CN113235088A - 可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法 - Google Patents

可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法 Download PDF

Info

Publication number
CN113235088A
CN113235088A CN202110500236.1A CN202110500236A CN113235088A CN 113235088 A CN113235088 A CN 113235088A CN 202110500236 A CN202110500236 A CN 202110500236A CN 113235088 A CN113235088 A CN 113235088A
Authority
CN
China
Prior art keywords
coating
aluminum
hydrophilic
hydrophobic
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110500236.1A
Other languages
English (en)
Other versions
CN113235088B (zh
Inventor
张晋
白景元
张美林
杨大龙
李晓阳
范龙毅
杨洲
管仁国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Jiaotong University
Original Assignee
Dalian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Jiaotong University filed Critical Dalian Jiaotong University
Priority to CN202110500236.1A priority Critical patent/CN113235088B/zh
Publication of CN113235088A publication Critical patent/CN113235088A/zh
Application granted granted Critical
Publication of CN113235088B publication Critical patent/CN113235088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明公开了一种可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法,涉及金属材料加工技术领域。所述制备方法包括以下步骤:提供基底;在所述基底上修饰亲铝液涂层;在所述亲铝液涂层上沉积牺牲模板;在所述牺牲模板上修饰疏铝液涂层;所述疏铝液涂层是由阵列排布的疏铝涂层单元组成;将所述牺牲模板刻蚀后暴露出部分基底上层的亲铝液涂层,即在基底上获得所述亲疏双效阵列涂层。本发明通过在换热壁面上构筑亲疏相间结构,破坏固‑液间三相接触线的连续性,降低接触角滞后,促进铝熔体的铺展,提高成膜率。

