10的不确定性低于估计8的不确定性和估计9的不确定性。这是通过使用下面参照图3至图9描述的例程来完成的。所述例程运行在VTOL飞行器1的控制系统4中,如图1和图2所示。
图3示出了在VTOL飞行器1的FCS 4.1(见图1)中或在与VTOL飞行器1的FCS 4.1通信的另一计算机中实现的外部干扰观测器11。在所示的示例中,干扰观测器11包括观测器例程12,该观测器例程12用于估计作用在VTOL飞行器的重心上的(未知的)外部力旋量13。所述外部力旋量13包括具有数值的向量,该数值允许确定推进单元(2i、2o;见图1或图2)是否提供了相对于标称推力和扭矩的不适当的偏离推力和扭矩。通过应用例如基于动量的方法进行估计,该方法接收传感器数据14和控制信号15。传感器数据14包括来自例如惯性测量单元IMU(见图1)的测量值或由VTOL飞行器的摄像头接收的图像,或来自雷达、激光雷达、GNSS等的其他测量。控制信号15可能来自FCS(参见图1),并由飞行员或导航例程生成,该导航例程在VTOL飞行器的控制系统中实现,以允许自主运动。
通过使用VTOL飞行器的物理模型16,传感器数据14和控制信号15被处理以便估计外部力旋量13。为了减少估计残差,将估计出的外部力旋量13反馈给观测例程12。外部力旋量13包括推力和扭矩(相对于VTOL飞行器的侧倾角、俯仰角和偏航角),可以将该推力和扭矩与绝对或相对阈值进行比较,以确定VTOL飞行器的状况和/或它的推进单元的状况。
可以在至少两种状态下确定估计的外部力旋量13:所有推进单元是健康的静止状态,以及至少一个推进单元是不健康的或者完成故障的非静止状态。使用试飞和模拟,可以将不健康的推进单元的效果映射到垂直推力的变化以及偏航、俯仰和侧倾扭矩(相对于VTOL飞行器的重心)的变化。所述变化可以在飞行开始之前作为离线参考数据存储在飞行器中。如果在飞行过程中出现错误,这在估计出的外部力旋量的变化中很明显,则可以将该变化与离线参考进行比较,以得出哪个推进单元潜在地受到错误的影响。这些参考(或阈值)在图4至图6中举例说明。
图4显示了在一个或多个推进单元发生故障后,VTOL飞行器1的推进单元2i、2o(见图1)产生的垂直力的变化,每个推进单元用致动器ID 1...18和独立的名称M1.1…M6.3表示。如果致动器之一在其运行期间发生故障,则飞行器的垂直推力会以可直接与发生故障的致动器联系起来的方式改变。
首先,在试飞或模拟过程中,VTOL飞行器进入静止状态。在该静止状态期间,确定外部力旋量。然后,将VTOL飞行器的致动器相继关闭或使其进入另一状态,从而获得VTOL飞行器的非静止状态,并且确定在非静止状态下的垂直力。通过从非静止状态的垂直力中减去静止状态的垂直力,可以计算出力的变化,并通过数据点17表示该力的变化,如图4所示。数据点17允许由数学模型18表示的近似值,该数学模型18可用于将垂直力的变化映射到不健康的推进单元的致动器ID。所述数学模型18存储在VTOL飞行器的控制系统4(见图1)中,并在实际飞行场景中用作离线参考:在飞行过程中,外部力旋量由外部干扰观测器11(见图3)确定。如果外部力旋量的估计值以预定容限偏离离线参考,则可以确定是否已经出现非静止状态以及哪个推进单元是潜在不健康的。
图5示出了在特定致动器发生故障的情况下,由推进单元2i、2o(见图1)产生的偏航扭矩(相对于根据图1的VTOL飞行器的偏航轴)的变化,其中,每个致动器具有致动器ID1...18和独立的名称M1.1…M6.3。每个点19代表测量的扭矩差(牛顿米[Nm])。类似于图4,全部数据点19可以用于得出数学模型20,该数学模型20近似地表示偏航扭矩随故障致动器的变化。因此,类似于模型18,模型20可以存储在VTOL飞行器的控制系统中,并且在飞行中用作确定不健康的推进单元的另一个离线参考。
如图5所示,数据点19可以被划分成两组21和22,其中,组21中的数据点表示偏航扭矩中的正向变化,而组22中的数据点表示偏航扭矩中的负向变化。根据推进单元相对于VTOL飞行器的重心(CoG)的相对位置,距CoG距离更大的推进单元的故障比距CoG更近的推进单元的故障具有另一个影响。因此,组21和组22可以分别被细分成子组21.1、21.2以及22.1、22.2。位于外环的推进单元(请参见图1中的推进单元2o)可以链接到组21.1和22.1。在所示图中,位于外环的推进单元的故障可以追溯到与位于内环的推进单元的故障(参见组21.2和22.2)相比,偏航扭矩的较大变化(参见组21.1和22.1)。
图6示出了取决于特定致动器的故障的侧倾扭矩23的变化(十字)和俯仰扭矩24的变化(圆圈),其中,每个致动器具有致动器ID 1...18和独立的名称M1.1…M6.3。每个点23和24分别代表一个测量的扭矩差(牛顿米[Nm])。类似于图4和图5,全部点23和全部点24分别允许得出数学模型25和26,该数学模型25和26分别近似于侧倾扭矩和俯仰扭矩的特性变化。除了通过分析垂直力或偏航扭矩的变化提供的信息之外,数学模型25和26允许估计不健康的推进单元位于如图1所示的VTOL飞行器1的右侧还是左侧,该右侧和左侧是相对于VTOL飞行器的主飞行方向(未示出)而言。
根据图4、图5和图6的图示的共同点是,由单个测量值17、19、23和24表示的所有测量数据都易于发生自然散布(natural scatter),在重复该测量时,由于该自然散布,测量值可能会发生变化。数学建模导致不确定性的另一个来源,其导致数学模型18、20、25和26与它们各自的数据之间存在残余误差。
为了降低不确定性,通过使用通常包括预测步骤和更新步骤的卡尔曼滤波算法17,可以将图4、图5和图6所示的数据与来自次要控制(例如,根据图1的EPS 4.2)的其他数据融合,该卡尔曼滤波算法17在图7中被示意性地示出。
通常,如上所述,主要数据集可以由预测步骤进行处理,次要数据集可以由更新步骤进行处理(参见图7),或者反之亦然(参见图8),或者主要数据集和次要数据集两者都可以由更新步骤进行处理(参见图9)。
图7示出了包括卡尔曼滤波算法28的方法的实施方式27,该实施方式用于以如下方式估计来自VTOL飞行器1(参见图1)的FCS 4.1(参见图1)和EPS 4.2(参见图1)的数据:估计结果的不确定性等于或小于来自主要控制和次要控制的数据的不确定性。
