CN113226170B - 一种心脏舒张功能评估方法、设备和系统 - Google Patents

一种心脏舒张功能评估方法、设备和系统 Download PDF

Info

Publication number
CN113226170B
CN113226170B CN201980074503.4A CN201980074503A CN113226170B CN 113226170 B CN113226170 B CN 113226170B CN 201980074503 A CN201980074503 A CN 201980074503A CN 113226170 B CN113226170 B CN 113226170B
Authority
CN
China
Prior art keywords
information
parameter
cluster
vibration
frequency component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980074503.4A
Other languages
English (en)
Other versions
CN113226170A (zh
Inventor
褚正佩
赵东东
曾令均
刘蓬勃
庄少春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oufeikang Technology Shenzhen Co ltd
Original Assignee
Shenzhen Dama Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Dama Technology Co Ltd filed Critical Shenzhen Dama Technology Co Ltd
Publication of CN113226170A publication Critical patent/CN113226170A/zh
Application granted granted Critical
Publication of CN113226170B publication Critical patent/CN113226170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1102Ballistocardiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种心脏舒张功能评估方法(100),用于心脏监测领域,方法(100)包括:非侵入式获取对象胸腔体表的振动信息(101);对振动信息进行预处理生成血流动力学相关信息(102);基于血流动力学相关信息确定第一参数和第二参数(103);基于第一参数和第二参数生成指示参数,并基于指示参数评估对象的心脏舒张功能(104)。