Description

可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法
技术领域
本发明涉及金属材料加工技术领域,具体涉及一种可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法。
背景技术
金属熔体液固界面的动态润湿与界面换热问题广泛存在于冶金及铸造过程,其对金属的充型、传热、传质、结晶具有重要影响,决定了工艺稳定性与制品的组织和性能。同调控熔体本身的流动性相比,从界面科学和流体力学角度出发,通过调节与熔体接触角的换热壁面的表面能和流畅,可以有效优化金属熔体成膜率和界面换热,是一项通用性及普适性的高效调控手段。一个新的金属熔体流动调控模型的建立会推动金属材料、工程材料及表面材料科学等相关交叉学科的发展。以往的研究工作表明:通过优化换热壁面的结构和能量分布可以有效提高冷态和低温液膜的成膜及界面换热情况。然而,高温熔体的液膜流动研究还处在起步阶段,其过高的表面张力仍然是限制薄壁铸件成形、半固态浆料制备以及金属熔体界面行为调控的关键所在。
发明内容
本发明的目的是为了解决上述背景技术中存在的不足,本发明提供了一种可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法,本发明通过在换热壁面上构筑亲疏相间结构,破坏固-液间三相接触线的连续性,降低接触角滞后,促进铝熔体的铺展,提高成膜率。
本发明第一个目的是提供一种可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,包括以下步骤:
选取基底;
在所述基底上修饰亲铝液涂层;
在所述亲铝液涂层上沉积牺牲模板;
在所述牺牲模板上修饰疏铝液涂层;所述疏铝液涂层是由阵列排布的疏铝涂层单元组成;
将所述牺牲模板刻蚀后暴露出部分基底上层的亲铝液涂层,即在基底上获得所述亲疏双效阵列涂层。
优选的,每个所述疏铝涂层单元的表面均为顶角是30~120°的等腰三角形。
更优选的,相邻所述疏铝涂层单元间的距离为5~10mm。
优选的,每个所述疏铝涂层单元为TiO2涂层。
优选的,所述亲铝液涂层为镀铬涂层。
优选的,所述基底为不锈钢板。
本发明第二个目的是提供一种可促进铝熔体铺展的亲疏双效阵列涂层。
与现有技术相比,本发明的有益效果是:
本发明提供了一种可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法,本发明通过在换热壁面上构筑亲疏相间结构,破坏固-液间三相接触线的连续性,降低接触角滞后,促进铝熔体的铺展,提高成膜率。
本发明提供的亲疏双效阵列涂层通过在换热壁面上构筑亲疏相间结构,使铝熔体在铺展应用的过程中,有效提高冷态和低温液膜的成膜及界面换热,进一步扩大其铺展的范围。
附图说明
图1是本发明提供的可促进铝熔体铺展的亲疏双效阵列涂层的构筑机制示意图。
图2是采用Comsol软件模拟本发明提供的亲疏双效阵列涂层对气-液-固三相接触线影响情况照片。
图3是采用Comsol软件模拟本发明提供的亲疏双效阵列涂层对气-液-固三相接触线影响情况照片。
图4是实施例1所述镀铬-TiO2亲疏双效阵列涂层图。
图5是实施例1所得镀铬-TiO2亲疏双效阵列涂层上铝液铺展图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
需要说明的是,下述各实施例中所述实验方法如无特殊说明,均为常规方法;采用的试剂和材料,如无特殊说明,均可在市场上购买得到。
本发明提供的可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,见图1所示,包括以下步骤:
选取基底;
在所述基底上修饰2mm厚的亲铝液涂层;
在所述亲铝液涂层上沉积2mm厚的铝层作为牺牲模板;
在所述牺牲模板上修饰2mm厚的疏铝液涂层;为保证所述疏铝涂层规律分布,所述疏铝液涂层是由阵列排布的疏铝涂层单元组成;
随后将所述牺牲模板刻蚀后暴露出部分基底上层的亲铝液涂层,即在基底上获得所述亲疏双效阵列涂层。
实施例1
一种可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,包括以下步骤:
首先选用304不锈钢板作为基底,采用等离子喷涂的方法在基底表面修饰镀铬涂层作为亲铝液涂层,完成后在亲铝液涂层上沉积2mm厚的铝层作为牺牲模板,之后采用直接涂覆的方法修饰2mm厚的TiO2涂层作为疏铝液涂层,所修饰的疏铝液涂层是由阵列排布的疏铝涂层单元组成;每个疏铝涂层单元的形状为顶角是60°的等腰三角形,各个三角形的分布间距为6mm,最后刻蚀模板暴露出部分基底上层的镀铬涂层,得到镀铬-TiO2亲疏铝双效阵列涂层。
实施例2
一种可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,包括以下步骤:首先选用304不锈钢板作为基底,采用等离子喷涂的方法在基底表面修饰镀铬涂层作为亲铝液涂层,完成后在亲铝液涂层上沉积2mm厚的铝层作为牺牲模板,之后采用直接涂覆的方法修饰2mm厚的TiO2涂层作为疏铝液涂层,所修饰的疏铝液涂层是由阵列排布的疏铝涂层单元组成;每个疏铝涂层单元的形状为顶角是30°的等腰三角形,各个三角形的分布间距为5mm,最后刻蚀模板暴露出部分基底上层的镀铬涂层,得到镀铬-TiO2亲疏铝双效阵列涂层。
实施例3