如上文所述,FCS 4.1接收控制输入30(例如,来自具有或不具有导航系统的飞行控制器/定律)和传感器数据31(例如,来自惯性测量单元IMU的测量),并生成第一健康状态向量32。使用如下步骤来计算第一健康状态向量32:
-基于控制输入30和传感器数据31(包括外部力旋量13)计算第一健康状态向量32;
-如果VTOL飞行器的垂直力变化超过或低于根据图4定义的力极限(包括误差容限),则可以确定故障的推进单元的数量ξ;
-如果偏航扭矩变化超过或低于根据图5定义的偏航扭矩极限,可以确定故障致动器是在VTOL飞行器的内环中还是外环中,以及故障的旋转推进单元是向左旋转还是向右旋转。
-如果俯仰扭矩和侧倾扭矩超过或低于根据图6定义的各自的极限,可以确定致动器是在VTOL飞行器的前部、后部、左侧还是右侧。
-所得到的第一健康状态向量32包括0到1之间的值,每个值代表相应致动器的健康状态。值0表示完全不健康的致动器,而值1表示完全健康的致动器。
在卡尔曼滤波算法28的预测步骤33中输入第一健康状态向量32。
如上所述,EPS 4.2接收用于操作推进单元(参见图1)的控制输入35(可以与FCS4.1生成的推力命令部分或完全相同,参见图1)和传感器数据36(例如,来自传感器S的温度数据),该传感器数据36包括至少一个推进单元的运转参数的测量数据。根据预处理步骤来处理传感器数据36,从而生成第二健康状态向量37。使用如下步骤在EPS 4.2中计算第二健康状态向量37:
-基于控制输入35和传感器数据36计算第二健康状态向量37。
-确定转速或其他重要的特征值(例如温度、扭矩或功率)的标称值与实际值之间的误差ei的均方根Erms。
-如果推进单元的Erms大于误差ei,则相应的推进单元被视为完全不健康,并且其健康状态将由第二健康状态向量中的值0表示。
-如果另一个重要的特征值超过了给定的下限值但没有削弱(undercut)上限值,则该值介于0和1之间,代表相应致动器的健康状态。值0表示完全不健康的致动器,而值1表示完全健康的致动器。
-如果相同的重要特征值超过上限值,值[0,1]下降,指示相应的推进单元处于危险状态。
-所得到的第一健康状态向量包括值[0,1],而0表示完全不健康的致动器,1表示完全健康的致动器。
表示估计的健康状态的初始状态的先验状态知识39在预测步骤33中被输入。通过降低估计出的健康状态与实际健康状态之间的误差(由估计状态或测量状态提供)来更新预测,从而生成估计的健康状态40。
图8示出了包括在根据图1的VTOL飞行器1的控制系统4中运行的卡尔曼滤波算法28的方法的另一实施方式27。与图7中示出的方法相比,基于控制输入35和传感器数据36的第一健康状态向量32被输入到更新步骤38。因此,预测步骤33提供的实际健康状态的预测是基于第二健康状态向量37和先验状态知识39的。与图7相比,除了预测步骤33和更新步骤37的输入变化了之外,图7中的解释可以类似地应用于图8的实施方式27。
图9示出了包括在根据图1的VTOL飞行器1的控制系统4中运行的卡尔曼滤波算法28的方法的另一实施方式27,其中预测步骤38是基于先验状态知识39和具有恒定或缓慢衰减特性的线性系统动力学41进行的。在该替换实施方式中,因为在更新步骤38中同时输入了第一健康状态向量32和第二健康状态向量37,所以简化了预测。与图7和图8相比,除了预测步骤33和更新步骤37的输入变化了之外,图7和图8中的解释可以类似地应用于图9的实施方式27。
Claims (15)
1.一种用于监测VTOL飞行器(1)的状况的方法(27),优选地,该VTOL飞行器(1)是电力推进的,更具体地,该VTOL飞行器(1)是自主的,更具体地,该VTOL飞行器(1)是多旋翼飞行器,所述飞行器(1)具有多个空间分布的致动器(2i、2o),优选地,所述致动器为推进单元的形式,所述推进单元用于产生推进力和/或保持所述VTOL飞行器(1)的空间位置,其中:
主要控制(4.1)用于控制所述VTOL飞行器(1)的飞行状态,而至少一个次要控制(4.2)用于控制所述VTOL飞行器(1)的所述致动器(2i、2o),优选地,用于控制所述推进单元;
在所述VTOL飞行器(1)运转期间,所述主要控制(4.1)生成主要数据集(32),该主要数据集(32)受第一不确定性的影响,该主要数据集(32)被输入到估计算法(28),以及,所述次要控制(4.2)生成次要数据集(37),该次要数据集(37)受第二不确定性的影响,该次要数据集(37)也被输入到所述估计算法(28);
所述估计算法(28)对所述主要数据集(32)和所述次要数据集(37)进行处理,并且所述估计算法(28)生成估计结果(40),所述估计结果(40)表示所述VTOL飞行器(1)的状况,优选地,表示所述VTOL飞行器的至少一个致动器(2i、2o)的健康状态,所述估计结果(40)受第三不确定性的影响,所述第三不确定性等于或小于所述第一不确定性和/或所述第二不确定性。
2.根据权利要求1所述的方法,其中,所述主要控制(4.1)作为飞行控制计算机操作,而所述次要控制(4.2)作为发动机控制器操作。
3.根据权利要求1或2所述的方法,其中,所述主要数据集(32)和所述次要数据集(37)分别表示第一估计状况和第二估计状况中的相同类型的信息,更具体地,表示所述VTOL飞行器(1)的至少一个致动器(2i、2o)的第一估计健康状态和第二估计健康状态。
4.根据权利要求1-3之一所述的方法,其中,所述主要控制(4.1)至少部分地通过估计在所述VTOL飞行器的静止状态下的第一外部力旋量、以及部分地通过估计在所述VTOL飞行器的非静止状态下的第二外部力旋量来生成所述主要数据集(32),优选地,所述非静止状态是由至少一个致动器的动作引起的,所述动作导致与所述静止状态的偏离,所述第一外部力旋量和所述第二外部力旋量分别包括第一总推力和第二总推力,以及第一扭矩向量和第二扭矩向量。
5.根据权利要求4所述的方法,其中,所述主要控制(4.1)至少部分地通过比较所述第一外部力旋量与所述第二外部力旋量来生成所述主要数据集(32),从而获得第一致动器状况向量,所述第一致动器状况向量包括代表所述VTOL飞行器的各个致动器的状况的值。
6.根据权利要求1-3中的至少一项所述的方法,其中,所述主要数据集(32)至少部分地由电动机分配算法生成,所述电动机分配算法被配置为确定由所述推进单元提供的标称推力分布,以实现和/或保持所述VTOL飞行器的期望状态。