Description

一种心脏舒张功能评估方法、设备和系统
技术领域
本发明属于心脏监测领域,尤其涉及一种非侵入式心脏舒张功能评估方法、设备和系统。
背景技术
心力衰竭(简称心衰)是一个包含多种病因和发病机制的临床综合征。随着人口老龄化以及急性心肌梗死患者存活率的升高,慢性心衰患者的数量快速增长。心衰患者从慢性状态过度到急性的恶化状态中,伴随着心脏充盈压的升高。其中高充盈会使心脏功能进入快速的恶性循环,但是患者本身要在充盈压持续升高约20天左右,才感觉到症状从而需要紧急入院,这时心脏的损伤已经发生,且不可逆转。当识别到患者处于高充盈压状态时,需要及时干预,从而可以避免患者进一步恶化,这一点已经成为临床医生的共识。
目前有植入性产品用于评估心脏舒张功能,但价格较高,而且若只为监测所需,患者接受度较差。因此需要一种对人体更友好、使用方便的产品来监测心脏舒张功能。
发明内容
本发明的目的在于提供一种能评估测量对象的心脏舒张功能的评估方法、设备、系统和计算机可读存储介质,旨在实现非侵入式评估心脏舒张功能。
第一方面,本发明提供了一种心脏舒张功能评估方法,所述方法包括:
非侵入式获取对象胸腔体表的振动信息;
对所述振动信息进行预处理生成血流动力学相关信息;
基于所述血流动力学相关信息确定第一参数和第二参数,其中,第一参数用于表征心脏舒张早期心室充盈事件,第二参数用于表征心脏舒张末期心房收缩事件。
基于所述第一参数和第二参数生成指示参数,并基于所述指示参数评估所述对象的心脏舒张功能。
第二方面,本发明提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述的心脏舒张功能评估方法的步骤。
第三方面,本发明提供了一种心脏舒张功能评估设备,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,所述处理器执行所述计算机程序时实现如上述的心脏舒张功能评估方法的步骤。
第四方面,本发明提供了一种心脏舒张功能评估系统,所述系统包括:
一个或多个振动传感器,用来获取所述对象的胸腔体表振动信息;和
与振动传感器连接的,如上述的心脏舒张功能评估设备。
本发明是通过采集使用者的振动信息来监测心脏的舒张功能,无需侵入人体,被动测量,而且可以实现连续监测,使用者只需要躺在测量设备上即可进行测量,无需专业人员辅助,并且具有测量精度高、操作简单的优点,能提高测试者的舒适性,可以适用于医院和家庭等场景。本发明提供的心脏舒张功能评估系统,可以评估使用者的心脏舒张功能,进而在出现恶化迹象时提前预警,帮助使用者避免恶化后果。
附图说明
图1是依据本发明实施例一提供的心脏舒张功能评估方法的流程图;
图2是光纤传感器采集得到的对象A的振动信息的波形示意图;
图3是血流动力学相关信息的时域波形示意图;
图4是血流动力学相关信息、第一高频分量信息和第二高频分量信息位于同一时间轴的时域波形示意图;
图5是一个心动周期内血流动力学相关信息、振动能量信息、第一高频分量信息和第二高频分量信息的第一波群、第二波群和第三波群的示意图;
图6是一个心动周期内心电信息、血流动力学相关信息、振动能量信息、第一高频分量信息和第二高频分量信息置于同一时间轴的时域波形示意图;
图7A和图7B是基于对象B的振动信息的第一参数和第二参数的取值示意图;
图7C是基于对象C的振动信息的第一参数和第二参数的取值示意图;
图8A和图8B是基于对象D的振动信息的第一参数和第二参数的取值示意图;
图9A是基于对象E的振动信息的第一参数和第二参数的取值示意图;
图9B、图9C和图9D是指示参数的ROC曲线图;
图10是依据本发明实施例三提供的心脏舒张功能评估设备的结构框图;
图11是依据本发明实施例四提供的心脏充盈压状态监测系统的结构框图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如本发明和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例一:
请参阅图1,本发明实施例一提供的一种心脏舒张功能评估方法100包括以下步骤:需注意的是,若有实质上相同的结果,本发明的心脏舒张功能评估方法并不以图1所示的流程顺序为限。
S101、非侵入式获取对象胸腔体表的振动信息。
在本发明实施例一中,非侵入式获取对象胸腔体表振动信息可以是通过一个或多个振动传感器获取的。振动传感器可以是加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器、应力传感器,此外还可以是以加速度、速度、位移、或压力为基础将物理量等效性转换的传感器(例如静电荷敏感传感器、充气式微动传感器、雷达传感器等)。其中应变传感器可以是光纤传感器。在本发明实施例一中,非侵入式获取对象胸腔体表振动信息还可以是通过其他方式获取的,例如光电传感器。
在实施例一中,通过光纤传感器采集对象的胸腔体表振动信息,光纤传感器可被放置于对象身体下方。例如对象可以呈仰卧、俯卧、侧卧等姿势,光纤传感器可放置于床上,对象仰卧(俯卧或侧卧)于其上。以对象呈仰卧姿势为例,光纤传感器可以被配置为置于对象的背部下方,较佳的测量状态是光纤传感器被配置为置于对象的左肩胛骨和右肩胛骨之间的区域下方,也就中肩下方,一般地,为描述方便,将对象左肩胛骨和右肩胛骨之间所对应的体表区域定义为中肩。本领域普通人员可以理解的是,当对象呈俯卧姿势时,测量位置是与呈仰卧姿势时的测量位置对应的,例如与背部对应的测量位置是对象的胸部。光纤传感器还可以放置于一定倾斜角仰卧人体背后的接触面、轮椅或其它可倚靠物体的倚卧人体背后的接触面等进行振动信息的采集。此外,振动传感器还可以置于呈仰卧姿势的对象的身体上方,例如加速度传感器可以置于对象的心尖对应的胸部体表区域之上。
振动传感器应至少一个,当振动传感器有多个时,各传感器独立且同步工作,每个传感器的大小可以相同,也可以被设计成不同的尺寸,比如20cm*30cm的传感器或者5cm*4cm的传感器,任意尺寸的传感器可以以任意方式排列组合。例如在一些实施例中,体型较瘦小的对象可以配置一块大传感器,也可以配置两块小传感器,而体型较宽的对象可以配置两块大传感器或两块小传感器和一块大传感器组合的形式。当振动传感器采用光纤传感器时,至少一个光纤传感器被置于对象右肩部分,光纤传感器可以直接置于对象身体下方,也可以放置于床垫下方与对象非直接接触。在一些例子中,光纤传感器的感应区域至少是20平方厘米,此处的感应区域是指振动传感器实际用来感应振动的区域(例如,光纤传感器的感应区域是指光纤传感器中光纤分布的区域)。
图2所示为光纤传感器采集得到的一个对象的振动信息的波形示意图。其中,曲线21的横轴表示时间,纵轴表示归一化处理后的振动信息,无量纲。振动传感器采集的振动信息包含被测对象呼吸信号成分、血流动力学信号成分、以及环境微震动、被测对象体动引起的干扰和电路自身的噪声信号。此时的信号大轮廓即为人体呼吸产生的信号包络,而血流动力学信号与其它干扰噪声则叠加在呼吸包络曲线上。
S102、对振动信息进行预处理生成血流动力学相关信息。
不同的传感器获得的振动信息包含的信息量不同,有的包含的信息量比较丰富,因此需要对其进行预处理来捕获相关信号。例如,振动传感器采用光纤传感器时获得的振动信息中还包含被测对象的呼吸信号、体动信号、血流动力学信号、传感器固有的一些噪声等信号。
在本发明实施例一中,S102具体可以包括:
对振动信息进行滤波、去噪、信号缩放中的至少一种,得到血流动力学相关信息;具体可以为:根据对滤波后信号特征的需求采用IIR滤波器、FIR滤波器、小波滤波器、零相位双向滤波器、多项式拟合平滑滤波器、积分变换、微分变换中的一种或多种组合,对振动信息进行滤波去噪。例如对所述振动信息滤除2Hz以下的信息可以滤除呼吸信号和体动信号。预处理还可以包括:判断振动信息是否携带工频干扰信号,如果有,则通过工频陷波器滤除工频噪声。还可以对一些高频噪声(例如45Hz以上)进行去噪处理,处理后的信息可以根据情况进行信号缩放后可得到血流动力学相关信息。也可以直接设置滤波区间,例如滤波区间可以是1Hz-50Hz之间的任意区间。
如图3所示为对图2所示的光纤传感器获取的振动信息进行预处理后的血流动力学相关信息的时域波形示意图,曲线31滤波区间选择的是9Hz-45Hz。曲线31每个波形特征明显且一致性良好、周期规律、轮廓清晰、基线平稳,也即信号质量较佳。
S103、基于血流动力学相关信息确定第一参数和第二参数。其中,第一参数用于表征心脏舒张早期心室充盈事件,第二参数用于表征心脏舒张末期心房收缩事件。
在实施例一中,S103具体可以包括:
S1031、对血流动力学相关信息进行处理生成第一高频分量信息、第二高频分量和振动能量信息。其中,第一高频分量信息用于表征速度信号;第二高频分量信息用于表征加速度信号;振动能量信息用于表征能量信号。
心脏的周期性搏动会导致各种变化的周期现象,例如心内压和心血管压、心房与心室的容积、心内瓣膜(包括二尖瓣、三尖瓣、主动脉瓣、肺动脉瓣)的启闭、血流速度等的周期变化。这些变化驱使血液在血管中沿着一定的方向流动。血流动力学(hemodynamics)研究的是血液在心血管系统中流动的力学,是以血液与血管的变形和流动为研究对象。本发明描述的“血流动力学相关信息”指任何与血流动力学相关的信息,可以包括但不限于,与血流产生相关的信息(例如心脏的收缩舒张导致射血)、与血流流动相关的信息(例如心排量CO(cardiac output)、左心室射血冲击主动脉弓)、与血流压力相关的信息(例如动脉收缩压、舒张压、平均动脉压)、与血管相关的信息(例如血管弹性)中的一种或几种。心脏的周期性搏动可以维持血液循环,因此与心脏搏动相关的各种参数,例如心内瓣膜的启闭、心房与心室容积的变化、心房与心室压力的变化、心房与心室中血流的流速和方向等,都是与血流动力学相关的信息。
通过光纤传感器获取的振动信息本质上对应的是位移变化信息,位移变化信息较为平滑,一些加速度或速度的变化细节在位移变化信息上较难识别。例如速度从零逐渐增加到某一峰值,再从该峰值逐渐递减到零,速度变化曲线形成先上升后下降的波形,但是位移变化曲线为单调波形。因此相较于与位移对应的信号分量而言,与速度、加速度对应的信号分量对应的峰谷时间宽度更窄,称之为高频分量信息。高频分量提取方法可以是多项式拟合平滑滤波的方式,还可以对血流动力学相关信息进行微分处理生成高频分量信息,例如,S1031具体可以是对血流动力学相关信息进行一阶微分处理生成第一高频分量信息和进行二阶微分处理生成第二高频分量信息。振动能量信息可以通过对位移变化信息逐点计算指定时间窗口的能量积分生成。积分窗口的时间宽度可以是10ms,50ms,100ms等合适宽度,能量积分可以是取均值后的绝对值、平方、平方根等计算方式。
此外,通过加速度传感器获取的振动信息本质上对应的是血流动力学加速度变化信息,即第二高频分量信息,这时可以对加速度变化信息进行一阶积分处理生成第一高频分量信息,对加速度振动信息进行积分可以生成振动能量信息。
其它种类的传感器,例如雷达波,如果本质上感受的也是对象的身体位移振动变化,因此本领域普通人员可以理解的是,其信号处理可以采用上述的光纤传感器的信号处理过程,也在本发明的保护范围之内。
本发明中对第一高频分量信息和第二高频分量信息是以对位移振动信息进行一阶微分处理和二阶微分处理表述的,应当理解的是,通过其他方法例如多项式拟合平滑滤波方式等获得与一阶微分处理和二阶微分处理后的第一高频分量信息和第二高频分量信息等效的信号,也在本发明的保护范围之内。
如图4所示,曲线41是第一高频分量信息的时域波形曲线,曲线42是第二高频分量信息的时域波形曲线,曲线43是振动能量信息曲线。横轴表示时间,纵轴无量纲。曲线41和曲线42是图3所示的血流动力学相关信息即曲线31进行一阶微分处理和二阶微分处理后的波形曲线。曲线43是对图3所示的血流动力学相关信息进行能量积分后的波形曲线。为方便对照,将曲线31、曲线41、曲线42和曲线43置于同一时间轴进行同步显示。
S1032、将血流动力学相关信息、第一高频分量信息、第二高频分量信息和振动能量信息置于同一时间轴上进行同步,并划分心拍。
在一些例子中,振动信息是连续获取时,基于振动信息处理生成的血流动力学相关信息、第一高频分量信息、第二高频分量信息、振动能量信息同样也是连续数据,此时需要对上述信息进行心拍划分。其中心拍划分可以依据血流动力学相关信息、第一高频分量信息、或第二高频分量信息波形信号中重复出现的特征来进行划分。由于心脏活动具有明显的周期性,有一些明显的特征重复性高,例如,正常人的心动周期大约是0.6s至1秒之间,可以据此设定搜索区间,搜索最高峰,将最高峰作为心拍划分特征。类似的,最低谷也同样可以作为心拍划分特征。
在获取对象振动信息的同时,可以通过心电传感器获取对象的心电信息,由于ECG信号噪声小,信号干净,用来划分心拍准确度高,因此可以基于与振动信息同步获取的ECG信号来对血流动力学相关信息、第一高频分量信息、或第二高频分量信息进行心拍划分。
在另一些例子中,振动信息是以心动周期为单位离散获取时,并不需要进行心拍划分,S1032可以被省略。在本发明实施例一中,后续流程可以是对逐个心拍内的血流动力学相关信息、第一高频分量信息、第二高频分量信息进行处理,还可以是将预设的一段时间内(例如5分钟、30分钟)的血流动力学相关信息、第一高频分量信息、第二高频分量信息按照心拍进行数据叠加平均处理后生成对应的平均信息,再对各个平均信息进行后续处理。因此下文描述的血流动力学相关信息、第一高频分量信息、第二高频分量信息可以是指一个心拍的数据,也可以是预设一段时间内的按心拍进行叠加平均处理后的数据。
S1033、对所述血流动力学相关信息、第一高频分量信息、第二高频分量信息进行波群划分,确定第一波群、第二波群和第三波群。
波群划分方法可以依据血流动力学相关信息和所述振动能量信息,并基于振动能量信息划分第一波群、第二波群和第三波群。如图5所示,是选取图4中的一个心动周期的波形放大示意图。可见振动能量信息43存在两个能量包络带,其中一个能量包络带的能量峰相对高而且其持续时间窗将血流动力学的最高峰所对应的时间包含在内,确定为收缩期能量带,则另一个突出的能量峰为舒张期能量带。收缩期能量带包络范围的持续时间作为第一时间窗,舒张期能量带包络范围的持续时间作为第二时间窗。与振动能量信息同步的血流动力学信息、第一高频分量信息、第二高频分量信息上与第一时间窗对应的波丛是各自的第一波群,与第二时间窗对应的波丛是各自的第二波群,另外将各自的第一波群之前的“W”形状波群确定为第三波群。因具有时间上的同步性,为方便比较,图5中将曲线31、曲线41和曲线42上的第一波群统一表示为501,第二波群统一表示为502,第三波群统一表示为503。应当理解的是,曲线31、曲线41和曲线42各自都可以划分出第一波群、第二波群和第三波群。
在一些例子中,波群划分还可以是:在获取对象振动信息的同时,通过心电传感器获取对象的心电信息,心电信息可以帮助区分收缩期能量带和舒张期能量带,心电信息的QRS波群与振动能量信息的收缩期能量带最接近,因而可以借助心电信息划分第一波群、第二波群和第三波群。如图6所示,将同步获取的心电信息与图5中的各条曲线置置于同一时间轴同步,曲线61是心电信息示意图,由于心电信息表征了心脏的电生理活动,心脏的电生理活动与心脏的机械振动具有强相关性,因此可以用来和振动信息进行验证。
S1034、在血流动力学相关信息、第一高频分量信息、或第二高频分量信息上基于第二波群和第三波群确定第一参数和第二参数。
在实施例一中,S1034有两种方法可以实现。
方法一:
以在第一高频分量信息曲线上,基于第二波群和第三波群进行波形搜索确定第一参数和第二参数为例,具体包括:
首先,对所述第一高频分量信息的第二波群进行“W”波形搜索,确定“W”中第二个波谷与其前第一个波峰间的幅度作为第一参数。如图7A所示,距离L11即为第一参数。也可以将“W”中第二个波谷与其后第一个波峰间的幅度作为第一参数。如图7B所示,距离L12即为第一参数。其中,图7A和图7B所示的曲线是基于对象B的胸腔振动信息生成的,曲线72是血流动力学相关信息,曲线71是振动能量信息,是对曲线72进行能量积分后的生成的曲线,曲线73是第一高频分量信息的时域波形曲线,曲线74是第二高频分量信息的时域波形曲线,曲线73和曲线74是曲线721进行一阶微分处理和二阶微分处理后的波形曲线。
此外,在一些实施例中,对所述第一高频分量信息的第二波群进行“W”波形搜索时,若“W”波形并未全部包含在第二波群内,即超出了第二波群的范围,则从第二波群起始往后搜索,第一个“W”即为目标“W”;若“W”的第二个谷不平整,比如有拐点或者凸起,则取至最深的谷作为“W”第二个谷。如图7C所示各条曲线是依据对象C的胸腔体表振动信息生成的,其中,曲线75是同步获取的心电信息,曲线76是振动能量信息,曲线77是第一高频分量信息,此处,将距离L13作为第一参数。
其次,在同一个心动周期内,对所述第一高频分量信息的第三波群进行“W”波形搜索,确定“W”中第二个波谷与其前第一个波峰间的幅度作为第二参数。如图7A所示,距离L21即为第二参数。也可以将“W”中第二个波谷与其后第一个波峰间的幅度作为第二参数。如图7B所示,距离L22即为第一参数。
在一些实施例中,对所述第一高频分量信息的第三波群进行“W”波形搜索时,若“W”位置不确定,可将与振动信息同步获取的心电信息和第一高频分量信息置于同一时间轴同步后作为参考,“W”通常处于心电信息的PR间期,若“W”波形超出了第三波群的范围,则取完整的“W”波形作为目标“W”,“W”中第二个波谷与其后第一个波峰间的幅度即为第二参数。如图7C,距离L23即为第二参数。
应当理解的是,上述是以在第一高频分量信息上基于第二波群和第三波群确定第一参数和第二参数为例进行说明的。在血流动力学相关信息或第二高频分量信息上上述方法同样适用。
方法二:
在一些例子中,若“W”位置不好确定,还可以在第二高频分量信息上第二波群和第三波群确定第一特征点和第二特征点;进而基于第一特征点和第二特征点确定血流动力学信息、第一高频分量信息或第二高频分量信息的第一参数和第二参数。具体包括:
第一步,在第二高频分量信息上,基于第二波群和第三波群,确定第一特征点和第二特征点。
首先,确定所述第二高频分量信息的第二波群的最高峰之后的第一个波谷为第一特征点。如图8A所示,点811即为第一特征点。
其次,对第二高频分量信息的第三波群进行波谷搜索确定第二个波谷为第二特征点。如图8A所示,点812即为第二特征点。
图8A和图8B所示的曲线是基于对象D的胸腔振动信息生成的,曲线85是血流动力学相关信息,曲线82是振动能量信息,是对曲线85进行能量积分后的生成的曲线,曲线83是第一高频分量信息的时域波形曲线,曲线84是第二高频分量信息的时域波形曲线,曲线83和曲线84是曲线85进行一阶微分处理和二阶微分处理后的波形曲线,曲线81是同步获取的对象的心电信息。
第二步,基于第一特征点和第二特征点确定血流动力学信息、第一高频分量信息或第二高频分量信息的第一参数和第二参数。
在第二高频分量信息上,确定第一特征点所在的波谷与其前第一个波峰间的幅度作为第二高频分量的第一参数。如图8A所示,距离L34即为第二高频分量的第一参数。图8A中,横轴表示时间,纵轴是无量纲的。距离L34指的是第一特征点所在的波谷与其前第一个波峰间的幅度。也可以将第一特征点所在的波谷与其后第一个波峰间的幅度作为第二高频分量的第一参数。如图8B所示,距离L35即为第二高频分量的第一参数。
在同一个心动周期内,在第二高频分量信息上,确定第二特征点所对应的波谷与其后第一个波峰间的幅度作为第二高频分量的第二参数。如图8A所示,距离L44即为第二参数。也可以将第二特征点所在的波谷与其前第一个波峰间的幅度作为第二高频分量的第二参数。如图8B所示,距离L45即为第二高频分量的第二参数。
基于第一特征点和第二特征点,也可以类似方法在第一高频分量信息上或血流动力学相关信息上取第一参数和第二参数。例如:
在第一高频分量信息上,确定第一特征点对应时间点之后的第一个波谷与其前第一个波峰间的幅度作为第一高频分量的第一参数。如图8A所示,距离L14即为第一高频分量的第一参数。也可以将第一特征点对应时间点之后的第一个波谷与其后第一个波峰间的幅度作为第一高频分量的第一参数。如图8B所示,距离L15即为第一高频分量的第一参数。
在同一个心动周期内,在第一高频分量信息上,确定第二特征点对应时间点之后的第一个波谷与其后第一个波峰间的幅度作为第一高频分量的第二参数。如图8A所示,距离L24即为第一高频分量的第二参数。也可以将第二特征点对应时间点之后的第一个波谷与其前第一个波峰间的幅度作为第一高频分量的第二参数。如图8B所示,距离L25即为第一高频分量的第二参数。
在血流动力学相关信息上上述方法同样适用。在血流动力学相关信息上,确定第一特征点对应时间点之后的第一个波谷与其后第一个波峰间的幅度作为血流动力学相关信息上的第一参数。如图8B所示,距离L55即为第一高频分量的第一参数。在同一个心动周期内,在血流动力学相关信息上,确定第二特征点对应时间点之后的第一个波谷与其前第一个波峰间的幅度作为血流动力学相关信息上的第一参数。如图8B所示,距离L65即为第一高频分量的第二参数。
心脏舒张早期心室充盈事件包括舒张早期跨瓣血流加速事件和跨瓣血流减速事件,跨瓣血流主要指从左心房跨越二尖瓣流入左心室的血流。
心脏舒张早期的心室充盈事件和心脏舒张末期的心房收缩事件可以通过不同的传感器来获取不同维度的信息,例如电生理传感器可以获取该事件的电信号,振动传感器可以获取该事件的振动信号。具体地,可以通过振动传感器获取对象的胸腔体表运动,进而从中提取出该对象的心脏舒张早期的心室充盈事件和心脏舒张末期的心房收缩事件。心脏舒张早期的心室充盈事件包括心室充盈造成的肌肉运动和血流运动在对象体表形成的振动,心脏舒张末期心房收缩事件包括心房收缩造成的肌肉和血流运动在体表形成的振动。本发明实施例一中,我们选取第一参数用来表征心脏舒张早期心室充盈造成的肌肉运动和血流运动在对象体表形成的振动幅度,选取第二参数用来表征心脏舒张末期心房收缩造成的肌肉和血流运动在体表形成的振动幅度。可以理解的是,除了振动幅度我们还可以选取表征振动能量、振动频率、或振动时间等参数,用于表征心脏舒张早期心室充盈事件和心脏舒张末期心房收缩事件。
参考图7和图8所示,第一参数当取第一高频分量信息中第二波群的W中第二个波谷或者是第一特征点与其前第一个波峰形成的下降沿幅度,用来表征心脏舒张早期跨瓣血流加速事件造成的肌肉和血流运动在体表形成的振动幅度,如L11,L14,L34;当第一参数取第一高频分量信息中第二波群的W中第二个波谷或者是第一特征点与其后第一个波峰形成的上升沿幅度,用来表征心脏舒张早期跨瓣血流减速事件造成的肌肉和血流运动在体表形成的振动幅度,如L12,L55,L15,L35。第二参数的两种取值取法都用于表征心房收缩造成的肌肉和血流运动在体表形成的振动,如L24、L25、L44和L45。
S104、基于第一参数和第二参数生成指示参数,并基于指示参数评估所述对象的心脏充盈压状态。例如,可以将第一参数与第二参数的比值作为指示参数,将在第一高频分量信息上取得的指示参数作为指示参数I1,在第二高频分量信息上取得的指示参数作为指示参数I2,在血流动力学信息上取得的指示参数作为指示参数I3。如指示参数I1=L12/L22,指示参数I2=L35/L45,指示参数I3=L55/L65。当指示参数大于阈值时,判定对象心脏舒张功能等级为高充盈压状态。其中,心脏高充盈压状态被认为是超声参数E/e’>14,Vtr<14,E/A>1的状态,此时心脏处于限制性充盈状态,主动松弛能力受损和心室壁顺应性降低,高充盈压会使心脏功能进入快速的恶性循环,需要及时干预,从而可以避免患者进一步恶化。
图9A所示是依据对象E的胸腔体表振动信息计算得到的第一参数和第二参数的示意图,对象E是一位处于高充盈压状态的心衰患者。其中,曲线91是与振动信息同步获取的心电信息,曲线93是血流动力学相关信息的时域波形图,曲线92是振动能量信息的时域波形图,是对曲线93进行能量积分后生成的,曲线94是第一高频分量信息的时域波形曲线,曲线95是第二高频分量信息的时域波形曲线,曲线94和曲线95是曲线93进行一阶微分处理和二阶微分处理后的波形曲线。第一参数可以取L955、L915、L935,第二参数可以取L965、L925、L915。同图7和图8相比,可见该心衰患者的第一参数变化较大,这里选取第一参数和第二参数的比值来表征变化。
本领域普通技术人员可以据此得到将第二参数与第一参数的比值作为指示参数时心脏舒张功能评估的方法,也包含在本发明的保护范围内。另外,本领域普通技术人员容易想到可以将第二参数与第一参数进行其他运算后生成指示参数,包括但不限于:加、减、乘、除、指数等操作,也均在本发明的保护范围之内。
选取25名心衰患者作为测试对象入组进行临床试验,25名心衰患者中包括12名高充盈压状态的患者(标记为阳性),13名非高充盈压状态患者(标记为阴性)。按照上述的心脏舒张功能评估方法100计算25位测试对象的指示参数,并对25位测试对象的指示参数进行敏感性、特异性分析,构建ROC曲线如图9B、9C和9D所示,分别是依据上述指示参数I1、指示参数I2和指示参数I3的ROC曲线。依据指数参数I1对心脏充盈压状态的判别结果:AUC面积为0.833,最佳cut-off值为0.801,此时,敏感性:92.3%,特异性:75%。依据指数参数I2对心脏充盈压状态的判别结果为:AUC面积为0.865,最佳cut-off值为0.824,此时,敏感性:100%,特异性:83.3%。依据指数参数I3对心脏充盈压状态的判别结果:AUC面积为0.782,最佳cut-off值为1.055,此时,敏感性:69.2%,特异性:83.3%。其中,阈值是基于心衰人群确定的阈值。在本发明一些实施例中,阈值还可以是绝对阈值,用来区分正常人和患有心脏舒张功能障碍的人。阈值还可以是基于对象自身的阈值,例如,基于对监测对象的个人历史数据分析可以得到其心脏舒张功能恶化时的相对阈值。
在本发明实施例一中,心脏舒张功能是用心室充盈压状态来表征的,例如高充盈压状态表征了重度舒张功能障碍。此外,心脏舒张功能还可以用心房压来表征,心脏结构导致左心室充盈压与左房压、肺动脉压具有相关性,因此在一些实施例中,指示参数除了可以用来评价充盈压状态,还可以经过一系列变换后用作间接评估左心房压力状态、肺动脉压力状态以及心衰程度等,同样在本发明的保护范围之内。
实施例二:
本发明实施例二提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本发明实施例一提供的心脏舒张功能评估方法的步骤。
实施例三:
本发明实施例三提供了一种心脏舒张功能评估设备,图10所示是一种心脏舒张功能评估设备200的结构框图。该心脏舒张功能评估设备200可以是专门设计用于处理光纤传感器的振动信息的专用计算机设备。
例如,心脏舒张功能评估设备200可以包括连接到与其连接的网络的通信端口201,以便于数据通信。心脏舒张功能评估设备200还可以包括处理器203,处理器203以一个或多个处理器的形式,用于执行计算机指令。计算机指令可以包括例如执行本文描述的心脏充盈压评估方法的例程、程序、对象、组件、数据结构、过程、模块和功能。例如,所述处理器203可以获得光纤传感器的振动信息,并对振动信息进行预处理生成血流动力学相关信息等。
在一些例子中,处理器203可以包括一个或多个硬件处理器,例如微控制器、微处理器、精简指令集计算机(RISC)、专用集成电路(ASIC)、图形处理单元(GPU)、中央处理单元(CPU)、数字信号处理器(DSP)、现场可编程门阵列(FPGA)、高级RISC机器(ARM)、可编程逻辑器件(PLD)等能够执行一个或多个功能的任何电路或处理器等,或其任何组合。
心脏舒张功能评估设备200可以包括内部通信总线205、存储器207用于由计算机处理和/或发送的各种数据文件,以及存储在存储器207中由处理器203执行的其他类型的非暂时性存储介质中的程序指令。本申请的方法和/或过程可以作为程序指令实现。心脏舒张功能评估设备200还包括输入/输出组件209,支持计算机和其他组件(例如,用户界面元件)之间的输入/输出。
应当理解的是,为了描述方便在本申请中心脏舒张功能评估设备200中仅描述了一个处理器。然而,应当注意,本申请中的心脏舒张功能评估设备200还可以包括多个处理器,因此,本申请中披露的操作和/或方法步骤可以如本申请所述的由一个处理器执行,也可以由多个处理器联合执行。例如,如果在本申请中心脏舒张功能评估设备200的处理器203执行步骤A和步骤B,则应该理解,步骤A和步骤B也可以由信息处理中的两个不同处理器联合或分开执行(例如,第一处理器执行步骤A,第二处理器执行步骤B,或者第一和第二处理器共同执行步骤A和B)。
实施例四:
本发明实施例四提供了一种心脏充盈压状态的监测系统,包括:
一个或多个振动传感器;和
本发明实施例三提供的心脏充盈压状态的评估设备。
如图11所示是一种心脏充盈压状态监测系统300的结构框图。一种心脏高压状态监测系统300可以包括一个或多个振动传感器301,一个或多个心脏舒张功能评估设备303,一个或多个存储装置305。
其中,振动传感器301可以是加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器、应力传感器,此外还可以是以加速度、速度、位移、或压力为基础将物理量等效性转换的传感器(例如静电荷敏感传感器、充气式微动传感器、雷达传感器等)。其中应变传感器可以是光纤传感器。振动传感器301是光纤传感器时,可被放置于对象身体下方。例如对象可以呈仰卧、俯卧、侧卧等姿势,光纤传感器可放置于床上,对象仰卧(俯卧或侧卧)于其上。以对象呈仰卧姿势为例,较佳的测量位置是光纤传感器被配置为置于对象的背部下方,较佳的测量状态是光纤传感器被配置为置于对象的左肩胛骨和右肩胛骨之间的区域。一般地,为描述方便,将对象左肩胛骨和右肩胛骨之间所对应的体表区域定义为中肩。本领域普通人员可以理解的是,当对象呈俯卧姿势时,与仰卧姿势时的背部对应的测量位置对应的是对象的胸部。此外,还可以振动传感器放置于一定倾斜角仰卧人体背后的接触面、轮椅或其它可倚靠物体的倚卧人体背后的接触面等进行振动信息的采集。
心脏舒张功能评估设备303如本发明实施例三所述。心脏舒张功能评估设备303可以通过网络320与振动传感器301相连接。网络320可以是单一网络,例如有线网络或无线网络,还可以是多种网络的组合。网络320可以包括但不限于局域网、广域网、共用网络、专用网络等。网络320可以包括多种网络接入点,例如无线或有线接入点、基站或网络接入点,通过以上接入点使心脏充盈压状态监测系统300的其他组成部分可以连接网络103并通过网络传送信息。
存储装置305可以被配置为存储数据和指令。存储装置305可以包括但不限于随机存储器、只读存储器、可编程只读存储器等。存储装置305可以是利用电能方式、磁能方式、光学方式等存储信息的设备,例如硬盘、软盘、磁芯存储器、CD、DVD等。以上提及的存储设备只是列举了一些例子,存储装置305使用的存储设备并不局限于此。
在一些例子中,该心脏充盈压状态监测系统300还可以包括输出装置307,输出装置307被配置为将心脏舒张功能评估结果输出,输出方式包括但不限于图形、文字、数据、语音等,例如图形显示、数字显示、语音播报、盲文显示等中的一种或多种。输出装置307可以是显示器、手机、平板电脑、投影仪、可穿戴设备(手表、耳机、眼镜等)、盲文显示器等中的一种或多种。在一些例子中,输出装置307可以实时显示对象102的心脏充盈压评估结果,在另一些例子中,输出装置307可以非实时显示一份报告,该报告是对象在预设时间段内的测量结果,例如用户在入睡时间段内的心脏充盈压监测结果。当监测对象是心衰患者时,如果心脏舒张功能评估设备将其心脏舒张功能评估为高充盈压状态,那心衰患者此时会面临心衰状况恶化,需要接受住院治疗,该监测系统的输出装置可以给该心衰患者发送提示信息,例如发送短信、电子邮件、电话、微信等即时聊天信息,还可以给该心衰患者的家庭医生发送信息,提示该患者有可能面临心衰恶化以帮助医生做决策。该系统还可以进一步包括医患交流平台,当医生接收到系统推送的患者可能面临心衰恶化时,及时与患者沟通。
再如,输出装置307还可以实现预警功能,例如通过语音预警,当心脏舒张功能评估设备将心衰患者心脏舒张功能评估为高充盈压状态,那心衰患者此时会面临心衰状况恶化,通过声音来提醒患者及时就诊。
本发明是通过采集使用者的振动信息来监测心脏的充盈压,无需侵入人体,被动测量,而且可以实现连续监测,使用者只需要躺在测量设备上即可进行测量,无需专业人员辅助,并且具有测量精度高、操作简单的优点,能提高测试者的舒适性,可以适用于医院和家庭等场景。本发明提供的心脏充盈压状态监测系统,可以评估使用者的心脏充盈压状态,进而在出现恶化迹象时提前预警,帮助使用者避免恶化后果。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,RandomAccess Memory)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (32)

1.一种心脏舒张功能评估方法,其特征在于,所述方法包括:
非侵入式获取对象胸腔体表的振动信息;
对所述振动信息进行预处理生成血流动力学相关信息;
基于所述血流动力学相关信息确定第一参数和第二参数,其中,第一参数用于表征心脏舒张早期心室充盈事件,第二参数用于表征心脏舒张末期心房收缩事件;
基于所述第一参数和第二参数生成指示参数,并基于所述指示参数评估所述对象的心脏舒张功能;
所述基于所述血流动力学相关信息确定第一参数和第二参数包括:
对所述血流动力学相关信息进行高频分量提取,生成第一高频分量信息或第二高频分量信息,其中第一高频分量信息用于表征速度,第二高频分量信息用于表征加速度;
对所述血流动力学相关信息进行能量积分生成振动能量信息,所述振动能量信息在一个心动周期内包含两个能量包络带;
将所述血流动力学相关信息与所述振动能量信息置于同一时间轴同步,确定所述血流动力学相关信息在同一个心动周期内的最高峰;将所述振动能量信息两个能量包络带中包括所述血流动力学相关信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;在所述血流动力学相关信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;基于所述第二波群和第三波群确定第一参数和第二参数;
或者,
将所述第一高频分量信息与所述振动能量信息置于同一时间轴同步,确定所述第一高频分量信息在同一个心动周期内的最高峰;将所述振动能量信息两个能量包络带中包括所述第一高频分量信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;在所述第一高频分量信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;基于所述第二波群和第三波群确定第一参数和第二参数;
或者,
将所述第二高频分量信息与所述振动能量信息置于同一时间轴同步,确定所述第二高频分量信息在同一个心动周期内的最高峰;将所述振动能量信息两个能量包络带中包括所述第二高频分量信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;在所述第二高频分量信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;基于所述第二波群和第三波群确定第一参数和第二参数。
2.如权利要求1所述的方法,其特征在于,所述非侵入式获取对象胸腔体表的振动信息包括通过一个或多个振动传感器获取对象胸腔体表的振动信息。
3.如权利要求2所述的方法,其特征在于,所述振动传感器是加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器或应力传感器。
4.如权利要求3所述的方法,其特征在于,所述应变传感器包括光纤传感器,所述光纤传感器被配置为置于所述对象的身体下方。
5.如权利要求2所述的方法,其特征在于,所述振动传感器的配置位置之一为所述对象的左肩胛骨和右肩胛骨之间区域的下方。
6.如权利要求2所述的方法,其特征在于,所述振动传感器的感应区域的面积至少是二十平方厘米。
7.如权利要求5所述的方法,其特征在于,所述振动传感器的感应区域的面积覆盖所述对象的左肩胛骨和右肩胛骨之间的体表区域。
8.如权利要求1所述的方法,其特征在于,所述对象的身体姿势之一是仰卧。
9.如权利要求1所述的方法,其特征在于,所述预处理包括滤波、去噪、信号缩放中的至少一种。
10.如权利要求1所述的方法,其特征在于,所述心脏舒张早期心室充盈事件是心脏舒张早期心室充盈造成的肌肉和血流运动在体表形成的振动;所述心脏舒张末期心房收缩事件是心脏舒张末期心房收缩造成的肌肉和血流运动在体表形成的振动。
11.如权利要求10所述的方法,其特征在于,所述第一参数包括心脏舒张早期心室充盈造成的肌肉和血流运动在体表形成的振动幅度,所述第二参数包括心脏舒张末期心房收缩造成的肌肉和血流运动在体表形成的振动幅度。
12.如权利要求 1所述的方法,其特征在于,基于所述第二波群和第三波群确定第一参数和第二参数,包括:
对第二波群进行“W”波形搜索,确定 “W”中第二个波谷与其前第一个波峰间的幅度或者“W”中第二个波谷与其后第一个波谷间的幅度作为第一参数;
对第三波群进行“W” 波形搜索,确定“W”中第二个波谷与其后第一个波峰间的幅度或者“W”中第二个波谷与其后第一个波谷间的幅度作为第二参数。
13.如权利要求1所述的方法,其特征在于,所述基于所述指示参数评估所述对象的心脏舒张功能包括评估所述对象的心脏充盈压状态。
14.如权利要求13所述的方法,其特征在于,所述基于所述指示参数评估所述对象的心脏充盈压的状态,具体是:
确定第一参数与第二参数的比值作为指示参数;
当所述指示参数大于阈值时,判定所述对象心脏为高充盈压状态。
15.如权利要求14所述的方法,其特征在于,所述阈值是基于人群的阈值。
16.如权利要求1所述的方法,其特征在于,所述血流动力学相关信息是:
一个心动周期内的数据;或
预设时间段内的以心动周期为单位进行叠加和平均后的数据。
17.一种心脏舒张功能评估方法,其特征在于,所述方法包括:
非侵入式获取对象胸腔体表的振动信息;
对所述振动信息进行预处理生成血流动力学相关信息;
基于所述血流动力学相关信息确定第一参数和第二参数,其中,第一参数用于表征心脏舒张早期心室充盈事件,第二参数用于表征心脏舒张末期心房收缩事件;
基于所述第一参数和第二参数生成指示参数,并基于所述指示参数评估所述对象的心脏舒张功能;
所述基于所述血流动力学相关信息确定第一参数和第二参数包括:
对所述血流动力学相关信息进行能量积分生成振动能量信息,所述振动能量信息在一个心动周期内包含两个能量包络带;
对所述血流动力学相关信息进行高频分量提取,生成第一高频分量信息或第二高频分量信息,其中第一高频分量信息用于表征速度,第二高频分量信息用于表征加速度;
将所述第二高频分量信息与所述振动能量信息置于同一时间轴同步,确定所述第二高频分量信息在同一个心动周期内的最高峰;
将所述振动能量信息两个能量包络带中包括所述第二高频分量信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;
在所述第二高频分量信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;
确定所述第二波群的最高峰之后的第一个波谷为第一特征点,确定所述第三波群的第二个波谷为第二特征点;
在所述第二高频分量信息上,确定第一特征点与其前第一个波峰间的幅度或者是第一特征点与其后第一个波峰间的幅度作为第一参数,在同一个心动周期内,确定第二特征点与其后第一个波峰间的幅度或者是第二特征点与其前第一个波峰间的幅度作为第二参数;
或者,
在所述第一高频分量信息上,将第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第一参数,在同一个心动周期内,将第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第二参数;
或者,
在所述血流动力学相关信息上,将第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第一参数,在同一个心动周期内,将第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第二参数。
18.如权利要求17所述的方法,其特征在于,所述非侵入式获取对象胸腔体表的振动信息包括通过一个或多个振动传感器获取对象胸腔体表的振动信息。
19.如权利要求18所述的方法,其特征在于,所述振动传感器是加速度传感器、速度传感器、位移传感器、压力传感器、应变传感器或应力传感器。
20.如权利要求19所述的方法,其特征在于,所述应变传感器包括光纤传感器,所述光纤传感器被配置为置于所述对象的身体下方。
21.如权利要求18所述的方法,其特征在于,所述振动传感器的配置位置之一为所述对象的左肩胛骨和右肩胛骨之间区域的下方。
22.如权利要求18所述的方法,其特征在于,所述振动传感器的感应区域的面积至少是二十平方厘米。
23.如权利要求21所述的方法,其特征在于,所述振动传感器的感应区域的面积覆盖所述对象的左肩胛骨和右肩胛骨之间的体表区域。
24.如权利要求17所述的方法,其特征在于,所述对象的身体姿势之一是仰卧。
25.如权利要求17所述的方法,其特征在于,所述预处理包括滤波、去噪、信号缩放中的至少一种。
26.如权利要求17所述的方法,其特征在于,所述心脏舒张早期心室充盈事件是心脏舒张早期心室充盈造成的肌肉和血流运动在体表形成的振动;所述心脏舒张末期心房收缩事件是心脏舒张末期心房收缩造成的肌肉和血流运动在体表形成的振动。
27.如权利要求26所述的方法,其特征在于,所述第一参数包括心脏舒张早期心室充盈造成的肌肉和血流运动在体表形成的振动幅度,所述第二参数包括心脏舒张末期心房收缩造成的肌肉和血流运动在体表形成的振动幅度。
28.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至27任一项所述的心脏舒张功能评估方法的步骤。
29.一种用于心脏舒张功能评估的设备,包括:
一个或多个处理器;
存储器;以及
一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,并且被配置成由所述一个或多个处理器执行,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至27任一项所述的心脏舒张功能评估方法的步骤。
30.一种用于心脏充盈压状态监测的系统,其特征在于,所述系统包括:
一个或多个振动传感器,用来获取所述对象的胸腔体表振动信息;和
与振动传感器连接的,如权利要求29所述的用于心脏舒张功能评估的设备。
31.一种基于机器学习的心脏充盈压评估系统,其特征在于,所述系统包括:
一个或多个处理器,所述处理器被集中或各自编程为实现:
接收对象的胸腔体表振动信息作为训练输入信息;
通过机器学习对训练输入信息进行分析建立评估模型;
接收待评价对象的胸腔体表振动信息,所述评估模型对所述待评价对象的心脏充盈压状态做出评估;
其中,评估模型执行以下操作:
对所述振动信息进行预处理生成血流动力学相关信息;
基于所述血流动力学相关信息确定第一参数和第二参数,其中,第一参数用于表征心脏舒张早期心室充盈事件,第二参数用于表征心脏舒张末期心房收缩事件;
基于所述第一参数和第二参数生成指示参数,并基于所述指示参数评估所述对象的心脏舒张功能;
所述基于所述血流动力学相关信息确定第一参数和第二参数包括:
对所述血流动力学相关信息进行高频分量提取,生成第一高频分量信息或第二高频分量信息,其中第一高频分量信息用于表征速度,第二高频分量信息用于表征加速度;
对所述血流动力学相关信息进行能量积分生成振动能量信息,所述振动能量信息在一个心动周期内包含两个能量包络带;
将所述血流动力学相关信息与所述振动能量信息置于同一时间轴同步,确定所述血流动力学相关信息在同一个心动周期内的最高峰;将所述振动能量信息两个能量包络带中包括所述血流动力学相关信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;在所述血流动力学相关信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;基于所述第二波群和第三波群确定第一参数和第二参数;
或者,
将所述第一高频分量信息与所述振动能量信息置于同一时间轴同步,确定所述第一高频分量信息在同一个心动周期内的最高峰;将所述振动能量信息两个能量包络带中包括所述第一高频分量信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;在所述第一高频分量信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;基于所述第二波群和第三波群确定第一参数和第二参数;
或者,将所述第二高频分量信息与所述振动能量信息置于同一时间轴同步,确定所述第二高频分量信息在同一个心动周期内的最高峰;将所述振动能量信息两个能量包络带中包括所述第二高频分量信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;在所述第二高频分量信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;基于所述第二波群和第三波群确定第一参数和第二参数。
32.一种基于机器学习的心脏充盈压评估系统,其特征在于,所述系统包括:
一个或多个处理器,所述处理器被集中或各自编程为实现:
接收对象的胸腔体表振动信息作为训练输入信息;
通过机器学习对训练输入信息进行分析建立评估模型;
接收待评价对象的胸腔体表振动信息,所述评估模型对所述待评价对象的心脏充盈压状态做出评估;
其中,评估模型执行以下操作:
对所述振动信息进行预处理生成血流动力学相关信息;
基于所述血流动力学相关信息确定第一参数和第二参数,其中,第一参数用于表征心脏舒张早期心室充盈事件,第二参数用于表征心脏舒张末期心房收缩事件;
基于所述第一参数和第二参数生成指示参数,并基于所述指示参数评估所述对象的心脏舒张功能;
所述基于所述血流动力学相关信息确定第一参数和第二参数包括:
对所述血流动力学相关信息进行高频分量提取,生成第一高频分量信息或第二高频分量信息,其中第一高频分量信息用于表征速度,第二高频分量信息用于表征加速度;
对所述血流动力学相关信息进行能量积分生成振动能量信息,所述振动能量信息在一个心动周期内包含两个能量包络带;
将所述第二高频分量信息与所述振动能量信息置于同一时间轴同步,确定所述第二高频分量信息在同一个心动周期内的最高峰;
将所述振动能量信息两个能量包络带中包括所述第二高频分量信息的最高峰的能量包络带的持续时间确定为第一时间窗,另一个能量包络带的持续时间确定为第二时间窗;
在所述第二高频分量信息上将处于第一时间窗之内的波丛确定为第一波群,在第二时间窗之内的波丛确定为第二波群,第一波群之前的W形状的波丛确定为第三波群;
确定所述第二波群的最高峰之后的第一个波谷为第一特征点,确定所述第三波群的第二个波谷为第二特征点;
在所述第二高频分量信息上,确定第一特征点与其前第一个波峰间的幅度或者是第一特征点与其后第一个波峰间的幅度作为第一参数,在同一个心动周期内,确定第二特征点与其后第一个波峰间的幅度或者是第二特征点与其前第一个波峰间的幅度作为第二参数;
或者,
在所述第一高频分量信息上,将第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第一参数,在同一个心动周期内,将第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第二参数;
或者,
在所述血流动力学相关信息上,将第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第一特征点对应时间点之后的第一个波谷与所述第一特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第一参数,在同一个心动周期内,将第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之前第一个波峰间的幅度或者第二特征点对应时间点之后的第一个波谷与所述第二特征点对应时间点之后的第一个波谷之后第一个波峰间的幅度作为第二参数。
CN201980074503.4A 2019-05-20 2019-05-20 一种心脏舒张功能评估方法、设备和系统 Active CN113226170B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087632 WO2020232604A1 (zh) 2019-05-20 2019-05-20 一种心脏舒张功能评估方法、设备和系统

Publications (2)

Publication Number Publication Date
CN113226170A CN113226170A (zh) 2021-08-06
CN113226170B true CN113226170B (zh) 2024-03-08

Family

ID=73459252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980074503.4A Active CN113226170B (zh) 2019-05-20 2019-05-20 一种心脏舒张功能评估方法、设备和系统

Country Status (3)

Country Link
US (1) US20220248962A1 (zh)
CN (1) CN113226170B (zh)
WO (1) WO2020232604A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988001B2 (ja) * 2018-08-30 2022-01-05 オリンパス株式会社 記録装置、画像観察装置、観察システム、観察システムの制御方法、及び観察システムの作動プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178151A (en) * 1988-04-20 1993-01-12 Sackner Marvin A System for non-invasive detection of changes of cardiac volumes and aortic pulses
CN102579017A (zh) * 2011-01-11 2012-07-18 无锡华清医疗器械有限公司 无创血流动力学参数分析仪
CN103732134A (zh) * 2010-12-29 2014-04-16 迪亚卡帝奥有限公司 自动左心室功能评价
CN108056769A (zh) * 2017-11-14 2018-05-22 深圳市大耳马科技有限公司 一种生命体征信号分析处理方法、装置和生命体征监测设备
CN108367106A (zh) * 2015-12-14 2018-08-03 柏林心脏有限公司 用于支持心脏的血泵和操作血泵的方法
CN108354612A (zh) * 2018-01-19 2018-08-03 深圳和而泰数据资源与云技术有限公司 一种信号处理方法及装置
CN109310371A (zh) * 2016-06-16 2019-02-05 阿克瑞克公司 定量心震描记法
CN109562267A (zh) * 2016-08-11 2019-04-02 心脏起搏器股份公司 用于心力衰竭监视的舒张期心内膜加速度

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005042923A1 (de) * 2005-09-08 2007-03-22 Biotronik Crm Patent Ag Vorrichtung zur Bestimmung von Herzfunktionsparametern
US20140288442A1 (en) * 2010-02-25 2014-09-25 Tonino Bombardini Method and apparatus for quantification and monitoring of cardiovascular function during induced stress or physical activity and at rest
US20150038856A1 (en) * 2011-05-03 2015-02-05 Heart Force Medical Inc Method and apparatus for estimating myocardial contractility using precordial vibration
US20140275976A1 (en) * 2013-03-15 2014-09-18 Adventist Health System/Sunbelt, Inc. Global Ventricular Cardiac Diastolic Function Evaluation System and Associated Methods
US10743797B2 (en) * 2015-08-27 2020-08-18 Shenzhen Darma Technology Co. Ltd. Fiber-optic sensors and methods for monitoring micro-movements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178151A (en) * 1988-04-20 1993-01-12 Sackner Marvin A System for non-invasive detection of changes of cardiac volumes and aortic pulses
CN103732134A (zh) * 2010-12-29 2014-04-16 迪亚卡帝奥有限公司 自动左心室功能评价
CN102579017A (zh) * 2011-01-11 2012-07-18 无锡华清医疗器械有限公司 无创血流动力学参数分析仪
CN108367106A (zh) * 2015-12-14 2018-08-03 柏林心脏有限公司 用于支持心脏的血泵和操作血泵的方法
CN109310371A (zh) * 2016-06-16 2019-02-05 阿克瑞克公司 定量心震描记法
CN109562267A (zh) * 2016-08-11 2019-04-02 心脏起搏器股份公司 用于心力衰竭监视的舒张期心内膜加速度
CN108056769A (zh) * 2017-11-14 2018-05-22 深圳市大耳马科技有限公司 一种生命体征信号分析处理方法、装置和生命体征监测设备
CN108354612A (zh) * 2018-01-19 2018-08-03 深圳和而泰数据资源与云技术有限公司 一种信号处理方法及装置

Also Published As

Publication number Publication date
US20220248962A1 (en) 2022-08-11
CN113226170A (zh) 2021-08-06
WO2020232604A1 (zh) 2020-11-26

Similar Documents

Publication Publication Date Title
EP2840962B1 (en) Apparatus and computer program for producing a signal expressing atrial fibrillation
RU2571333C2 (ru) Система, стетоскоп и способ для индикации риска ишемической болезни сердца
US10092268B2 (en) Method and apparatus to monitor physiologic and biometric parameters using a non-invasive set of transducers
EP2840955B1 (en) Method and apparatus for determining information indicative of cardiac malfunctions and abnormalities
US20230218178A1 (en) Construction method and application of digital human cardiovascular system based on hemodynamics
US20170071564A1 (en) Heart rate detection method and device using heart sound acquired from ausculation positions
CA3122115C (en) Method of predicting fluid responsiveness in patients
CN113499059A (zh) 基于光纤传感非接触式的bcg信号处理系统及方法
CN107530053A (zh) 基于多普勒超声波的可穿戴心脏监测
TWI595860B (zh) 心震圖譜特徵點量測方法
TWI603712B (zh) Cardiac Physiological Measurement System
CN113226170B (zh) 一种心脏舒张功能评估方法、设备和系统
WO2020068859A1 (en) Model-based sensor technology for detection of cardiovascular status
US20230020419A1 (en) Non-invasive type electrocardiogram monitoring device and method
CN113164124B (zh) 一种心脏舒张功能评估方法、设备和系统
CN113226174B (zh) 一种心脏舒张功能评估方法、设备和系统
US20220304631A1 (en) Multisensor pulmonary artery and capillary pressure monitoring system
Forouzanfar et al. Model-based oscillometric blood pressure estimation
US20220218208A1 (en) Method, apparatus and system for evaluating cardiac diastolic function
CN114795140B (zh) 基于心冲击信号的心肌做功指数监测系统及方法
Cosenza Design of an Inertial Multi-Sensor Network for the Monitoring of the Heart Rate During Sleep using Ballistocardiographic Signals
WO2020051741A1 (zh) 心脏生理参数测量方法、设备、终端及计算机存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240407

Address after: 518108, 5th Floor, Building B, Baoshi Science and Technology Park, Baoshi Road, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province

Patentee after: Oufeikang Technology (Shenzhen) Co.,Ltd.

Country or region after: China

Address before: 518052 501, Shangmei technology building, 2009 Shahe West Road, Yuehai street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN DARMA TECHNOLOGY Co.,Ltd.

Country or region before: China