一种可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,包括以下步骤:首先选用304不锈钢板作为基底,采用等离子喷涂的方法在基底表面修饰镀铬涂层作为亲铝液涂层,完成后在亲铝液涂层上沉积2mm厚的铝层作为牺牲模板,之后采用直接涂覆的方法修饰2mm厚的TiO2涂层作为疏铝液涂层,所修饰的疏铝液涂层是由阵列排布的疏铝涂层单元组成;每个疏铝涂层单元的形状为顶角是120°的等腰三角形,各个三角形的分布间距为10mm,最后刻蚀模板暴露出部分基底上层的镀铬涂层,得到镀铬-TiO2亲疏铝双效阵列涂层。
为了说明本发明提供的亲疏双效阵列涂层对气-液-固三相接触线影响,通过采用Comsol软件对本发明提供的亲疏双效阵列涂层对气-液-固三相接触线影响情况进行模拟,见图2~3所示。
图2是采用Comsol软件模拟本发明提供的亲疏双效阵列涂层对气-液-固三相接触线影响情况照片。图2为采用Comsol软件模拟的铝液在涂覆本发明提供的亲疏双效阵列涂层换热壁面上流动0.03s时的铺展情况,从图2中可以看出0.03s时本发明提供的亲疏双效阵列涂层对气-液-固三相接触线起到了切割作用,明显破坏了气-液-固三相接触线的连续性。
图3是采用Comsol软件模拟本发明提供的亲疏双效阵列涂层对气-液-固三相接触线影响情况照片。图3为采用Comsol软件模拟的铝液在涂覆本发明提供的亲疏双效阵列涂层换热壁面上流动0.21s时的铺展情况,从图3中可以看出0.21s时本发明提供的亲疏双效阵列涂层依然对气-液-固三相接触线起到了切割作用,依然明显破坏了气-液-固三相接触线的连续性。
结合图2和图3可以看出,从Comsol软件的模拟结果来看,本发明提供的亲疏双效阵列涂层可以有效破坏气-液-固三相接触线的连续性。
为了说明本发明提供的制备方法制得的可促进铝熔体铺展的亲疏双效阵列涂层的相关性能,仅对实施例1进行测试,见图4~5所示。
图4是实施例1所述镀铬-TiO2亲疏双效阵列涂层图。如图4所示,基底为304不锈钢板,采用等离子喷涂的方法在基底表面修饰2mm厚的镀铬涂层作为亲铝液涂层,顶角是60°的等腰三角形单元上修饰2mm厚的TiO2涂层作为疏铝液涂层,各个三角形的分布间距为6mm。
图5是实施例1所得镀铬-TiO2亲疏双效阵列涂层上铝液铺展图。从图5可以看出,根据本发明所提供的制备方法实施例1所得镀铬-TiO2亲疏双效阵列涂层对铝熔体起到了促进铺展的作用,铝液流经实施例1所得镀铬-TiO2亲疏双效阵列涂层后形成薄薄的一层液膜。
本发明通过在换热壁面上构筑亲疏相间结构,破坏固-液间三相接触线的连续性,降低接触角滞后,促进铝熔体的铺展,提高成膜率。
综上,本发明提供的一种可促进铝熔体铺展的亲疏双效阵列涂层,具体采用牺牲模板法构筑,构筑过程如下:第一步选用304不锈钢板为基底,第二步在基底表面修饰亲铝液涂层,第三步在亲铝液涂层上沉积牺牲模板,第四步修饰三角形疏铝液涂层,第五步刻蚀模板,得到亲疏双效阵列涂层表面。
本发明所构筑的亲疏双效阵列涂层可影响熔体流动过程中气-液-固三相接触线的连续性,促进铝熔体铺展,提高成膜率,为改善薄壁类铝铸件的充型问题提供了可能性。
本发明提供的亲疏双效阵列涂层通过在换热壁面上构筑亲疏相间结构,使铝熔体在铺展应用的过程中,有效提高冷态和低温液膜的成膜及界面换热,进一步扩大其铺展的范围。
本发明描述了优选实施例及其效果。但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,其特征在于,包括以下步骤:
选取基底;
在所述基底上修饰亲铝液涂层;
在所述亲铝液涂层上沉积牺牲模板;
在所述牺牲模板上修饰疏铝液涂层;所述疏铝液涂层是由阵列排布的疏铝涂层单元组成;
将所述牺牲模板刻蚀后暴露出部分基底上层的亲铝液涂层,即在基底上获得所述亲疏双效阵列涂层。
2.根据权利要求1所述的可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,其特征在于,每个所述疏铝涂层单元的表面均为顶角是30~120°的等腰三角形。
3.根据权利要求2所述的可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,其特征在于,相邻所述疏铝涂层单元间的距离为5~10mm。
4.根据权利要求1所述的可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,其特征在于,每个所述疏铝涂层单元为TiO2涂层。
5.根据权利要求1所述的可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,其特征在于,所述亲铝液涂层为镀铬涂层。
6.根据权利要求1~5任一所述的可促进铝熔体铺展的亲疏双效阵列涂层的制备方法,其特征在于,所述基底为不锈钢板。
7.一种权利要求6所述的方法制得的可促进铝熔体铺展的亲疏双效阵列涂层。
CN202110500236.1A 2021-05-08 2021-05-08 可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法 Active CN113235088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110500236.1A CN113235088B (zh) 2021-05-08 2021-05-08 可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110500236.1A CN113235088B (zh) 2021-05-08 2021-05-08 可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN113235088A true CN113235088A (zh) 2021-08-10
CN113235088B CN113235088B (zh) 2022-07-19