7.根据权利要求1-6中的至少一项所述的方法,其中,所述次要数据集(37)至少部分地由传感器装置(IMU、S)生成,所述传感器装置用于测量至少一个所述致动器的运转状况,优选地,速度和/或温度,并且根据所述次要数据集(37)得出第二致动器状况向量,所述第二致动器状况向量包括代表所述VTOL飞行器的各个致动器的状况的值。
8.根据权利要求1-7所述的方法,其中,所述估计结果(40)被配置为确定所述VTOL飞行器(1)内的至少一个异常操作和/或故障致动器(2i、2o)的相对位置,优选是所述推进单元之一的相对位置。
9.根据权利要求1-8中的至少一项所述的方法,其中,所述估计算法(28)是最优估计算法,优选为卡尔曼滤波器,包括至少一个预测步骤(33)和至少一个更新步骤(38)。
10.根据权利要求9所述的方法,其中,借助于所述预测步骤(33),使用所述VTOL飞行器的物理模型(39)和通过至少一个第一传感器(S、IMU)获取到的第一传感器数据集(32)来估计所述VTOL飞行器(1)的当前状况,优选地,估计所述VTOL飞行器的至少一个致动器(2i、2o)的健康状态,并且其中,借助于更新步骤,使用通过至少一个第二传感器(S、IMU)获取到的第二传感器数据集(37)来调整估计出的所述VTOL飞行器(1)的当前状况,优选地,调整估计出的所述VTOL飞行器(1)的至少一个致动器(2i、2o)的健康状态。
11.根据权利要求9或10所述的方法,其中,由所述预测步骤(33)处理所述主要数据集(32),以及由所述更新步骤(38)处理所述次要数据集(37),反之亦然。
12.根据权利要求9所述的方法,其中,所述预测步骤(33)是使用所述VTOL飞行器状况或致动器健康状态的线性系统模型以及所述VTOL飞行器状况或致动器健康状态的假定初始状态执行的,并且其中,所述主要数据集(32)和所述次要数据集(37)两者均被输入到所述更新步骤(38)中。
13.根据权利要求1-8中的至少一项所述的方法,其中,所述估计算法(28)根据所述主要数据集(32)和所述次要数据集(37)确定移动平均估计,所述主要数据集(32)和所述次要数据集(37)根据所述主要数据集(32)和所述次要数据集(37)的启发式假定的可靠性被互补加权。
14.一种用于监测VTOL飞行器(1)的状况的系统(4),优选地,该VTOL飞行器(1)是电力推进的,更具体地,该VTOL飞行器(1)是自主的,更具体地,该VTOL飞行器(1)是多旋翼飞行器,所述飞行器(1)具有多个空间分布的致动器(2i、2o),优选地,所述致动器为推进单元的形式,所述推进单元用于产生推进力和/或保持所述VTOL飞行器(1)的空间位置,其中:
主要控制(4.1)被配置为用于控制所述VTOL飞行器(1)的飞行状态,而至少一个次要控制(4.2)被配置为用于控制所述VTOL飞行器(1)的所述致动器(2i、2o),优选地,用于控制所述推进单元;
在所述VTOL飞行器(1)运转期间,所述主要控制(4.1)被配置为生成主要数据集(32),该主要数据集(32)受第一不确定性的影响,以及,所述次要控制(4.2)被配置为生成次要数据集(37),该次要数据集(37)受第二不确定性的影响,所述系统(4)包括估计算法(28),该估计算法(28)接收所述主要数据集(32)和所述次要数据集(37)两者;
所述估计算法(28)被配置为对所述主要数据集(32)和所述次要数据集(37)进行处理,并且所述估计算法(28)被配置为生成估计结果(40),所述估计结果(40)表示所述VTOL飞行器(1)的状况,优选地,表示所述VTOL飞行器(1)的至少一个致动器(2i、2o)的健康状态,所述估计结果(40)受第三不确定性的影响,所述第三不确定性等于或小于所述第一不确定性和/或所述第二不确定性。
15.一种VTOL飞行器(1),优选地,该VTOL飞行器(1)是电力推进的,更具体地,该VTOL飞行器(1)是自主的,更具体地,该VTOL飞行器(1)是多旋翼飞行器,所述飞行器(1)具有多个空间分布的致动器(2i、2o),优选地,所述致动器为推进单元的形式,所述推进单元用于产生推进力和/或保持所述VTOL飞行器的空间位置,所述VTOL飞行器(1)包括根据权利要求14所述的系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20156354.1 | 2020-02-10 | ||
EP20156354.1A EP3862835B1 (en) | 2020-02-10 | 2020-02-10 | Method and system for monitoring a condition of a vtol-aircraft |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113247302A true CN113247302A (zh) | 2021-08-13 |
CN113247302B CN113247302B (zh) | 2023-12-01 |
Family
ID=69570519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110178864.2A Active CN113247302B (zh) | 2020-02-10 | 2021-02-09 | 用于监测vtol飞行器的状况的方法及系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11866195B2 (zh) |
EP (1) | EP3862835B1 (zh) |
CN (1) | CN113247302B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220319257A1 (en) * | 2021-03-31 | 2022-10-06 | Beta Air, Llc | Aircraft motion observer configured for use in electric aircraft |
US11694570B2 (en) * | 2021-06-16 | 2023-07-04 | Beta Air, Llc | Methods and systems for simulated operation of an electric vertical take-off and landing (EVTOL) aircraft |
US11386800B1 (en) * | 2021-06-29 | 2022-07-12 | Beta Air, Llc | System and method for flight control of a vertical take-off and landing (VTOL) aircraft |
US11694568B2 (en) * | 2021-11-10 | 2023-07-04 | Beta Air, Llc | System and method for an electric aircraft simulation network |
US11897626B2 (en) * | 2022-06-29 | 2024-02-13 | BETA Technologies, Inc. | Synoptics system of an electric aircraft |
CN115981265B (zh) * | 2022-07-06 | 2024-08-02 | 北京航空航天大学 | 基于扩张观测器的舰载机故障在线检测方法 |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5615119A (en) * | 1995-06-07 | 1997-03-25 | Aurora Flight Sciences Corporation | Fault tolerant automatic control system utilizing analytic redundancy |
US7031812B1 (en) * | 2004-03-15 | 2006-04-18 | Howell Instruments, Inc. | System and method for monitoring aircraft engine health and determining engine power available, and applications thereof |
US20070030174A1 (en) * | 2005-08-05 | 2007-02-08 | The Boeing Company | Heading reference command and control algorithm and cueing systems and methods for aircraft turn-to-target maneuvers |
US20100131121A1 (en) * | 2008-11-25 | 2010-05-27 | Honeywell International, Inc. | System and methods for unmanned aerial vehicle navigation |
US20100152925A1 (en) * | 2007-12-18 | 2010-06-17 | Airbus France | Method and device for detecting oscillatory failures in a position servocontrol subsystem of an aircraft control surface |
FR2943036A1 (fr) * | 2009-03-11 | 2010-09-17 | Airbus France | Systeme distribue de commande de vol implemente selon une architecture avionique modulaire integree. |
US20110202291A1 (en) * | 2010-02-12 | 2011-08-18 | Honeywell International Inc. | Aircraft dynamic pressure estimation system and method |
US20140236390A1 (en) * | 2013-02-20 | 2014-08-21 | Farrokh Mohamadi | Vertical takeoff and landing (vtol) small unmanned aerial system for monitoring oil and gas pipelines |
EP2810872A1 (en) * | 2013-06-06 | 2014-12-10 | Bell Helicopter Textron Inc. | System and method for maximizing aircraft safe landing capability during one engine inoperative operation |
WO2014198642A1 (en) * | 2013-06-09 | 2014-12-18 | Eth Zurich | Controlled flight of a multicopter experiencing a failure affecting an effector |
US20150203215A1 (en) * | 2014-01-17 | 2015-07-23 | Eric T. Falangas | Early performance evaluation of conceptual flight and space vehicles |
US20160272300A1 (en) * | 2015-03-20 | 2016-09-22 | The Boeing Company | Flight Control System Command Selection and Data Transport |
DE102015008754A1 (de) * | 2015-07-06 | 2017-01-12 | Liebherr-Aerospace Lindenberg Gmbh | Zustandsüberwachung eines Stellantriebs in einem Fluggerät |
CN107273561A (zh) * | 2016-04-04 | 2017-10-20 | 波音公司 | 飞行事件期间飞行器的机载结构负载评估 |
US20170369190A1 (en) * | 2016-06-24 | 2017-12-28 | The Boeing Company | Performance prediction methods and systems for maintenance of aircraft flight control surface components |
KR101818232B1 (ko) * | 2017-05-26 | 2018-01-12 | 이윤성 | 비상 제어 장치, 이를 구비한 드론 및 이를 구비한 드론의 제어방법 |
KR101827955B1 (ko) * | 2017-11-01 | 2018-02-09 | 엘아이지넥스원 주식회사 | 비행체의 대기 속도 추정을 위한 정보 산출 장치 및 방법 |
US20180096611A1 (en) * | 2016-09-30 | 2018-04-05 | Sony Interactive Entertainment Inc. | Collision detection and avoidance |
US20180297573A1 (en) * | 2017-04-18 | 2018-10-18 | The Boeing Company | Brake Health Indicator Systems Using Input and Output Energy |
US20180300191A1 (en) * | 2017-04-18 | 2018-10-18 | United Technologies Corporation | Fault-accommodating, constrained model-based control using on-board methods for detection of and adaption to actuation subsystem faults |
EP3403924A1 (en) * | 2017-05-16 | 2018-11-21 | Sikorsky Aircraft Corporation | In cockpit control of a fixed wing aircraft |
US20180334245A1 (en) * | 2017-05-18 | 2018-11-22 | Airbus Helicopters Deutschland GmbH | Method of controlling an artificial force feel generating device for generation of an artificial feeling of force on an inceptor of a vehicle control system |
US20180362190A1 (en) * | 2017-06-15 | 2018-12-20 | Aurora Flight Sciences Corporation | Autonomous Aircraft Health Systems and Methods |
US20190033888A1 (en) * | 2017-07-27 | 2019-01-31 | Aurora Flight Sciences Corporation | Aircrew Automation System and Method with Integrated Imaging and Force Sensing Modalities |
CN109460052A (zh) * | 2019-01-09 | 2019-03-12 | 北京明学思机器人科技有限公司 | 一种可拼组飞行器的控制方法 |
US20190108691A1 (en) * | 2017-10-09 | 2019-04-11 | Bell Helicopter Textron Inc. | System and Method for Adaptable Trend Detection for Component Condition Indicator Data |
US20190179345A1 (en) * | 2017-12-13 | 2019-06-13 | Digital Aerolus, Inc. | Control of vehicle movement by application of geometric algebra and state and error estimation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE09840570T1 (de) * | 2008-10-03 | 2011-12-01 | Bell Helicopter Textron, Inc. | Verfahren und vorrichtung für flugzeugsensoren- und betätigungsfehlerschutz mittels rekonfigurierbarer flugsteuerungsrichtlinien |
US8126642B2 (en) * | 2008-10-24 | 2012-02-28 | Gray & Company, Inc. | Control and systems for autonomously driven vehicles |
IL256934B (en) * | 2015-07-27 | 2022-07-01 | Genghiscomm Holdings Llc | Airborne relays in cooperative multiple input and multiple output systems |
US11203446B2 (en) * | 2018-12-11 | 2021-12-21 | Dalian University Of Technology | Method for fault diagnosis of aero-engine sensor and actuator based on LFT |
DE102019101595B3 (de) * | 2019-01-23 | 2020-03-12 | Franka Emika Gmbh | Verfahren zum Ermitteln einer Gewichtskraft und eines Schwerpunktes einer Robotermanipulatorlast |
DE102019101903B4 (de) * | 2019-01-25 | 2024-05-16 | Volocopter Gmbh | Flugsteuerungseinheit und Verfahren zur Flug-Stabilisierung eines personen- oder lasttragenden Multikopters |
-
2020
- 2020-02-10 EP EP20156354.1A patent/EP3862835B1/en active Active
- 2020-12-22 US US17/130,199 patent/US11866195B2/en active Active
-
2021
- 2021-02-09 CN CN202110178864.2A patent/CN113247302B/zh active Active
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5615119A (en) * | 1995-06-07 | 1997-03-25 | Aurora Flight Sciences Corporation | Fault tolerant automatic control system utilizing analytic redundancy |
US7031812B1 (en) * | 2004-03-15 | 2006-04-18 | Howell Instruments, Inc. | System and method for monitoring aircraft engine health and determining engine power available, and applications thereof |
US20070030174A1 (en) * | 2005-08-05 | 2007-02-08 | The Boeing Company | Heading reference command and control algorithm and cueing systems and methods for aircraft turn-to-target maneuvers |
US20100152925A1 (en) * | 2007-12-18 | 2010-06-17 | Airbus France | Method and device for detecting oscillatory failures in a position servocontrol subsystem of an aircraft control surface |
US20100131121A1 (en) * | 2008-11-25 | 2010-05-27 | Honeywell International, Inc. | System and methods for unmanned aerial vehicle navigation |
US20120101663A1 (en) * | 2009-03-11 | 2012-04-26 | AIRBUS OPERATIONS (inc as a Societe par Act Simpl) | Distributed flight control system implemented according to an integrated modular avionics architecture |
FR2943036A1 (fr) * | 2009-03-11 | 2010-09-17 | Airbus France | Systeme distribue de commande de vol implemente selon une architecture avionique modulaire integree. |
US20110202291A1 (en) * | 2010-02-12 | 2011-08-18 | Honeywell International Inc. | Aircraft dynamic pressure estimation system and method |
US20140236390A1 (en) * | 2013-02-20 | 2014-08-21 | Farrokh Mohamadi | Vertical takeoff and landing (vtol) small unmanned aerial system for monitoring oil and gas pipelines |
EP2810872A1 (en) * | 2013-06-06 | 2014-12-10 | Bell Helicopter Textron Inc. | System and method for maximizing aircraft safe landing capability during one engine inoperative operation |
WO2014198642A1 (en) * | 2013-06-09 | 2014-12-18 | Eth Zurich | Controlled flight of a multicopter experiencing a failure affecting an effector |
US20190283865A1 (en) * | 2013-06-09 | 2019-09-19 | Eth Zurich | Controlled flight of a multicopter experiencing a failure affecting an effector |
US20150203215A1 (en) * | 2014-01-17 | 2015-07-23 | Eric T. Falangas | Early performance evaluation of conceptual flight and space vehicles |
US20160272300A1 (en) * | 2015-03-20 | 2016-09-22 | The Boeing Company | Flight Control System Command Selection and Data Transport |
US20170069145A1 (en) * | 2015-07-06 | 2017-03-09 | Liebherr-Aerospace Lindenberg Gmbh | Health Monitoring of an Actuator in a Flying Device |
DE102015008754A1 (de) * | 2015-07-06 | 2017-01-12 | Liebherr-Aerospace Lindenberg Gmbh | Zustandsüberwachung eines Stellantriebs in einem Fluggerät |
CN107273561A (zh) * | 2016-04-04 | 2017-10-20 | 波音公司 | 飞行事件期间飞行器的机载结构负载评估 |
US20170369190A1 (en) * | 2016-06-24 | 2017-12-28 | The Boeing Company | Performance prediction methods and systems for maintenance of aircraft flight control surface components |
US20180096611A1 (en) * | 2016-09-30 | 2018-04-05 | Sony Interactive Entertainment Inc. | Collision detection and avoidance |
US20180297573A1 (en) * | 2017-04-18 | 2018-10-18 | The Boeing Company | Brake Health Indicator Systems Using Input and Output Energy |
US20180300191A1 (en) * | 2017-04-18 | 2018-10-18 | United Technologies Corporation | Fault-accommodating, constrained model-based control using on-board methods for detection of and adaption to actuation subsystem faults |
EP3403924A1 (en) * | 2017-05-16 | 2018-11-21 | Sikorsky Aircraft Corporation | In cockpit control of a fixed wing aircraft |
US20180334245A1 (en) * | 2017-05-18 | 2018-11-22 | Airbus Helicopters Deutschland GmbH | Method of controlling an artificial force feel generating device for generation of an artificial feeling of force on an inceptor of a vehicle control system |
KR101818232B1 (ko) * | 2017-05-26 | 2018-01-12 | 이윤성 | 비상 제어 장치, 이를 구비한 드론 및 이를 구비한 드론의 제어방법 |
US20180362190A1 (en) * | 2017-06-15 | 2018-12-20 | Aurora Flight Sciences Corporation | Autonomous Aircraft Health Systems and Methods |
CN110612432A (zh) * | 2017-06-15 | 2019-12-24 | 极光飞行科学公司 | 自主飞行器健康系统和方法 |
US20190033888A1 (en) * | 2017-07-27 | 2019-01-31 | Aurora Flight Sciences Corporation | Aircrew Automation System and Method with Integrated Imaging and Force Sensing Modalities |
US20190108691A1 (en) * | 2017-10-09 | 2019-04-11 | Bell Helicopter Textron Inc. | System and Method for Adaptable Trend Detection for Component Condition Indicator Data |
KR101827955B1 (ko) * | 2017-11-01 | 2018-02-09 | 엘아이지넥스원 주식회사 | 비행체의 대기 속도 추정을 위한 정보 산출 장치 및 방법 |
US20190179345A1 (en) * | 2017-12-13 | 2019-06-13 | Digital Aerolus, Inc. | Control of vehicle movement by application of geometric algebra and state and error estimation |
CN109460052A (zh) * | 2019-01-09 | 2019-03-12 | 北京明学思机器人科技有限公司 | 一种可拼组飞行器的控制方法 |
Non-Patent Citations (1)
Title |
---|
彭悟宇: "高超声速飞行器气动变形方案设计与外形优化方法研究", 国防科技大学 * |
Also Published As
Publication number | Publication date |
---|---|
EP3862835B1 (en) | 2023-10-25 |
EP3862835A1 (en) | 2021-08-11 |
CN113247302B (zh) | 2023-12-01 |
US11866195B2 (en) | 2024-01-09 |
US20210245893A1 (en) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113247302B (zh) | 用于监测vtol飞行器的状况的方法及系统 | |
Hasan et al. | Model-based actuator fault diagnosis in multirotor UAVs | |
Ghalamchi et al. | Real-time vibration-based propeller fault diagnosis for multicopters | |
US20200201359A1 (en) | Vehicle navigation system | |
Qi et al. | A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles | |
US20230118206A1 (en) | Actuator monitoring system using inertial sensors | |
CN111880410B (zh) | 一种针对电机故障的四旋翼无人机容错控制方法 | |
Han et al. | Quadratic-Kalman-filter-based sensor fault detection approach for unmanned aerial vehicles | |
CN108388229B (zh) | 基于健康度的四旋翼随机混杂系统健康评估方法 | |
Wu et al. | Simultaneous state and parameter estimation based actuator fault detection and diagnosis for an unmanned helicopter | |
Thanaraj et al. | Actuator fault detection and isolation on multi-rotor UAV using extreme learning neuro-fuzzy systems | |
Asadi | Partial engine fault detection and control of a Quadrotor considering model uncertainty | |
Wang et al. | Data-driven anomaly detection of UAV based on multimodal regression model | |
Bole et al. | SIL/HIL replication of electric aircraft powertrain dynamics and inner-loop control for V&V of system health management routines | |
Gudmundsson et al. | Robust UAV attitude estimation using a cascade of nonlinear observer and linearized Kalman filter | |
Hansen et al. | Fault diagnosis and fault handling for autonomous aircraft | |
Dutta et al. | Machine-learning based rotor fault diagnosis in a multicopter with strain data | |
Lee et al. | Interactive multiple neural adaptive observer based sensor and actuator fault detection and isolation for quadcopter | |
Lombaerts et al. | Flight control reconfiguration based on online physical model identification and nonlinear dynamic inversion | |
Keller et al. | Aircraft flight envelope determination using upset detection and physical modeling methods | |
Nejati et al. | Actuator fault detection and isolation for helicopter unmanned arial vehicle in the present of disturbance | |
CN115685760A (zh) | 一种面向执行器故障的四旋翼混合容错控制方法及系统 | |
Zhang et al. | Database building and interpolation for a safe flight envelope prediction system | |
Hussain et al. | Aircraft sensor estimation for fault tolerant flight control system using fully connected cascade neural network | |
EP3683641A1 (en) | Methods for determining usage in fly-by-wire systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |