CN113240586A - 一种可自适应调节放大倍数的螺栓图像超分辨率处理方法 - Google Patents
一种可自适应调节放大倍数的螺栓图像超分辨率处理方法 Download PDFInfo
- Publication number
- CN113240586A CN113240586A CN202110671531.3A CN202110671531A CN113240586A CN 113240586 A CN113240586 A CN 113240586A CN 202110671531 A CN202110671531 A CN 202110671531A CN 113240586 A CN113240586 A CN 113240586A
- Authority
- CN
- China
- Prior art keywords
- image
- resolution
- features
- resolution image
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 18
- 230000003321 amplification Effects 0.000 title claims abstract description 15
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 15
- 230000004927 fusion Effects 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000000605 extraction Methods 0.000 claims description 13
- 230000006870 function Effects 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 9
- 238000013507 mapping Methods 0.000 claims description 7
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 6
- 238000012549 training Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Processing (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110671531.3A CN113240586A (zh) | 2021-06-17 | 2021-06-17 | 一种可自适应调节放大倍数的螺栓图像超分辨率处理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110671531.3A CN113240586A (zh) | 2021-06-17 | 2021-06-17 | 一种可自适应调节放大倍数的螺栓图像超分辨率处理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113240586A true CN113240586A (zh) | 2021-08-10 |
Family
ID=77140274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110671531.3A Pending CN113240586A (zh) | 2021-06-17 | 2021-06-17 | 一种可自适应调节放大倍数的螺栓图像超分辨率处理方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113240586A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113936071A (zh) * | 2021-10-18 | 2022-01-14 | 清华大学 | 图像处理方法及装置 |
CN114612470A (zh) * | 2022-05-10 | 2022-06-10 | 浙江浙能航天氢能技术有限公司 | 一种基于改进图像自适应yolo的氢敏胶带变色检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108288251A (zh) * | 2018-02-11 | 2018-07-17 | 深圳创维-Rgb电子有限公司 | 图像超分辨率方法、装置及计算机可读存储介质 |
CN109064398A (zh) * | 2018-07-14 | 2018-12-21 | 深圳市唯特视科技有限公司 | 一种基于残差密集网络的图像超分辨率实现方法 |
CN110276721A (zh) * | 2019-04-28 | 2019-09-24 | 天津大学 | 基于级联残差卷积神经网络的图像超分辨率重建方法 |
CN110866870A (zh) * | 2019-10-29 | 2020-03-06 | 中山大学 | 一种医学图像任意倍数放大的超分辨处理方法 |
CN111080531A (zh) * | 2020-01-10 | 2020-04-28 | 北京农业信息技术研究中心 | 一种水下鱼类图像的超分辨率重建方法、系统及装置 |
-
2021
- 2021-06-17 CN CN202110671531.3A patent/CN113240586A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108288251A (zh) * | 2018-02-11 | 2018-07-17 | 深圳创维-Rgb电子有限公司 | 图像超分辨率方法、装置及计算机可读存储介质 |
CN109064398A (zh) * | 2018-07-14 | 2018-12-21 | 深圳市唯特视科技有限公司 | 一种基于残差密集网络的图像超分辨率实现方法 |
CN110276721A (zh) * | 2019-04-28 | 2019-09-24 | 天津大学 | 基于级联残差卷积神经网络的图像超分辨率重建方法 |
CN110866870A (zh) * | 2019-10-29 | 2020-03-06 | 中山大学 | 一种医学图像任意倍数放大的超分辨处理方法 |
CN111080531A (zh) * | 2020-01-10 | 2020-04-28 | 北京农业信息技术研究中心 | 一种水下鱼类图像的超分辨率重建方法、系统及装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113936071A (zh) * | 2021-10-18 | 2022-01-14 | 清华大学 | 图像处理方法及装置 |
CN114612470A (zh) * | 2022-05-10 | 2022-06-10 | 浙江浙能航天氢能技术有限公司 | 一种基于改进图像自适应yolo的氢敏胶带变色检测方法 |
CN114612470B (zh) * | 2022-05-10 | 2022-08-02 | 浙江浙能航天氢能技术有限公司 | 一种基于改进图像自适应yolo的氢敏胶带变色检测方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4414890A1 (en) | Model training and scene recognition method and apparatus, device, and medium | |
CN114627360B (zh) | 基于级联检测模型的变电站设备缺陷识别方法 | |
CN113673590B (zh) | 基于多尺度沙漏密集连接网络的去雨方法、系统和介质 | |
CN110674688A (zh) | 用于视频监控场景的人脸识别模型获取方法、系统和介质 | |
CN114066831B (zh) | 一种基于两阶段训练的遥感图像镶嵌质量无参考评价方法 | |
CN113033570A (zh) | 一种改进空洞卷积和多层次特征信息融合的图像语义分割方法 | |
CN112581409B (zh) | 一种基于端到端的多重信息蒸馏网络的图像去雾方法 | |
CN113554032B (zh) | 基于高度感知的多路并行网络的遥感图像分割方法 | |
CN112435191A (zh) | 一种基于多个神经网络结构融合的低照度图像增强方法 | |
CN115439857A (zh) | 一种基于复杂背景图像的倾斜字符识别方法 | |
CN113240586A (zh) | 一种可自适应调节放大倍数的螺栓图像超分辨率处理方法 | |
CN116778165A (zh) | 基于多尺度自适应语义分割的遥感影像灾害检测方法 | |
CN113902620A (zh) | 一种基于可变形卷积网络的视频超分辨率系统及方法 | |
CN109034198A (zh) | 基于特征图恢复的场景分割方法和系统 | |
CN114926682A (zh) | 一种基于局部离群因子的工业图像异常检测与定位方法及系统 | |
CN114359948A (zh) | 基于重叠滑窗机制与yolov4的电网接线图图元识别方法 | |
Ma et al. | MHGAN: A multi-headed generative adversarial network for underwater sonar image super-resolution | |
CN112418229A (zh) | 一种基于深度学习的无人船海上场景图像实时分割方法 | |
CN114565764B (zh) | 基于舰船实例分割的港口全景感知系统 | |
CN115131414B (zh) | 基于深度学习的无人机图像对齐方法、电子设备和存储介质 | |
CN116823610A (zh) | 一种基于深度学习的水下图像超分辨率生成方法和系统 | |
CN117152630A (zh) | 一种基于深度学习的光学遥感图像变化检测方法 | |
CN113962332B (zh) | 基于自优化融合反馈的显著目标识别方法 | |
CN113920455B (zh) | 一种基于深度神经网络的夜间视频着色方法 | |
CN117197530A (zh) | 一种基于改进YOLOv8模型及余弦退火学习率衰减法的绝缘子缺陷识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhao Zhenbing Inventor after: Geng Shaofeng Inventor after: Luo Wang Inventor after: Nie Liqiang Inventor after: Zhao Yanqing Inventor after: Xiong Jianping Inventor after: Zhang Wanzheng Inventor after: Qi Yincheng Inventor before: Zhao Zhenbing Inventor before: Geng Shaofeng Inventor before: Qi Yincheng Inventor before: Nie Liqiang |
|
CB03 | Change of inventor or designer information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220223 Address after: 071003 Hebei province Baoding Yonghua No. 619 North Street Applicant after: NORTH CHINA ELECTRIC POWER University (BAODING) Applicant after: NARI Group Corp. Applicant after: SHANDONG University Applicant after: Zhiyang Innovation Technology Co.,Ltd. Applicant after: ZHEJIANG DAHUA TECHNOLOGY Co.,Ltd. Address before: 071000 619 Yonghua North Street, lotus pool, Baoding, Hebei Applicant before: NORTH CHINA ELECTRIC POWER University (BAODING) Applicant before: Shandong University |
|
TA01 | Transfer of patent application right |