Family

ID=77132683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110500236.1A Active CN113235088B (zh) 2021-05-08 2021-05-08 可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN113235088B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461239A (en) * 1987-09-02 1989-03-08 Sky Aluminium Fin material for heat exchanger
CN1760113A (zh) * 2005-11-16 2006-04-19 厦门大学 超双亲性和超疏水性的二氧化钛纳米管阵列膜的制备方法
US20190202166A1 (en) * 2017-12-29 2019-07-04 Korea Institute Of Science And Technology Hydrophilic aluminum surface body having hybrid nanostructure and manufacturing method thereof
WO2020120547A1 (de) * 2018-12-14 2020-06-18 Robert Bosch Gmbh Vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer aluminiumhaltigen metallschmelze
WO2020120570A1 (de) * 2018-12-14 2020-06-18 Robert Bosch Gmbh Vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer aluminiumhaltigen metallschmelze

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461239A (en) * 1987-09-02 1989-03-08 Sky Aluminium Fin material for heat exchanger
CN1760113A (zh) * 2005-11-16 2006-04-19 厦门大学 超双亲性和超疏水性的二氧化钛纳米管阵列膜的制备方法
US20190202166A1 (en) * 2017-12-29 2019-07-04 Korea Institute Of Science And Technology Hydrophilic aluminum surface body having hybrid nanostructure and manufacturing method thereof
WO2020120547A1 (de) * 2018-12-14 2020-06-18 Robert Bosch Gmbh Vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer aluminiumhaltigen metallschmelze
WO2020120570A1 (de) * 2018-12-14 2020-06-18 Robert Bosch Gmbh Vorrichtung zur generativen fertigung eines dreidimensionalen werkstücks aus einer aluminiumhaltigen metallschmelze

Also Published As

Publication number Publication date
CN113235088B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
CN100556566C (zh) 镁合金超薄板材的成型方法
Wang et al. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability
CN113235088B (zh) 可促进铝熔体铺展的亲疏双效阵列涂层及其制备方法
CN107092754B (zh) 一种合金晶粒组织数值预测方法
CN105598379B (zh) 一种基于缩松缺陷预测的回转体薄壁铸件砂型铸造过程中冒口设计方法
CN110489821A (zh) 一种镍基合金堆焊熔池枝晶生长数值模拟方法
WO2021129552A1 (zh) 一种金属基复合材料及其制备方法
CN1911561A (zh) 一种板坯连铸轻压下位置的控制方法
CN104264002A (zh) 一种铝箔坯料的生产方法
CN115007820B (zh) 一种消减球状石墨组织壁厚敏感性的超声连铸方法及系统
CN115094392A (zh) 一种细晶高致密镍铬铝钇硅合金靶材的制备方法
Panzhong et al. Low pressure casting technology and forming process analysis of metal mold based on ProCAST FEA procedure
Zhang et al. A novel approach to improve the macro-segregation defect and mechanical properties of Al–Mg–Mn aluminum alloys during twin-roll continuous casting
Yang et al. Control of the adhesion strength between nickel replica and copper mold by electrochemical nucleation of lead
Wei et al. Effects of electrolyte flushing and surface state on electropolishing TB2 titanium alloy
Wu et al. Effect of substrate temperature on adhesion at liquid-aluminum/silica interface by phantom wall method
CN112519203A (zh) 一种基于灰度曝光的面投影光固化3d打印高效无损伤支撑方法
CN112525745B (zh) 中间包内衬耐材冲刷侵蚀的物理模拟试验装置及使用方法
CN116213762A (zh) 一种激光金属增材制造熔融沉积层的微观组织形貌预测方法
Liu et al. Flow field simulation and experimental investigation on macro electrolyte jet electrochemical turning of TB6 titanium alloy
Azad et al. A new approach for applying a non-conductive mandrel in electroforming of complex bellows-shape
CN114769541A (zh) 一种用于增强双辊铸轧工艺稳定性的结晶辊让步运动方法
Shengnan et al. Experimental and simulation research on hollow AZ31 magnesium alloy three-channel joint by hot extrusion forming with sand mandrel
CN110970095B (zh) 一种涉及冶金领域钢液凝固过程中强制对流对AlN枝晶受力计算方法
Huang et al. Effect of the rolling speed on the flow field and solidification welding line of the roll casting for AZ31 magnesium alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant